2,368 research outputs found

    Spanning trees with few branch vertices

    Get PDF
    A branch vertex in a tree is a vertex of degree at least three. We prove that, for all s1s\geq 1, every connected graph on nn vertices with minimum degree at least (1s+3+o(1))n(\frac{1}{s+3}+o(1))n contains a spanning tree having at most ss branch vertices. Asymptotically, this is best possible and solves, in less general form, a problem of Flandrin, Kaiser, Ku\u{z}el, Li and Ryj\'a\u{c}ek, which was originally motivated by an optimization problem in the design of optical networks.Comment: 20 pages, 2 figures, to appear in SIAM J. of Discrete Mat

    Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree

    Get PDF
    The Tree Decomposition Conjecture by Bar\'at and Thomassen states that for every tree TT there exists a natural number k(T)k(T) such that the following holds: If GG is a k(T)k(T)-edge-connected simple graph with size divisible by the size of TT, then GG can be edge-decomposed into subgraphs isomorphic to TT. So far this conjecture has only been verified for paths, stars, and a family of bistars. We prove a weaker version of the Tree Decomposition Conjecture, where we require the subgraphs in the decomposition to be isomorphic to graphs that can be obtained from TT by vertex-identifications. We call such a subgraph a homomorphic copy of TT. This implies the Tree Decomposition Conjecture under the additional constraint that the girth of GG is greater than the diameter of TT. As an application, we verify the Tree Decomposition Conjecture for all trees of diameter at most 4.Comment: 18 page

    Partitioning random graphs into monochromatic components

    Full text link
    Erd\H{o}s, Gy\'arf\'as, and Pyber (1991) conjectured that every rr-colored complete graph can be partitioned into at most r1r-1 monochromatic components; this is a strengthening of a conjecture of Lov\'asz (1975) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into rr monochromatic components is possible for sufficiently large rr-colored complete graphs. We start by extending Haxell and Kohayakawa's result to graphs with large minimum degree, then we provide some partial analogs of their result for random graphs. In particular, we show that if p(27lognn)1/3p\ge \left(\frac{27\log n}{n}\right)^{1/3}, then a.a.s. in every 22-coloring of G(n,p)G(n,p) there exists a partition into two monochromatic components, and for r2r\geq 2 if p(rlognn)1/rp\ll \left(\frac{r\log n}{n}\right)^{1/r}, then a.a.s. there exists an rr-coloring of G(n,p)G(n,p) such that there does not exist a cover with a bounded number of components. Finally, we consider a random graph version of a classic result of Gy\'arf\'as (1977) about large monochromatic components in rr-colored complete graphs. We show that if p=ω(1)np=\frac{\omega(1)}{n}, then a.a.s. in every rr-coloring of G(n,p)G(n,p) there exists a monochromatic component of order at least (1o(1))nr1(1-o(1))\frac{n}{r-1}.Comment: 27 pages, 2 figures. Appears in Electronic Journal of Combinatorics Volume 24, Issue 1 (2017) Paper #P1.1
    corecore