37,192 research outputs found

    Spanning directed trees with many leaves

    Get PDF
    The {\sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that - every strongly connected nn-vertex digraph DD with minimum in-degree at least 3 has an out-branching with at least (n/4)1/31(n/4)^{1/3}-1 leaves; - if a strongly connected digraph DD does not contain an out-branching with kk leaves, then the pathwidth of its underlying graph UG(DD) is O(klogk)O(k\log k). Moreover, if the digraph is acyclic, the pathwidth is at most 4k4k. The last result implies that it can be decided in time 2O(klog2k)nO(1)2^{O(k\log^2 k)}\cdot n^{O(1)} whether a strongly connected digraph on nn vertices has an out-branching with at least kk leaves. On acyclic digraphs the running time of our algorithm is 2O(klogk)nO(1)2^{O(k\log k)}\cdot n^{O(1)}

    Spanning Directed Trees with Many Leaves

    Full text link

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph DLD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/51(n/2)^{1/5}-1 leaves

    An FPT Algorithm for Directed Spanning k-Leaf

    Get PDF
    An out-branching of a directed graph is a rooted spanning tree with all arcs directed outwards from the root. We consider the problem of deciding whether a given directed graph D has an out-branching with at least k leaves (Directed Spanning k-Leaf). We prove that this problem is fixed parameter tractable, when k is chosen as the parameter. Previously this was only known for restricted classes of directed graphs. The main new ingredient in our approach is a lemma that shows that given a locally optimal out-branching of a directed graph in which every arc is part of at least one out-branching, either an out-branching with at least k leaves exists, or a path decomposition with width O(k^3) can be found. This enables a dynamic programming based algorithm of running time 2^{O(k^3 \log k)} n^{O(1)}, where n=|V(D)|.Comment: 17 pages, 8 figure

    A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem

    Full text link
    Given a directed graph G=(V,A)G=(V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree (i.e., an out-branching) with as many leaves as possible. By designing a Branch-and-Reduced algorithm combined with the Measure & Conquer technique for running time analysis, we show that the problem can be solved in time \Oh^*(1.9043^n) using polynomial space. Hitherto, there have been only few examples. Provided exponential space this run time upper bound can be lowered to \Oh^*(1.8139^n)

    Max-Leaves Spanning Tree is APX-hard for Cubic Graphs

    Full text link
    We consider the problem of finding a spanning tree with maximum number of leaves (MaxLeaf). A 2-approximation algorithm is known for this problem, and a 3/2-approximation algorithm when restricted to graphs where every vertex has degree 3 (cubic graphs). MaxLeaf is known to be APX-hard in general, and NP-hard for cubic graphs. We show that the problem is also APX-hard for cubic graphs. The APX-hardness of the related problem Minimum Connected Dominating Set for cubic graphs follows

    Embedding bounded degree spanning trees in random graphs

    Full text link
    We prove that if a tree TT has nn vertices and maximum degree at most Δ\Delta, then a copy of TT can almost surely be found in the random graph G(n,Δlog5n/n)\mathcal{G}(n,\Delta\log^5 n/n).Comment: 14 page

    Reconstructing pedigrees: some identifiability questions for a recombination-mutation model

    Full text link
    Pedigrees are directed acyclic graphs that represent ancestral relationships between individuals in a population. Based on a schematic recombination process, we describe two simple Markov models for sequences evolving on pedigrees - Model R (recombinations without mutations) and Model RM (recombinations with mutations). For these models, we ask an identifiability question: is it possible to construct a pedigree from the joint probability distribution of extant sequences? We present partial identifiability results for general pedigrees: we show that when the crossover probabilities are sufficiently small, certain spanning subgraph sequences can be counted from the joint distribution of extant sequences. We demonstrate how pedigrees that earlier seemed difficult to distinguish are distinguished by counting their spanning subgraph sequences.Comment: 40 pages, 9 figure

    Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

    Get PDF
    In a directed graph GG with non-correlated edge lengths and costs, the \emph{network design problem with bounded distances} asks for a cost-minimal spanning subgraph subject to a length bound for all node pairs. We give a bi-criteria (2+ε,O(n0.5+ε))(2+\varepsilon,O(n^{0.5+\varepsilon}))-approximation for this problem. This improves on the currently best known linear approximation bound, at the cost of violating the distance bound by a factor of at most~2+ε2+\varepsilon. In the course of proving this result, the related problem of \emph{directed shallow-light Steiner trees} arises as a subproblem. In the context of directed graphs, approximations to this problem have been elusive. We present the first non-trivial result by proposing a (1+ε,O(Rε))(1+\varepsilon,O(|R|^{\varepsilon}))-ap\-proxi\-ma\-tion, where RR are the terminals. Finally, we show how to apply our results to obtain an (α+ε,O(n0.5+ε))(\alpha+\varepsilon,O(n^{0.5+\varepsilon}))-approximation for \emph{light-weight directed α\alpha-spanners}. For this, no non-trivial approximation algorithm has been known before. All running times depends on nn and ε\varepsilon and are polynomial in nn for any fixed ε>0\varepsilon>0
    corecore