2,179 research outputs found

    Temporal Sentence Grounding in Videos: A Survey and Future Directions

    Full text link
    Temporal sentence grounding in videos (TSGV), \aka natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate the methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.Comment: 29 pages, 32 figures, 9 table

    Boundary Proposal Network for Two-Stage Natural Language Video Localization

    Full text link
    We aim to address the problem of Natural Language Video Localization (NLVL)-localizing the video segment corresponding to a natural language description in a long and untrimmed video. State-of-the-art NLVL methods are almost in one-stage fashion, which can be typically grouped into two categories: 1) anchor-based approach: it first pre-defines a series of video segment candidates (e.g., by sliding window), and then does classification for each candidate; 2) anchor-free approach: it directly predicts the probabilities for each video frame as a boundary or intermediate frame inside the positive segment. However, both kinds of one-stage approaches have inherent drawbacks: the anchor-based approach is susceptible to the heuristic rules, further limiting the capability of handling videos with variant length. While the anchor-free approach fails to exploit the segment-level interaction thus achieving inferior results. In this paper, we propose a novel Boundary Proposal Network (BPNet), a universal two-stage framework that gets rid of the issues mentioned above. Specifically, in the first stage, BPNet utilizes an anchor-free model to generate a group of high-quality candidate video segments with their boundaries. In the second stage, a visual-language fusion layer is proposed to jointly model the multi-modal interaction between the candidate and the language query, followed by a matching score rating layer that outputs the alignment score for each candidate. We evaluate our BPNet on three challenging NLVL benchmarks (i.e., Charades-STA, TACoS and ActivityNet-Captions). Extensive experiments and ablative studies on these datasets demonstrate that the BPNet outperforms the state-of-the-art methods.Comment: AAAI 202
    • …
    corecore