562 research outputs found

    Non-Local Compressive Sensing Based SAR Tomography

    Get PDF
    Tomographic SAR (TomoSAR) inversion of urban areas is an inherently sparse reconstruction problem and, hence, can be solved using compressive sensing (CS) algorithms. This paper proposes solutions for two notorious problems in this field: 1) TomoSAR requires a high number of data sets, which makes the technique expensive. However, it can be shown that the number of acquisitions and the signal-to-noise ratio (SNR) can be traded off against each other, because it is asymptotically only the product of the number of acquisitions and SNR that determines the reconstruction quality. We propose to increase SNR by integrating non-local estimation into the inversion and show that a reasonable reconstruction of buildings from only seven interferograms is feasible. 2) CS-based inversion is computationally expensive and therefore barely suitable for large-scale applications. We introduce a new fast and accurate algorithm for solving the non-local L1-L2-minimization problem, central to CS-based reconstruction algorithms. The applicability of the algorithm is demonstrated using simulated data and TerraSAR-X high-resolution spotlight images over an area in Munich, Germany.Comment: 10 page

    A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR

    Get PDF
    L1L_1 regularization is used for finding sparse solutions to an underdetermined linear system. As sparse signals are widely expected in remote sensing, this type of regularization scheme and its extensions have been widely employed in many remote sensing problems, such as image fusion, target detection, image super-resolution, and others and have led to promising results. However, solving such sparse reconstruction problems is computationally expensive and has limitations in its practical use. In this paper, we proposed a novel efficient algorithm for solving the complex-valued L1L_1 regularized least squares problem. Taking the high-dimensional tomographic synthetic aperture radar (TomoSAR) as a practical example, we carried out extensive experiments, both with simulation data and real data, to demonstrate that the proposed approach can retain the accuracy of second order methods while dramatically speeding up the processing by one or two orders. Although we have chosen TomoSAR as the example, the proposed method can be generally applied to any spectral estimation problems.Comment: 11 pages, IEEE Transactions on Geoscience and Remote Sensin

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    Elevation Extraction from Spaceborne SAR Tomography Using Multi-Baseline COSMO-SkyMed SAR Data

    Get PDF
    SAR tomography (TomoSAR) extends SAR interferometry (InSAR) to image a complex 3D scene with multiple scatterers within the same SAR cell. The phase calibration method and the super-resolution reconstruction method play a crucial role in 3D TomoSAR imaging from multi-baseline SAR stacks, and they both influence the accuracy of the 3D SAR tomographic imaging results. This paper presents a systematic processing method for 3D SAR tomography imaging. Moreover, with the newly released TanDEM-X 12 m DEM, this study proposes a new phase calibration method based on SAR InSAR and DEM error estimation with the super-resolution reconstruction compressive sensing (CS) method for 3D TomoSAR imaging using COSMO-SkyMed Spaceborne SAR data. The test, fieldwork, and results validation were executed at Zipingpu Dam, Dujiangyan, Sichuan, China. After processing, the 1 m resolution TomoSAR elevation extraction results were obtained. Against the terrestrial Lidar ‘truth’ data, the elevation results were shown to have an accuracy of 0.25 ± 1.04 m and a RMSE of 1.07 m in the dam area. The results and their subsequent validation demonstrate that the X band data using the CS method are not suitable for forest structure reconstruction, but are fit for purpose for the elevation extraction of manufactured facilities including buildings in the urban area

    Single-look light-burden superresolution differential SAR tomography

    Get PDF
    Research and application is spreading of techniques of coherent combination of complex-valued synthetic aperture radar (SAR) data to extract rich information even on complex observed scenes, fully exploiting existing SAR data archives, and new satellites. Among such techniques, SAR tomography stems from multibaseline interferometry to achieve full-3D imaging through elevation beamforming (spatial spectral estimation). The Tomo concept has been integrated with the mature differential interferometry, producing the new differential tomography (Diff-Tomo) processing mode, that allows `opening' the SAR cells in complex non-stationary scenes, resolving multiple heights and slow deformation velocities of layover scatterers. Consequently, the operational capability limit of differential interferometry to the single scatterer case is overcome. Diff-Tomo processing is cast in a 2D baseline-time spectral analysis framework, with sparse sampling. The use of adaptive 2D spectral estimation has demonstrated to allow joint baseline-time processing with reduced sidelobes and enhanced height-velocity resolution at low computational burden. However, this method requires coherent multilooking processing, thus does not produce full range-azimuth resolution products, as it would be desirable for urban applications. A new single-look adaptive Diff-Tomo processor is presented and tested with satellite data, allowing full range-azimuth resolution together with height-velocity sidelobe reduction and superresolution capabilities and the low computational burden

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Investigation of Sea Ice Using Multiple Synthetic Aperture Radar Acquisitions

    Get PDF
    The papers of this thesis are not available in Munin. Paper I: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Tomographic imaging of fjord ice using a very high resolution ground-based SAR system. Available in IEEE Transactions on Geoscience and Remote Sensing, 55 (2):698-714. Paper II: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Lake and fjord ice imaging using a multifrequency ground-based tomographic SAR system. Available in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10):4457-4468. Paper III: Yitayew, T. G., Divine, D. V., Dierking, W., Eltoft, T., Ferro-Famil, L., Rosel, A. & Negrel, J. Validation of Sea ice Topographic Heights Derived from TanDEMX Interferometric SAR Data with Results from Laser Profiler and Photogrammetry. (Manuscript).The thesis investigates imaging in the vertical direction of different types of ice in the arctic using synthetic aperture radar (SAR) tomography and SAR interferometry. In the first part, the magnitude and the positions of the dominant scattering contributions within snow covered fjord and lake ice layers are effectively identified by using a very high resolution ground-based tomographic SAR system. Datasets collected at multiple frequencies and polarizations over two test sites in Tromsø area, northern Norway, are used for characterizing the three-dimensional response of snow and ice. The presented experimental results helped to improve our understanding of the interaction between radar waves and snow and ice layers. The reconstructed radar responses are also used for estimating the refractive indices and the vertical positions of the different sub-layers of snow and ice. The second part of the thesis deals with the retrieval of the surface topography of multi-year sea ice using SAR interferometry. Satellite acquisitions from TanDEM-X over the Svalbard area are used for analysis. The retrieved surface height is validated by using overlapping helicopter-based stereo camera and laser profiler measurements, and a very good agreement has been found. The work contributes to an improved understanding regarding the potential of SAR tomography for imaging the vertical scattering distribution of snow and ice layers, and for studying the influence of both sensor parameters such as its frequency and polarization and scene properties such as layer stratification, air bubbles and small-scale roughness of the interfaces on snow and ice backscattered signal. Moreover, the presented results reveal the potential of SAR interferometry for retrieving the surface topography of sea ice

    4D Characterization of Short- and Long-term Height-varying Decorrelated Forest SAR Backscattering

    Get PDF
    Pol-InSAR and 3D multibaseline SAR Tomography (Tomo-SAR) can extract rich information on complex scenarios with multiple scatterers mapped in the SAR cell, in particular for forest remote sensing. However, forest scenarios are characterized by a temporal decorrelating volume canopy scatterer, and a set of related open problems exists, in particular for Tomo-SAR techniques to be applied to spaceborne monitoring of biomass. Multipass 4D Differential Tomography (Diff-Tomo) is a promising advancement, furnishing space (height)-time signatures of multiple scatterer dynamics in the SAR cell, originally with urban applications. In this paper, to better characterize forest decorrelation phenomena impacting Tomo-SAR/Pol-InSAR, experimental results are presented of the extension of Diff-Tomo methods for analyzing vegetated scenes, to extract jointly geometric and dynamic information of forest layers, at both the long and short time scale. The Diff-Tomo enabled functionality of separation in the height dimension of different temporal coherence levels (“coherence profilingâ€) that are mixed (undiscriminated) in classical total coherence analyses is extensively applied to airborne P-band multipolarimetric data, and results of this investigation are shown. Also, first ground-based radar results are presented of an innovative profiling along the height dimension of the short-term coherence, in particular aiming to characterize the magnitudes of short-term coherence times. Their expected variability along the tree structures is confirmed for the first time

    Evaluation of insar dem from high-resolution spaceborne sar data

    Get PDF
    In recent years a new generation of high-resolution SAR satellites became operational like the Canadian Radarsat-2, the Italian Cosmo/Skymed, and the German TerraSAR-X systems. The spatial resolution of such devices achieves the meter domain or even below. Key products derived from remote sensing imagery are Digital Elevation Models (DEM). Based on SAR data various techniques can be applied for such purpose, for example, Radargrammetry (i.e., SAR Stereo) and SAR Interferometry (InSAR). In the framework of the ISPRS Working Group VII/2 "SAR Interferometry" a long term scientific project is conducted that aims at the validation of DEM derived from data of modern SAR satellite sensors. In this paper, we present DEM results yield for the city of Barcelona which were generated by means of SAR Interferometry.DL
    • …
    corecore