1,900 research outputs found

    Tradeoffs for nearest neighbors on the sphere

    Get PDF
    We consider tradeoffs between the query and update complexities for the (approximate) nearest neighbor problem on the sphere, extending the recent spherical filters to sparse regimes and generalizing the scheme and analysis to account for different tradeoffs. In a nutshell, for the sparse regime the tradeoff between the query complexity nρqn^{\rho_q} and update complexity nρun^{\rho_u} for data sets of size nn is given by the following equation in terms of the approximation factor cc and the exponents ρq\rho_q and ρu\rho_u: c2ρq+(c2βˆ’1)ρu=2c2βˆ’1.c^2\sqrt{\rho_q}+(c^2-1)\sqrt{\rho_u}=\sqrt{2c^2-1}. For small c=1+Ο΅c=1+\epsilon, minimizing the time for updates leads to a linear space complexity at the cost of a query time complexity n1βˆ’4Ο΅2n^{1-4\epsilon^2}. Balancing the query and update costs leads to optimal complexities n1/(2c2βˆ’1)n^{1/(2c^2-1)}, matching bounds from [Andoni-Razenshteyn, 2015] and [Dubiner, IEEE-TIT'10] and matching the asymptotic complexities of [Andoni-Razenshteyn, STOC'15] and [Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt, NIPS'15]. A subpolynomial query time complexity no(1)n^{o(1)} can be achieved at the cost of a space complexity of the order n1/(4Ο΅2)n^{1/(4\epsilon^2)}, matching the bound nΞ©(1/Ο΅2)n^{\Omega(1/\epsilon^2)} of [Andoni-Indyk-Patrascu, FOCS'06] and [Panigrahy-Talwar-Wieder, FOCS'10] and improving upon results of [Indyk-Motwani, STOC'98] and [Kushilevitz-Ostrovsky-Rabani, STOC'98]. For large cc, minimizing the update complexity results in a query complexity of n2/c2+O(1/c4)n^{2/c^2+O(1/c^4)}, improving upon the related exponent for large cc of [Kapralov, PODS'15] by a factor 22, and matching the bound nΞ©(1/c2)n^{\Omega(1/c^2)} of [Panigrahy-Talwar-Wieder, FOCS'08]. Balancing the costs leads to optimal complexities n1/(2c2βˆ’1)n^{1/(2c^2-1)}, while a minimum query time complexity can be achieved with update complexity n2/c2+O(1/c4)n^{2/c^2+O(1/c^4)}, improving upon the previous best exponents of Kapralov by a factor 22.Comment: 16 pages, 1 table, 2 figures. Mostly subsumed by arXiv:1608.03580 [cs.DS] (along with arXiv:1605.02701 [cs.DS]

    Faster tuple lattice sieving using spherical locality-sensitive filters

    Get PDF
    To overcome the large memory requirement of classical lattice sieving algorithms for solving hard lattice problems, Bai-Laarhoven-Stehl\'{e} [ANTS 2016] studied tuple lattice sieving, where tuples instead of pairs of lattice vectors are combined to form shorter vectors. Herold-Kirshanova [PKC 2017] recently improved upon their results for arbitrary tuple sizes, for example showing that a triple sieve can solve the shortest vector problem (SVP) in dimension dd in time 20.3717d+o(d)2^{0.3717d + o(d)}, using a technique similar to locality-sensitive hashing for finding nearest neighbors. In this work, we generalize the spherical locality-sensitive filters of Becker-Ducas-Gama-Laarhoven [SODA 2016] to obtain space-time tradeoffs for near neighbor searching on dense data sets, and we apply these techniques to tuple lattice sieving to obtain even better time complexities. For instance, our triple sieve heuristically solves SVP in time 20.3588d+o(d)2^{0.3588d + o(d)}. For practical sieves based on Micciancio-Voulgaris' GaussSieve [SODA 2010], this shows that a triple sieve uses less space and less time than the current best near-linear space double sieve.Comment: 12 pages + references, 2 figures. Subsumed/merged into Cryptology ePrint Archive 2017/228, available at https://ia.cr/2017/122

    Down the Rabbit Hole: Robust Proximity Search and Density Estimation in Sublinear Space

    Full text link
    For a set of nn points in β„œd\Re^d, and parameters kk and \eps, we present a data structure that answers (1+\eps,k)-\ANN queries in logarithmic time. Surprisingly, the space used by the data-structure is \Otilde (n /k); that is, the space used is sublinear in the input size if kk is sufficiently large. Our approach provides a novel way to summarize geometric data, such that meaningful proximity queries on the data can be carried out using this sketch. Using this, we provide a sublinear space data-structure that can estimate the density of a point set under various measures, including: \begin{inparaenum}[(i)] \item sum of distances of kk closest points to the query point, and \item sum of squared distances of kk closest points to the query point. \end{inparaenum} Our approach generalizes to other distance based estimation of densities of similar flavor. We also study the problem of approximating some of these quantities when using sampling. In particular, we show that a sample of size \Otilde (n /k) is sufficient, in some restricted cases, to estimate the above quantities. Remarkably, the sample size has only linear dependency on the dimension

    Robust Proximity Search for Balls using Sublinear Space

    Get PDF
    Given a set of n disjoint balls b1, . . ., bn in IRd, we provide a data structure, of near linear size, that can answer (1 \pm \epsilon)-approximate kth-nearest neighbor queries in O(log n + 1/\epsilon^d) time, where k and \epsilon are provided at query time. If k and \epsilon are provided in advance, we provide a data structure to answer such queries, that requires (roughly) O(n/k) space; that is, the data structure has sublinear space requirement if k is sufficiently large

    Efficient Nearest Neighbor Classification Using a Cascade of Approximate Similarity Measures

    Full text link
    Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.National Science Foundation (IIS-0308213, IIS-0329009, EIA-0202067); Office of Naval Research (N00014-03-1-0108

    Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search

    Full text link
    The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a general technique for constructing a data structure to answer approximate near neighbor queries by using a distribution H\mathcal{H} over locality-sensitive hash functions that partition space. For a collection of nn points, after preprocessing, the query time is dominated by O(nρlog⁑n)O(n^{\rho} \log n) evaluations of hash functions from H\mathcal{H} and O(nρ)O(n^{\rho}) hash table lookups and distance computations where ρ∈(0,1)\rho \in (0,1) is determined by the locality-sensitivity properties of H\mathcal{H}. It follows from a recent result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive hash functions can be reduced to O(log⁑2n)O(\log^2 n), leaving the query time to be dominated by O(nρ)O(n^{\rho}) distance computations and O(nρlog⁑n)O(n^{\rho} \log n) additional word-RAM operations. We state this result as a general framework and provide a simpler analysis showing that the number of lookups and distance computations closely match the Indyk-Motwani framework, making it a viable replacement in practice. Using ideas from another locality-sensitive hashing framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of additional word-RAM operations to O(nρ)O(n^\rho).Comment: 15 pages, 3 figure

    Optimal Hashing-based Time-Space Trade-offs for Approximate Near Neighbors

    Get PDF
    [See the paper for the full abstract.] We show tight upper and lower bounds for time-space trade-offs for the cc-Approximate Near Neighbor Search problem. For the dd-dimensional Euclidean space and nn-point datasets, we develop a data structure with space n1+ρu+o(1)+O(dn)n^{1 + \rho_u + o(1)} + O(dn) and query time nρq+o(1)+dno(1)n^{\rho_q + o(1)} + d n^{o(1)} for every ρu,ρqβ‰₯0\rho_u, \rho_q \geq 0 such that: \begin{equation} c^2 \sqrt{\rho_q} + (c^2 - 1) \sqrt{\rho_u} = \sqrt{2c^2 - 1}. \end{equation} This is the first data structure that achieves sublinear query time and near-linear space for every approximation factor c>1c > 1, improving upon [Kapralov, PODS 2015]. The data structure is a culmination of a long line of work on the problem for all space regimes; it builds on Spherical Locality-Sensitive Filtering [Becker, Ducas, Gama, Laarhoven, SODA 2016] and data-dependent hashing [Andoni, Indyk, Nguyen, Razenshteyn, SODA 2014] [Andoni, Razenshteyn, STOC 2015]. Our matching lower bounds are of two types: conditional and unconditional. First, we prove tightness of the whole above trade-off in a restricted model of computation, which captures all known hashing-based approaches. We then show unconditional cell-probe lower bounds for one and two probes that match the above trade-off for ρq=0\rho_q = 0, improving upon the best known lower bounds from [Panigrahy, Talwar, Wieder, FOCS 2010]. In particular, this is the first space lower bound (for any static data structure) for two probes which is not polynomially smaller than the one-probe bound. To show the result for two probes, we establish and exploit a connection to locally-decodable codes.Comment: 62 pages, 5 figures; a merger of arXiv:1511.07527 [cs.DS] and arXiv:1605.02701 [cs.DS], which subsumes both of the preprints. New version contains more elaborated proofs and fixed some typo

    Approximate Nearest Neighbor Search for Low Dimensional Queries

    Full text link
    We study the Approximate Nearest Neighbor problem for metric spaces where the query points are constrained to lie on a subspace of low doubling dimension, while the data is high-dimensional. We show that this problem can be solved efficiently despite the high dimensionality of the data.Comment: 25 page

    autoAx: An Automatic Design Space Exploration and Circuit Building Methodology utilizing Libraries of Approximate Components

    Full text link
    Approximate computing is an emerging paradigm for developing highly energy-efficient computing systems such as various accelerators. In the literature, many libraries of elementary approximate circuits have already been proposed to simplify the design process of approximate accelerators. Because these libraries contain from tens to thousands of approximate implementations for a single arithmetic operation it is intractable to find an optimal combination of approximate circuits in the library even for an application consisting of a few operations. An open problem is "how to effectively combine circuits from these libraries to construct complex approximate accelerators". This paper proposes a novel methodology for searching, selecting and combining the most suitable approximate circuits from a set of available libraries to generate an approximate accelerator for a given application. To enable fast design space generation and exploration, the methodology utilizes machine learning techniques to create computational models estimating the overall quality of processing and hardware cost without performing full synthesis at the accelerator level. Using the methodology, we construct hundreds of approximate accelerators (for a Sobel edge detector) showing different but relevant tradeoffs between the quality of processing and hardware cost and identify a corresponding Pareto-frontier. Furthermore, when searching for approximate implementations of a generic Gaussian filter consisting of 17 arithmetic operations, the proposed approach allows us to identify approximately 10310^3 highly important implementations from 102310^{23} possible solutions in a few hours, while the exhaustive search would take four months on a high-end processor.Comment: Accepted for publication at the Design Automation Conference 2019 (DAC'19), Las Vegas, Nevada, US
    • …
    corecore