
Robust Proximity Search for Balls Using Sublinear
Space∗

Sariel Har-Peled1 and Nirman Kumar2

1 Department of Computer Science
University of Illinois
sariel@uiuc.edu

2 Department of Computer Science
University of Illinois
nkumar5@uiuc.edu

Abstract
Given a set of n disjoint balls b1, . . . , bn in IRd, we provide a data structure, of near linear
size, that can answer (1 ± ε)-approximate kth-nearest neighbor queries in O(logn + 1/εd) time,
where k and ε are provided at query time. If k and ε are provided in advance, we provide a
data structure to answer such queries, that requires (roughly) O(n/k) space; that is, the data
structure has sublinear space requirement if k is sufficiently large.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximate Nearest neighbors, algorithms, data structures

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.315

1 Introduction

The nearest neighbor problem is a fundamental problem in Computer Science [18, 1]. Here,
one is given a set of points P, and given a query point q one needs to output the nearest
point in P to q. There is a trivial O(n) algorithm for this problem. Typically the set of
data points is fixed, while different queries keep arriving. Thus, one can use preprocessing
to facilitate a faster query. There are several applications of nearest neighbor search in
computer science including pattern recognition, information retrieval, vector compression,
computational statistics, clustering, data mining and learning among many others, see
for instance the survey by Clarkson [10] for references. If one is interested in guaranteed
performance and near linear space, there is no known way to solve this problem efficiently
(i. e., logarithmic query time) for dimension d > 2, while using near linear space for the data
structure.

In light of the above, major effort has been devoted to develop approximation algorithms
for nearest neighbor search [6, 17, 10, 13]. In the (1 + ε)-approximate nearest neighbor
problem, one is additionally given an approximation parameter ε > 0 and one is required to
find a point u ∈ P such that d(q, u) ≤ (1 + ε)d(q,P). In d dimensional Euclidean space, one
can answer ANN queries in O(logn+ 1/εd−1) time using linear space [6, 12]. Unfortunately,
the constant hidden in the O notation is exponential in the dimension (and this is true for
all bounds mentioned in this paper), and specifically because of the 1/εd−1 in the query
time, this approach is only efficient in low dimensions. Interestingly, for this data structure,

∗ Work on this paper was partially support by NSF AF awards CCF-0915984 and CCF-1217462.

© Sariel Har-Peled and Nirman Kumar;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 315–326

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.315
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

316 Robust Proximity Search for Balls Using Sublinear Space

the approximation parameter ε need not be specified during the construction, and one
can provide it during the query. An alternative approach is to use Approximate Voronoi
Diagrams (AVD), introduced by Har-Peled [11], which is a partition of space into regions of
low total complexity, with a representative point for each region, that is an ANN for any
point in the region. In particular, Har-Peled showed that there is such a decomposition of
size O

(
(n/εd) log2 n

)
, see also [13]. This allows ANN queries to be answered in O(logn) time.

Arya and Malamatos [2] showed how to build AVDs of linear complexity (i. e., O(n/εd)).
Their construction uses WSPD (Well Separated Pairs Decomposition) [8]. Further trade-offs
between query time and space usage for AVDs were studied by Arya et al. [4].

A more general problem is the k-nearest neighbors problem where one is interested in
finding the k points in P nearest to the query point q. This is widely used in classification,
where the majority label is used to label the query point. A restricted version is to find only
the kth-nearest neighbor. This problem and its approximate version have been considered in
[3, 14].

Recently, the authors [14] showed that one can compute a (k, ε)-AVD that (1 + ε)-
approximates the distance to the kth nearest neighbor, and surprisingly, requires O(n/k)
space; that is, sublinear space if k is sufficiently large. For example, for the case k = Ω(

√
n),

which is of interest in practice, the space required is only O(
√
n). Such ANN is of interest

when one is worried that there is noise in the data, and thus one is interested in the distance
to the kth NN which is more robust and noise resistant. Alternatively, one can think about
such data structures as enabling one to summarize the data in a way that still facilitates
meaningful proximity queries.

In this paper we consider a generalization of the kth-nearest neighbor problem. Here, we
are given a set of n disjoint balls in IRd and we want to preprocess them, so that given a
query point we can find approximately the kth closest ball. The distance of a query point to
a ball is defined as the distance to its boundary if the point is outside the ball or 0 otherwise.
Clearly, this problem is a generalization of the kth-nearest neighbor problem by viewing
points as balls of radius 0. Algorithms for the kth-nearest neighbor for points, do not extend
in a straightforward manner to this problem because the distance function is no longer a
metric. Indeed, there can be two very far off points both very close to a single ball, and
thus the triangle inequality does not hold. The problem of finding the closest ball can also
be modeled as a problem of approximating the minimization diagram of a set of functions;
here, a function would correspond to the distance from one of the given balls. There has
been some recent work by the authors on this topic, see [15], where a fairly general class
of functions admits a near-linear sized data structure permitting a logarithmic time query
for the problem of approximating the minimization diagram. However, the problem that we
consider in this paper does not fall under the framework of [15]. The technical assumptions
of [15] mandate that the set of points which form the 0-sublevel set of a distance function,
i. e., the set of points at which the distance function is 0 is a single point (or an empty set).
This is not the case for the problem we consider here. Also, we are interested in the more
general kth-nearest neighbor problem, while [15] only considers the nearest-neighbor problem,
i. e., k = 1.

We first show how to preprocess the set of balls into a data structure requiring space
O(n), in O(n logn) time, so that given a query point q, a number 1 ≤ k ≤ n and ε > 0,
one can compute a (1± ε)-approximate kth closest ball in time O(logn+ ε−d). If both k
and ε are available during preprocessing, one can preprocess the balls into a (k, ε)-AVD,
using O(n

kεd log(1/ε)) space, so that given a query point q, a (k, ε)-ANN closest ball can be
computed, in O(log(n/k) + log(1/ε)) time.

S. Har-Peled and N. Kumar 317

Paper Organization. In Section 2, we define the problem, list some assumptions, and
introduce notations. In Section 3, we set up some basic data structures to answer approximate
range counting queries for balls. In Section 4, we present the data structure, query algorithm
and proof of correctness for our data structure which can compute (1 ± ε)-approximate
kth-nearest neighbors of a query point when k, ε are only provided during query time. In
Section 5 we present approximate quorum clustering, see [9, 14], for a set of disjoint balls.
Using this, in Section 6, we present the (k, ε)-AVD construction. We conclude in Section 7.

2 Problem definition and notation

We are given a set of disjoint1 balls B = {b1, . . . , bn}, where bi = b(ci, ri), for i = 1, . . . , n.
Here b(c, r) ⊆ IRd denotes the (closed) ball with center c and radius r ≥ 0. Additionally, we
are given an approximation parameter ε ∈ (0, 1). For a point q ∈ IRd, the distance of q to a
ball b = b(c, r) is d(q, b) = max

(
‖q− c‖ − r, 0

)
.

I Observation 1. For two balls b1 ⊆ b2 ⊆ IRd, and any point q ∈ IRd, we have d(q, b1) ≥
d(q, b2).

The kth-nearest neighbor distance of q to B, denoted by dk(q,B), is the kth smallest
number in d(q, b1) , . . . , d(q, bn). Similarly, for a given set of points P, dk(q,P) denotes the
kth-nearest neighbor distance of q to P.

We aim to build a data structure to answer (1± ε)-approximate kth-nearest neighbor
(i. e., (k, ε)-ANN) queries, where for any query point q ∈ IRd one needs to output a ball b ∈ B
such that, (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B). There are different variants depending
on whether ε and k are provided with the query or in advance.

We use cube to denote a set of the form [a1, a1 + `]× [a2, a2 + `]× . . .× [ad, ad + `] ⊆ IRd,
where a1, . . . , ad ∈ IR and ` ≥ 0 is the side length of the cube.

I Observation 2. For any set of balls B, the function dk(q,B) is a 1-Lipschitz function; that
is, for any two points u, v, we have that dk(u,B) ≤ dk(v,B) + ‖u− v‖.

I Assumption 3. We assume all the balls are contained inside the cube
[
1/2− δ, 1/2 + δ

]d
,

which can be ensured by translation and scaling (which preserves order of distances), where
δ = ε/4. As such, we can ignore queries outside the unit cube [0, 1]d, as any input ball is a
valid answer in this case.

For a real positive number x and a point p = (p1, . . . , pd) ∈ IRd, define Gx(p) to be the
grid point (bp1/xcx, . . . , bpd/xcx). The number x is the width or side length of the grid Gx.
The mapping Gx partitions IRd into cubes that are called grid cells.

I Definition 4. A cube is a canonical cube if it is contained inside the unit cube U = [0, 1]d,
it is a cell in a grid Gr, and r is a power of two (i. e., it might correspond to a node in a
quadtree having [0, 1]d as its root cell). We will refer to such a grid Gr as a canonical grid.
Note that all the cells corresponding to nodes of a compressed quadtree are canonical.

1 Our data structure and algorithm work for the more general case where the balls are interior disjoint,
where we define the interior of a “point ball”, i. e., a ball of radius 0, as the point itself. This is not the
usual topological definition.

FSTTCS 2014

318 Robust Proximity Search for Balls Using Sublinear Space

I Definition 5. Given a set b ⊆ IRd, and a parameter δ > 0, let G≈(b, δ) denote the set
of canonical grid cells of side length 2blog2 δdiam(b)/

√
dc, that intersect b, where diam(b) =

maxp,u∈b ‖p− u‖ denotes the diameter of b. Clearly, the diameter of any grid cell of G≈(b, δ),
is at most δdiam (b). Let G≈(b) = G≈(b, 1). It is easy to verify that |G≈(b)| = O(1). The set
G≈(b) is the grid approximation to b.

Let B be a family of balls in IRd. Given a set X ⊆ IRd, let

B(X) =
{
b ∈ B

∣∣∣ b ∩X 6= ∅}
denote the set of all balls in B that intersect X.

For two compact sets X,Y ⊆ IRd, X � Y if and only if diam(X) ≤ diam(Y). For a set
X and a set of balls B, let B�(X) =

{
b ∈ B

∣∣∣ b ∩X 6= ∅ and b � X}. Let cd denote the
maximum number of pairwise disjoint balls of radius at least r, that may intersect a given
ball of radius r in IRd. Clearly, we have |B�(b)| ≤ cd for any ball b. The proof of the following
lemma appears in the full version [16].

I Lemma 6. 2 ≤ cd ≤ 3d for all d.

I Definition 7. For a parameter δ ≥ 0, a function f : IR+ → IR+ is δ-monotonic, if for
every x ≥ 0, f(x/(1 + δ)) ≤ f(x).

3 Approximate range counting for balls

I Data-structure 8. For a given set of disjoint balls B = {b1, . . . , bn} in IRd, we build the
following data structure, that is useful in performing several of the tasks at hand.
(A) Store balls in a (compressed) quadtree. For i = 1, 2, . . . , n, let Gi = G≈(bi), and

let G =
⋃n
i=1 Gi denote the union of these cells. Let T be a compressed quadtree

decomposition of [0, 1]d, such that all the cells of G are cells of T . We preprocess T to
answer point location queries for the cells of G. This takes O(n logn) time, see [12].

(B) Compute list of “large” balls intersecting each cell. For each node u of T , there is
a list of balls registered with it. Formally, register a ball bi with all the cells of Gi.
Clearly, each ball is registered with O(1) cells, and it is easy to see that each cell has
O(1) balls registered with it, since the balls are disjoint.
Next, for a cell � in T we compute a list storing B�(�), and these balls are associated
with this cell. These lists are computed in a top-down manner. To this end, propagate
from a node u its list B�(�) (which we assume is already computed) down to its
children. For a node receiving such a list, it scans it, and keep only the balls that
intersect its cell (adding to this list the balls already registered with this cell). For a
node ν ∈ T , let Bν be this list.

(C) Build compressed quadtree on centers of balls. Let C be the set of centers of the
balls of B. Build, in O(n logn) time, a compressed quadtree TC storing C.

(D) ANN for centers of balls. Build a data structure D, for answering 2-approximate
k-nearest neighbor distances on C, the set of centers of the balls, see [14], where k and
ε are provided with the query. The data structure D, returns a point c ∈ C such that,
dk(q, C) ≤ d(q, c) ≤ 2dk(q, C).

(E) Answering approximate range searching for the centers of balls. Given a query ball
bq = b(q, x) and a parameter δ > 0, one can, using TC, report (approximately), in
O(logn + 1/δd) time, the points in bq ∩ C. Specifically, the query process computes
O(1/δd) sets of points, such that their union X, has the property that bq ∩ C ⊆ X ⊆

S. Har-Peled and N. Kumar 319

(1 + δ)bq ∩ C, where (1 + δ)bq is the scaling of bq by a factor of 1 + δ around its
center. Indeed, compute the set G≈

(
bq
)
, and then using cell queries in TC compute the

corresponding cells (this takes O(logn) time). Now, descend to the relevant level of the
quadtree to all the cells of the right size, that intersect bq. Clearly, the union of points
stored in their subtrees are the desired set. This takes overall O(logn+ 1/δd) time.
A similar data structure for approximate range searching is provided by Arya and
Mount [5], and our description above is provided for the sake of completeness.

Overall, it takes O(n logn) time to build this data structure.

We denote the collection of data structures above by DS8 and where necessary, specific
functionality it provides, say for finding the large balls intersecting a cell, by DS8 (2).

3.1 Approximate range counting among balls
We need the ability to answer approximate range counting queries on a set of disjoint balls.
Specifically, given a set of disjoint balls B, and a query ball b, the target is to compute the size
of the set b ∩ B =

{
b′ ∈ B

∣∣∣ b′ ∩ b 6= ∅}. To make this query computationally fast, we allow

an approximation. More precisely, for a ball b a set b̃ is a (1 + δ)-ball of b, if b ⊆ b̃ ⊆ (1 + δ)b,
where (1 + δ)b is the (1 + δ)-scaling of b around its center. The purpose here, given a query
ball b, is to compute the size of the set b̃ ∩ B for some (1 + δ)-ball b̃ of b.

The proofs of the following two lemmas appear in the full version [16].

I Lemma 9. Given a compressed quadtree T of size n, a convex set X, and a parameter
δ > 0, one can compute the set of nodes in T , that realizes G≈(X, δ) (see Defnition 5), in
O
(
logn+ 1/δd

)
time. Specifically, this outputs a set XN of nodes, of size O

(
1/δd

)
, such

that their cells intersect G≈(X, δ), and their parents cell diameter is larger than δdiam(X).
Note that the cells in XN might be significantly larger if they are leaves of T .

I Lemma 10. Let X be any convex set in IRd, and let δ > 0 be a parameter. Using DS8,
one can compute, in O

(
logn+ 1/δd

)
time, all the balls of B that intersect X, with diameter

≥ δdiam(X).

3.2 Answering a query
Given a query ball bq = b(q, x), and an approximation parameter δ > 0, our purpose is to
compute a number N , such that

∣∣∣B(b(q, x)
)∣∣∣ ≤ N ≤ ∣∣∣B(b(q, (1 + δ)x)

)∣∣∣.
The query algorithm works as follows:
(A) Using Lemma 10, compute a set X of all the balls that intersect bq and are of radius

≥ δx/4.
(B) Using DS8, compute O(1/δd) cells of TC that corresponds to G≈

(
bq(1 + δ/4), δ/4

)
. Let

N ′ be the total number of points in C stored in these nodes.
(C) The quantity N ′+ |X| is almost the desired quantity, except that we might be counting

some of the balls of X twice. To this end, let N ′′ be the number of balls in X with
centers in G≈

(
bq(1 + δ/4), δ/4

)
(D) Let N ← N ′ + |X| −N ′′. Return N .

We only sketch the proof, as the proof is straightforward. Indeed, the union of the
cells of G≈

(
bq(1 + δ/4), δ/4

)
contains b(q, x(1 + δ/4)) and is contained in b(q, (1 + δ)x).

All the balls with radius smaller than δx/4 and intersecting b(q, x) have their centers
in cells of G≈

(
bq(1 + δ/4), δ/4

)
, and their number is computed correctly. Similarly, the

FSTTCS 2014

320 Robust Proximity Search for Balls Using Sublinear Space

“large” balls are computed correctly. The last stage ensures we do not over-count by 1 each
large ball that also has its center in G≈

(
bq(1 + δ/4), δ/4

)
. It is also easy to check that

|B(b(q, x))| ≤ N ≤ |B(b(q, x(1 + δ)))|. The same result can be used for x/(1 + δ) to get
δ-monotonicity of N .

We now analyze the running time. Computing all the cells of G≈
(
bq(1 + δ/4), δ/4

)
takes

O(logn+ 1/δd) time. Computing the “large” balls takes O
(
logn+ 1/δd

)
time. Checking for

each large ball if it is already counted by the “small” balls takes O(1/δd) by using a grid.
We denote the above query algorithm by rangeCount(q, x, δ).

The above implies the following.

I Lemma 11. Given a set B of n disjoint balls in IRd, it can be preprocessed, in O(n logn)
time, into a data structure of size O(n), such that given a query ball b(q, x) and approximation
parameter δ > 0, the query algorithm rangeCount(q, x, δ) returns, in O(logn+ 1/δd) time,
a number N satisfying the following:
(A) N ≤ |B(b(q, (1 + δ)x))|,
(B) |B(b(q, x))| ≤ N , and
(C) for a query ball b(q, x) and δ, the number N is δ-monotonic as a function of x, see

Defnition 7.

4 Answering k-ANN queries among balls

4.1 Computing a constant factor approximation to dk(q,B)
The proof of the following lemma appears in the full version [16].

I Lemma 12. Let B be a set of disjoint balls in IRd, and consider a ball b = b(q, r) that
intersects at least k balls of B. Then, among the k nearest neighbors of q from B, there are
at least max(0, k − cd) balls of radius at most r. The centers of all these balls are in b(q, 2r).

I Corollary 13. Let γ = min(k, cd). Then, dk−γ(q, C) /2 ≤ dk(q,B).

The basic observation is that we only need a rough approximation to the right radius, as
using approximate range counting (i. e., Lemma 11), one can improve the approximation.

Let xi denote the distance of q to the ith closest center in C. Let dk = dk(q,B). Let i
be the minimum index, such that dk ≤ xi. Since dk ≤ xk, it must be that i ≤ k. There are
several possibilities:
(A) If i ≤ k − cd (i. e., dk ≤ xk−cd

) then, by Lemma 12, the ball b(q, 2dk) contains at least
k − cd centers. As such, dk < xk−cd

≤ 2dk, and xk−cd
is a good approximation to dk.

(B) If i > k − cd, and dk ≤ 4xi−1, then xi−1 is the desired approximation.
(C) If i > k − cd, and dk ≥ xi/4, then xi is the desired approximation.
(D) Otherwise, it must be that i > k − cd, and 4xi−1 < dk < xi/4. Let bj = b(cj , rj) be the

jth closest ball to q, for j = 1, . . . , k. It must be that bi, . . . , bk are much larger than
b(q, dk). But then, the balls bi, . . . , bk must intersect b(q, xi/2), and their radius is at
least xi/2. We can easily compute these big balls using DS8 (2), and the number of
centers of the small balls close to query, and then compute dk exactly.

We build DS8 in O(n logn) time.
First we introduce some notation. For x ≥ 0, let N(x) denote the number of balls

in B that intersect b(q, x); that is N(x) =
∣∣∣{b ∈ B ∣∣∣ b ∩ b(q, x) 6= ∅

}∣∣∣, and C(x) denote
the number of centers in b(q, x), i. e., C(x) = |C ∩ b(q, x)|. Also, let #(x) denote the 2-
approximation to the number of balls of B intersecting b(q, x), as computed by Lemma 11;
that is N(x) ≤ #(x) ≤ N(2x).

S. Har-Peled and N. Kumar 321

We now provide our algorithm to answer a query. We are given a query point q ∈ IRd

and a number k.
Using DS8, compute a 2-approximation for the smallest ball containing k− i centers of B,

for i = 0, . . . , γ, where γ = min(k, cd), and let rk−i be this radius. That is, for i = 0, . . . , γ, we
have C(rk−i/2) ≤ k − i ≤ C(rk−i). For i = 0, . . . , γ, compute Nk−i = #(rk−i) (Lemma 11).

Let α be the maximum index such that Nk−α ≥ k. Clearly, α is well defined as Nk ≥ k.
The algorithm is executed in the following steps.
(A) If α = γ we return 2rk−γ .
(B) If #(rk−α/4) < k, we return 2rk−α.
(C) Otherwise, compute all the balls of B that are of radius at least rk−α/4 and intersect the

ball b(q, rk−α/4), using DS8 (2). For each such ball b, compute the distance ζ = d(q, b)
of q to it. Return 2ζ for the minimum such number ζ such that #(ζ) ≥ k.

The proof of the following lemma appears in the full version [16].

I Lemma 14. Given a set of n disjoint balls B in IRd, one can preprocess them, in O(n logn)
time, into a data structure of size O(n), such that given a query point q ∈ IRd, and a number
k, one can compute, in O(logn) time, a number x such that, x/4 ≤ dk(q,B) ≤ 4x.

We now show how to refine the approximation in the following lemma, whose proof
appears in the full version [16].

I Lemma 15. Given a set B of n balls in IRd, it can be preprocessed, in O(n logn) time, into
a data structure of size O(n). Given a query point q, numbers k, x, and an approximation
parameter ε > 0, such that x/4 ≤ dk(q,B) ≤ 4x, one can find a ball b ∈ B such that,
(1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B), in O

(
logn+ 1/εd

)
time.

4.2 The result

I Theorem 16. Given a set of n disjoint balls B in IRd, one can preprocess them in time
O(n logn) into a data structure of size O(n), such that given a query point q ∈ IRd, a number
k with 1 ≤ k ≤ n and ε > 0, one can find in time O

(
logn+ ε−d

)
a ball b ∈ B, such that,

(1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

5 Quorum clustering

We are given a set B of n disjoint balls in IRd, and we describe how to compute quorum
clustering for them quickly.

Let ξ be some constant. Let B0 = ∅. For i = 1, . . . ,m, let Ri = B \ (
⋃i−1
j=0 Bj), and let

Λi = b(wi, xi) be any ball that satisfies,
(A) Λi contains min(k − cd, |Ri|) balls of Ri completely inside it,
(B) Λi intersects at least k balls of B, and
(C) the radius of Λi is at most ξ times the radius of the smallest ball satisfying the above

conditions.
Next, we remove any k − cd balls that are contained in Λi from Ri to get the set Ri+1. We
call the removed set of balls Bi. We repeat this process till all balls are extracted. Notice
that at each step i, we only require that the Λi intersects k balls of B (and not Ri), but that
it must contain k − cd balls from Ri. Also, the last quorum ball may contain fewer balls.
The balls Λ1, . . . ,Λm, are the resulting ξ-approximate quorum clustering.

FSTTCS 2014

322 Robust Proximity Search for Balls Using Sublinear Space

5.1 Computing an approximate quorum clustering
I Definition 17. For a set P of n points in IRd, and an integer `, with 1 ≤ ` ≤ n, let
ropt(P, `) denote the radius of the smallest ball which contains at least ` points from P, i. e.,
ropt(P, `) = minq∈IRd d`(q,P).

Similarly, for a set R of n balls in IRd, and an integer `, with 1 ≤ ` ≤ n, let Ropt(R, `)
denote the radius of the smallest ball which completely contains at least ` balls from R.

I Lemma 18 ([14]). Given a set P of n points in IRd and integer `, with 1 ≤ ` ≤ n, one
can compute, in O(n logn) time, a sequence of dn/`e balls, o1 = b(u1, ψ1), . . . , odn/`e =
b(udn/`e, ψdn/`e), such that, for all i, 1 ≤ i ≤ dn/`e, we have
(A) For every ball oi, there is an associated subset Pi of min(`, |Qi|) points of Qi = P \

(Pi ∪ . . . ∪ Pi−1), that it covers.
(B) The ball oi = b(ui, ψi) is a 2-approximation to the smallest ball covering min(`, |Qi|)

points in Qi; that is, ψi/2 ≤ ropt(Qi,min(`, |Qi|)) ≤ ψi.

The algorithm to construct an approximate quorum clustering is as follows. We use
the algorithm of Lemma 18 with the set of points P = C, and ` = k − cd to get a list of
m = dn/(k − cd)e balls o1 = b(u1, ψ1), . . . , om = b(um, ψm), satisfying the conditions of
Lemma 18. Next we use the algorithm of Theorem 16, to compute (k, ε)-ANN distances
from the centers u1, . . . , um, to the balls of B.

Thus, we get numbers γi satisfying, (1/2)dk(ui,B) ≤ γi ≤ (3/2)dk(ui,B). Let ζi =
max(2γi, 3ψi), for i = 1, . . . ,m. Sort ζ1, . . . , ζm (we assume for the sake of simplicity of
exposition that ζm, being the radius of the last cluster is the largest number). Suppose the
sorted order is the permutation π of {1, . . . ,m} (by assumption π(m) = m). We output the
balls Λi = b(uπ(i), ζπ(i)), for i = 1, . . . ,m, as the approximate quorum clustering.

5.2 Correctness
The following lemmas prove the correctness of our approximate quorum clustering algorithm.
Their proofs appear in the full version [16].

I Lemma 19. Let B = {b1, . . . , bn} be a set of n disjoint balls, where bi = b(ci, ri), for
i = 1, . . . , n. Let C = {c1, . . . , cn} be the set of centers of these balls. Let b = b(c, r) be any
ball that contains at least ` centers from C, for some 2 ≤ ` ≤ n. Then b(c, 3r) contains the `
balls that correspond to those centers.

I Lemma 20. Let B = {b1 = b(c1, r1), . . . , bn = b(cn, rn)} be a set of n disjoint balls in
IRd. Let C = {c1, . . . , cn} be the corresponding set of centers, and let ` be an integer with
2 ≤ ` ≤ n. Then, ropt(C, `) ≤ Ropt(B, `) ≤ 3ropt(C, `).

I Lemma 21. The balls Λ1, . . .Λm computed above are a 12-approximate quorum clustering
of B.

I Lemma 22. Given a set B of n disjoint balls in IRd, such that (k − cd)|n, and a number
k with 2cd < k ≤ n, in O(n logn) time, one can output a sequence of m = n/(k − cd) balls
Λ1, . . . ,Λm, such that
(A) For each ball Λi, there is an associated subset Bi of k−cd balls of Ri = B\(B1∪. . .∪Bi−1),

that it completely covers.
(B) The ball Λi intersects at least k balls from B.
(C) The radius of the ball Λi is at most 12 times that of the smallest ball covering k − cd

balls of Ri completely, and intersecting k balls of B.

S. Har-Peled and N. Kumar 323

Proof. The correctness was proved in Lemma 21. To see the time bound is also easy as the
computation time is dominated by the time in Lemma 18, which is O(n logn). J

6 Construction of the sublinear space data structure for (k, ε)-ANN

Here we show how to compute an approximate Voronoi diagram for approximating the
kth-nearest ball, that takes O(n/k) space. We assume k > 2cd without loss of generality,
and we let m = dn/(k − cd)e = O(n/k). Here k and ε are prespecified in advance.

6.1 Preliminaries
The following notation was introduced in [14]. A ball b of radius r in IRd, centered at a point
c, can be interpreted as a point in IRd+1, denoted by b′ = (c, r). For a regular point p ∈ IRd,
its corresponding image under this transformation is the mapped point p′ = (p, 0) ∈ IRd+1,
i. e., we view it as a ball of radius 0 and use the mapping defined on balls. Given point
u =(u1, . . . , ud) ∈ IRd we will denote its Euclidean norm by ‖u‖. We will consider a point
u =(u1, u2, . . . , ud+1) ∈ IRd+1 to be in the product metric of IRd × IR and endowed with the
product metric norm

‖u‖⊕ =
√

u2
1 + · · ·+ u2

d + |ud+1| .

It can be verified that the above defines a norm, and for any u ∈ IRd+1 we have ‖u‖ ≤
‖u‖⊕ ≤

√
2 ‖u‖.

6.2 Construction
The input is a set B of n disjoint balls in IRd, and parameters k and ε.

The construction of the data structure is similar to the construction of the kth-nearest
neighbor data structure from the authors’ paper [14]. We compute, using Lemma 22,
a ξ-approximate quorum clustering of B with m = n/(k − cd) = O(n/k) balls, Σ =
{Λ1 = b(w1, x1), . . . ,Λm = b(wm, xm)}, where ξ ≤ 12. The algorithm then continues as
follows:
(A) Compute an exponential grid around each quorum cluster. Specifically, let

I =
m⋃
i=1

dlog(32ξ/ε)e⋃
j=0

G≈
(

b(wi, 2jxi),
ε

ζ1

)
(6.1)

be the set of grid cells covering the quorum clusters and their immediate environ, where
ζ1 is a sufficiently large constant (say, ζ1 = 256ξ).

(B) Intuitively, I takes care of the region of space immediately next to a quorum cluster2.
For the other regions of space, we can apply a construction of an approximate Voronoi
diagram for the centers of the clusters (the details are somewhat more involved). To
this end, lift the quorum clusters into points in IRd+1, as follows

Σ′ = {Λ′1, . . . ,Λ′m} ,

2 That is, intuitively, if the query point falls into one of the grid cells of I, we can answer a query in
constant time.

FSTTCS 2014

324 Robust Proximity Search for Balls Using Sublinear Space

where Λ′i = (wi, xi) ∈ IRd+1, for i = 1, . . . ,m. Note that all points in Σ′ belong
to U ′ = [0, 1]d+1 by Assumption 3. Now build a (1 + ε/8)-AVD for Σ′ using the
algorithm of Arya and Malamatos [2], for distances specified by the ‖·‖⊕ norm. The
AVD construction provides a list of canonical cubes covering [0, 1]d+1 such that in the
smallest cube containing the query point, the associated point of Σ′, is a (1 + ε/8)-ANN
to the query point. (Note that these cubes are not necessarily disjoint. In particular,
the smallest cube containing the query point q is the one that determines the assigned
approximate nearest neighbor to q.)
Clip this collection of cubes to the hyperplane xd+1 = 0 (i. e., throw away cubes that do
not have a face on this hyperplane). For a cube � in this collection, denote by nn′(�),
the point of Σ′ assigned to it. Let S be this resulting set of canonical d-dimensional
cubes.

(C) Let W be the space decomposition resulting from overlaying the two collection of cubes,
i. e. I and S. Formally, we compute a compressed quadtree T that has all the canonical
cubes of I and S as nodes, and W is the resulting decomposition of space into cells.
One can overlay two compressed quadtrees representing the two sets in linear time
[7, 12]. Here, a cell associated with a leaf is a canonical cube, and a cell associated
with a compressed node is the set difference of two canonical cubes. Each node in this
compressed quadtree contains two pointers – to the smallest cube of I, and to the
smallest cube of S, that contains it. This information can be computed by doing a BFS
on the tree.
For each cell � ∈ W we store the following.
(I) An arbitrary representative point �rep ∈ �.
(II) The point nn′(�) ∈ Σ′ that is associated with the smallest cell of S that contains

this cell. We also store an arbitrary ball, b(�) ∈ B, that is one of the balls
completely inside the cluster specified by nn′(�) – we assume we stored such a
ball inside each quorum cluster, when it was computed.

(III) A number βk(�rep) that satisfies dk(�rep,B)≤βk(�rep)≤(1 + ε/4)dk(�rep,B), and
a ball nnk(�rep) ∈ B that realizes this distance. In order to compute βk(�rep) and
nnk(�rep) use the data structure of Section 4, see Theorem 16.

6.3 Answering a query
Given a query point q, compute the leaf cell (equivalently the smallest cell) in W that
contains q by performing a point-location query in the compressed quadtree T . Let � be
this cell. Let,

λ∗ = min
(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖q−�rep‖

)
. (6.2)

If diam(�) ≤ (ε/8)λ∗ we return nnk(�rep) as the approximate kth-nearest neighbor, else we
return b(�).

6.4 Correctness
I Lemma 23. The number λ∗ = min

(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖q−�rep‖

)
satisfies,

dk(q,B) ≤ λ∗.

Proof. This follows by the Lipschitz property, see Observation 2. J

The proofs of the following lemmas appear in the full version [16].

S. Har-Peled and N. Kumar 325

I Lemma 24. Let � ∈ W be any cell containing q. If diam(�) ≤ εdk(q,B) /4, then nnk(�rep)
is a valid (1± ε)-approximate kth-nearest neighbor of q.

I Lemma 25. For any point q ∈ IRd there is a quorum ball Λi = b(wi, xi) such that (A) Λi
intersects b(q, dk(q,B)), (B) xi ≤ 3ξdk(q,B), and (C) ‖q− wi‖ ≤ 4ξdk(q,B).

I Definition 26. For a given query point, any quorum cluster that satisfies the conditions of
Lemma 25 is defined to be an anchor cluster. By Lemma 25 an anchor cluster always exists.

The following lemma, whose proof appears in the full version [16], gives a condition under
which the output of the algorithm is correct.

I Lemma 27. Suppose that among the quorum cluster balls Λ1, . . . ,Λm, there is some ball
Λi = b(wi, xi) which satisfies that ‖q− wi‖ ≤ 8ξdk(q,B) and εdk(q,B) /4 ≤ xi ≤ 8ξdk(q,B)
then the output of the algorithm is correct.

The next lemma, whose proof appears in the full version [16], proves the correctness for
the general case.

I Lemma 28. The query algorithm always outputs a correct approximate answer, i. e., the
output ball b satisfies (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

6.5 The result
The following theorem encapsulates our main result for this section. Its proof appears in the
full version [16].

I Theorem 29. Given a set B of n disjoint balls in IRd, a number k, with 1 ≤ k ≤ n,
and ε ∈ (0, 1), one can preprocess B, in O

(
n logn+ n

k
Cε logn+ n

k
C ′ε

)
time, where Cε =

O
(
ε−d log ε−1) and C ′ε = O

(
ε−2d log ε−1). The space used by the data structure is O(Cεn/k).

Given a query point q, this data structure outputs a ball b ∈ B in O
(

log n

kε

)
time, such that

(1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

Note that the space decomposition generated by Theorem 29 can be interpreted as a space
decomposition of complexity O(Cεn/k), where every cell has two input balls associated with
it, which are the candidates to be the desired (k, ε)-ANN. That is, Theorem 29 computes a
(k.ε)-AVD of the input balls.

7 Conclusions

In this paper, we presented a generalization of the usual (1 ± ε)-approximate kth-nearest
neighbor problem in IRd, where the input are balls of arbitrary radius, while the query is
a point. We first presented a data structure that takes O(n) space, and the query time is
O(logn+ ε−d). Here, both k and ε could be supplied at query time. Next we presented an
(k, ε)-AVD taking O(n/k) space. Thus showing, surprisingly, that the problem can be solved
in sublinear space if k is sufficiently large.

References
1 A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Commun. ACM, 51(1):117–122, 2008.

FSTTCS 2014

326 Robust Proximity Search for Balls Using Sublinear Space

2 S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th
ACM-SIAM Symp. Discrete Algs., pages 147–155, 2002.

3 S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate spherical
range counting. In Proc. 16th ACM-SIAM Symp. Discrete Algs., pages 535–544, 2005.

4 S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. Assoc. Comput. Mach., 57(1):1–54, 2009.

5 S. Arya and D.M. Mount. Approximate range searching. Comput. Geom. Theory Appl.,
17:135–152, 2000.

6 S. Arya, D.M. Mount, N. S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach.,
45(6):891–923, 1998.

7 M. de Berg, H. Haverkort, S. Thite, and L. Toma. Star-quadtrees and guard-quadtrees:
I/O-efficient indexes for fat triangulations and low-density planar subdivisions. Comput.
Geom. Theory Appl., 43:493–513, July 2010.

8 P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach.,
42:67–90, 1995.

9 P. Carmi, S. Dolev, S. Har-Peled, M. J. Katz, and M. Segal. Geographic quorum systems
approximations. Algorithmica, 41(4):233–244, 2005.

10 K.L. Clarkson. Nearest-neighbor searching and metric space dimensions. In
G. Shakhnarovich, T. Darrell, and P. Indyk, editors, Nearest-Neighbor Methods for Learning
and Vision: Theory and Practice, pages 15–59. MIT Press, 2006.

11 S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annual
IEEE Symp. Found. Comput. Sci., pages 94–103, 2001.

12 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys
and Monographs. Amer. Math. Soc., 2011.

13 S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. Theory Comput., 8:321–350, 2012. Special issue in honor
of Rajeev Motwani.

14 S. Har-Peled and N. Kumar. Down the rabbit hole: Robust proximity search in sublinear
space. In Proc. 53rd Annual IEEE Symp. Found. Comput. Sci., pages 430–439, 2012.

15 S. Har-Peled and N. Kumar. Approximating minimization diagrams and generalized prox-
imity search. In Proc. 54th Annual IEEE Symp. Found. Comput. Sci., pages 717–726,
2013.

16 S. Har-Peled and N. Kumar. Robust proximity search for balls using sublinear space. CoRR,
abs/1401.1472, 2014.

17 P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annual ACM Symp. Theory Comput., pages 604–613, 1998.

18 G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods in Learning and
Vision: Theory and Practice (Neural Information Processing). The MIT Press, 2006.

	Introduction
	Problem definition and notation
	Approximate range counting for balls
	Approximate range counting among balls
	Answering a query

	Answering k-ANN queries among balls
	Computing a constant factor approximation to dkq,B
	The result

	Quorum clustering
	Computing an approximate quorum clustering
	Correctness

	Construction of the sublinear space data structure for (k,)-ANN
	Preliminaries
	Construction
	Answering a query
	Correctness
	The result

	Conclusions

