6 research outputs found

    Thermodynamic Insight for the Design and Optimization of Extractive Distillation of 1.0-1a Class Separation

    Get PDF
    Nous Ă©tudions la distillation extractive continue de mĂ©langes azĂ©otropiques Ă  temperature de bulle minimale avec un entraineur lourd (classe 1.0-1a) avec comme exemples les mĂ©langes acĂ©tone-mĂ©thanol avec l’eau et DIPE-IPA avec le 2-mĂ©thoxyethanol. Le procĂ©dĂ© inclut les colonnes de distillation extractive et de rĂ©gĂ©nĂ©ration de l’entraineur en boucle ouverte et en boucle fermĂ©e. Une premiĂšre stratĂ©gie d’optimisation consiste Ă  minimiser la fonction objectif OF en cherchant les valeurs optimales du dĂ©bit d’entraineur FE, les positions des alimentations en entraineur et en mĂ©lange NFE, NFAB, NFReg, les taux de reflux R1, R2 et les dĂ©bits de distillat de chaque colonne D1, D2. OF dĂ©crit la demande en Ă©nergie par quantitĂ© de distillat et tient compte des diffĂ©rences de prix entre les utilitĂ©s chaudes et froides et entre les deux produits. La deuxiĂšme stratĂ©gie est une optimisation multiobjectif qui minimise OF, le coĂ»t total annualisĂ© (TAC) et maximise deux nouveaux indicateurs thermodynamiques d’efficacitĂ© de sĂ©paration extractive totale Eext et par plateau eext. Ils dĂ©crivent la capacitĂ© de la section extractive Ă  sĂ©parer le produit entre le haut et le bas de la section extractive. L’analyse thermodynamique des rĂ©seaux de courbes de rĂ©sidu ternaires RCM et des courbes d’isovolatilitĂ© montre l’intĂ©rĂȘt de rĂ©duire la pression opĂ©ratoire dans la colonne extractive pour les sĂ©parations de mĂ©langes 1.0-1a. Une pression rĂ©duite diminue la quantitĂ© minimale d’entraineur et accroĂźt la volatilitĂ© relative du mĂ©lange binaire azĂ©otropique dans la rĂ©gion d’opĂ©ration de la colonne extractive. Cela permet d’utiliser un taux de reflux plus faible et diminue la demande Ă©nergĂ©tique. La premiĂšre stratĂ©gie d’optimisation est conduite avec des contraintes sur la puretĂ© des produits avec les algorithmes SQP dans les simulateurs Aspen Plus ou Prosim Plus en boucle ouverte. Les variables continues optimisĂ©es sont : R1, R2 et FE (Ă©tape 1). Une Ă©tude de sensibilitĂ© permet de trouver les valeurs de D1, D2 (Ă©tape 2) et NFE, NFAB, NFReg (Ă©tape 3), tandis l’étape 1 est faite pour chaque jeu de variables discrĂštes. Enfin le procĂ©dĂ© est resimulĂ© en boucle fermĂ©e et TAC, Eext et eext sont calculĂ©s (Ă©tape 4). Les bilans matiĂšres expliquent l’interdĂ©pendance des dĂ©bits de distillats et des puretĂ©s des produits. Cette optimisation permet de concevoir des procĂ©dĂ©s avec des gains proches de 20% en Ă©nergie et en coĂ»t. Les nouveaux procĂ©dĂ©s montrent une amĂ©lioration des indicateurs Eext et eext. Afin d’évaluer l’influence de Eext et eext sur la solution optimale, la seconde optimisation multiobjectif est conduite. L’algorithme gĂ©nĂ©tique est peu sensible Ă  l’initialisation, permet d’optimiser les variables discrĂštes N1, N2 et utilise directement le shĂ©ma de procĂ©dĂ© en boucle fermĂ©e. L’analyse du front de Pareto des solutions met en Ă©vidence l’effet de FE/F et R1 sur TAC et Eext. Il existe un Eext maximum (resp. R1 minimum) pour un R1 donnĂ© (resp. Eext). Il existe aussi un indicateur optimal Eext,opt pour le procĂ©dĂ© optimal avec le plus faible TAC. Eext,opt ne peut pas ĂȘtre utilisĂ© comme seule fonction objectif d’optimisation mais en complĂ©ment des autres fonctions OF et TAC. L’analyse des rĂ©seaux de profils de composition extractive explique la frontiĂšre du front de Pareto et pourquoi Eext augmente lorsque FE diminue et R1 augmente, le tout en lien avec le nombre d’étage. Visant Ă  rĂ©duire encore TAC et la demande Ă©nergĂ©tique nous Ă©tudions des procĂ©dĂ©s avec intĂ©gration Ă©nergĂ©tique double effet (TEHI) ou avec des pompes Ă  chaleur (MHP). En TEHI, un nouveau schĂ©ma avec une intĂ©gration Ă©nergĂ©tique partielle PHI rĂ©duit le plus la demande Ă©nergĂ©tique. En MHP, la recompression partielle des vapeurs VRC et bottom flash partiel BF amĂ©liorent les performances de 60% et 40% respectivement. Au final, le procĂ©dĂ© PHI est le moins coĂ»teux tandis que la recompression totale des vapeurs est la moins Ă©nergivore. ABSTRACT : We study the continuous extractive distillation of minimum boiling azeotropic mixtures with a heavy entrainer (class 1.0-1a) for the acetone-methanol with water and DIPE-IPA with 2-methoxyethanol systems. The process includes both the extractive and the regeneration columns in open loop flowsheet and closed loop flowsheet where the solvent is recycled to the first column. The first optimization strategy minimizes OF and seeks suitable values of the entrainer flowrate FE, entrainer and azeotrope feed locations NFE, NFAB, NFReg, reflux ratios R1, R2 and both distillates D1, D2. OF describes the energy demand at the reboiler and condenser in both columns per product flow rate. It accounts for the price differences in heating and cooling energy and in product sales. The second strategy relies upon the use of a multi-objective genetic algorithm that minimizes OF, total annualized cost (TAC) and maximizes two novel extractive thermodynamic efficiency indicators: total Eext and per tray eext. They describe the ability of the extractive section to discriminate the product between the top and to bottom of the extractive section. Thermodynamic insight from the analysis of the ternary RCM and isovolatility curves shows the benefit of lowering the operating pressure of the extractive column for 1.0-1a class separations. A lower pressure reduces the minimal amount of entrainer and increases the relative volatility of original azeotropic mixture for the composition in the distillation region where the extractive column operates, leading to the decrease of the minimal reflux ratio and energy consumption. The first optimization strategy is conducted in four steps under distillation purity specifications: Aspen Plus or Prosim Plus simulator built-in SQP method is used for the optimization of the continuous variables: R1, R2 and FE by minimizing OF in open loop flowsheet (step 1). Then, a sensitivity analysis is performed to find optimal values of D1, D2 (step 2) and NFE, NFAB, NFReg (step 3), while step 1 is done for each set of discrete variables. Finally the design is simulated in closed loop flowsheet, and we calculate TAC and Eext and eext (step 4). We also derive from mass balance the non-linear relationships between the two distillates and how they relate product purities and recoveries. The results show that double digit savings can be achieved over designs published in the literature thanks to the improving of Eext and eext. Then, we study the influence of the Eext and eext on the optimal solution, and we run the second multiobjective optimization strategy. The genetic algorithm is usually not sensitive to initialization. It allows finding optimal total tray numbers N1, N2 values and is directly used with the closed loop flow sheet. Within Pareto front, the effects of main variables FE/F and R1 on TAC and Eext are shown. There is a maximum Eext (resp. minimum R1) for a given R1 (resp. Eext). There exists an optimal efficiency indicator Eext,opt which corresponds to the optimal design with the lowest TAC. Eext,opt can be used as a complementary criterion for the evaluation of different designs. Through the analysis of extractive profile map, we explain why Eext increases following the decrease of FE and the increase of R1 and we relate them to the tray numbers. With the sake of further savings of TAC and increase of the environmental performance, double-effect heat integration (TEHI) and mechanical heat pump (MHP) techniques are studied. In TEHI, we propose a novel optimal partial HI process aiming at the most energy saving. In MHP, we propose the partial VRC and partial BF heat pump processes for which the coefficients of performance increase by 60% and 40%. Overall, optimal partial HI process is preferred from the economical view while full VRC is the choice from the environmental perspective

    Méthode de faisabilité et de conception de colonnes à cloison (DWC) pour la distillation de mélanges non-idéaux et azéotropiques

    Get PDF
    ImplantĂ©es depuis plus de dix ans dans l’industrie, l’intĂ©rĂȘt des colonnes Ă  cloison n’est aujourd’hui plus Ă  dĂ©montrer. Suivant les applications envisagĂ©es, elles peuvent permettre d’important gain tant Ă©nergĂ©tique qu’économique. Cependant leur design est toujours complexe et les mĂ©thodes de conception dĂ©veloppĂ©es ne s’adressent qu’à des applications avec des mĂ©langes proches de l’idĂ©alitĂ©. Le dĂ©veloppement d’une nouvelle mĂ©thode de design d’une colonne Ă  distillation de mĂ©langes non-idĂ©aux applicable aux colonnes Ă  cloison constitue l’objet d’étude de cette thĂšse. Dans un premier temps, une procĂ©dure de faisabilitĂ© et de design d’une colonne classique basĂ©e sur les feuilles opĂ©ratoires a Ă©tĂ© proposĂ©e. Les paramĂštres de design obtenus sont ensuite utilisĂ©s comme initialisation d’une simulation rigoureuse conduite au sein du logiciel Prosim Plus. Afin de tester cette procĂ©dure, des mĂ©langes idĂ©aux, non-idĂ©aux et azĂ©otropiques ont Ă©tĂ© utilisĂ©s. Il a pu ĂȘtre montrĂ© que les paramĂštres de design obtenus permettent d’accĂ©der Ă  un design plus fiable et plus efficient, aussi bien d’un point de vue Ă©nergĂ©tique qu’économique, que ceux obtenus par la bien connue mĂ©thode shortcut FUGK. Dans un second temps, la procĂ©dure a Ă©tĂ© adaptĂ©e aux colonnes Ă  cloison. Les paramĂštres obtenus ont Ă©galement servi Ă  initialiser une simulation rigoureuse et la procĂ©dure a Ă©tĂ© testĂ©e avec les mĂȘmes mĂ©langes. Il a Ă©tĂ© mis en Ă©vidence que les paramĂštres de design obtenus permettaient d’obtenir une bonne initialisation de la colonne. ComparĂ©e avec une autre mĂ©thode dĂ©veloppĂ©e prĂ©cĂ©demment par le laboratoire, la procĂ©dure dĂ©veloppĂ©e s’est rĂ©vĂ©lĂ©e plus fiable et a permis l’obtention de design plus Ă©conomique tant du point de vue Ă©nergĂ©tique qu’en termes d’investissement. Enfin, une phase de validation expĂ©rimentale a Ă©galement Ă©tĂ© rĂ©alisĂ©e sur une installation pilote. Dans un premier temps, l’instrumentation et le contrĂŽle de la colonne ont Ă©tĂ© fortement amĂ©liorĂ©s. Dans un second temps, des rĂ©sultats expĂ©rimentaux rĂ©alisĂ©s sur avec un mĂ©lange hĂ©tĂ©ro-azĂ©otropique ont pu valider des simulations en terme de profils de composition et de tempĂ©rature interne ainsi que les compositions et les dĂ©bits de sortie de la colonne

    Book of abstracts of the 10th International Chemical and Biological Engineering Conference: CHEMPOR 2008

    Get PDF
    This book contains the extended abstracts presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4th to the 6th of September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), PĂłvoa de Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001). The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB - Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de QuĂ­mica” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”. Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen, A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares and Pinheiro in the Honor Committee of this 10th edition, under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. AnĂ­bal Cavaco Silva. The opening ceremony will confer Prof. Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought along more than 30 years to the development of the Chemical Engineering science, to the launch of CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the importance of effective energy management in processing operations, particularly in the effectiveness of heat recovery and the associated reduction in greenhouse gas emission from combustion processes. The CHEMPOR series traditionally brings together both young and established researchers and end users to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is broadening out by including the Biological Engineering research. One of the major core areas of the conference program is life quality, due to the importance that Chemical and Biological Engineering plays in this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development through Green Chemistry” are two of the leading themes with papers addressing such important issues. This is complemented with additional leading themes including “Advancing the Chemical and Biological Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this book. A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote, 105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received. It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a CiĂȘncia e a Tecnologia (FCT

    PETROLEUM REFINING

    Get PDF
    If there is to be a thorough understanding of petroleum and the associated technologies, it is essential that the definitions and the terminology of petroleum science and technology be given prime consideration (Meyer and DeWitt, 1990; Speight, 2014a). This will aid in a better understanding of petroleum, its constituents, and its various fractions. Of the many forms of terminology that have been used not all have survived, but the more commonly used are illustrated here. Particularly troublesome, and more confusing, are those terms that are applied to the more viscous materials, for example, the use of the terms “bitumen” and “asphalt.” This part of the text attempts to alleviate much of the confusion that exists, but it must be remembered that the terminology of petroleum is still open to personal choice and historical usage

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence
    corecore