253 research outputs found

    Use of Navigation Beacons to Support Lunar Vehicle Operations

    Get PDF
    To support a wide variety of lunar missions in a condensed regime, solutions are needed outside of the use of Earth-based orbit determination. This research presents an alternate approach to in-situ navigation through the use of beacons, similar to that used on Earth as well as under technology development efforts. An overview of the current state of navigation aids included as well as discussion of the Lunar Node 1 payload being built at NASA/Marshall Space Flight Center. Expected navigation results of this beacon payload for planned operation from the lunar surface are provided. Applications of navigation beacons to multiple stages of the proposed human lunar landing architecture are given, with initial analysis showing performance gains from the use of this technology. This work provides a starting point for continued analysis and design, laying out the foundation of how navigation beacons can be incorporated into the architecture to enable continued analysis, design, and future expanded capability

    The Space Communications and Navigation Testbed aboard International Space Station: Seven Years of Space-based Reconfigurable Software Defined Communications, Navigation, and Networking

    Get PDF
    The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation.The SCaN Testbed on-board the ISS led groundbreaking efforts to champion use of software defined radios for space communications. The SCaN Testbed has allowed NASA, industry, academia, and international partners to pursue their respective interests in joint collaboration with NASA, and move this technology and it's applications to the space domain. Launched in 2012, The SCaN Testbed has logged over 4000 hours of operation exploring the development, reconfiguration, and operation of software defined radios and their software applications. Over the past seven years, experimenters and organizations from across the United States and around the world, have advanced the applications of software defined radios and networks using the SCaN Tested. Some of SCaN Testbed's successful experiments include the demonstration of the first Ka-band full duplex space transceiver, which became an R&D 100 award winning technology, and was inducted into the Space Technology Hall of Fame, following the launch and space deployment of a successful commercial product line based on the Testbed radios.Experiments have focused on new software development and operations concepts for understanding how to manage and apply this relatively new technology to space to improve communications and navigation for space science and exploration missions. The advanced capabilities of the software radios allow for multiple applications or functions (e.g., communication and navigation) to operate from the same radio platform. Multiple software waveform applications enable software component reuse and improve efficiency for multiple applications operating over different mission phases. The new capabilities of software defined radios such as on-orbit reconfiguration, also present new challenges such as increased operational complexity. Experiments of the SCaN testbed include more intelligent or cognitive applications to improve communications efficiency and manage the complexity of the radios, the communication channels, and the network itself. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture provides commonality among radio developments from different providers and different mission applications, and is designed to reduce the cost, risk, and complexity of unique and custom radio developments. This radio architecture standard defines common waveform software interfaces, methods of instantiation, operation, and documentation. As the SCaN Testbed concludes its operations on ISS, this presentation explores the advancements and accomplishments made to advance software defined radio technology and its applications for exploration. The accomplishments cover a number of experiment areas in Ka-band and S-band communications with TDRS, high rate communications, adaptive waveform operation, navigation using both GPA and Galileo constellations, complex networking and disruptive tolerant link protocols, user initiative service, and initial experiments with intelligent and cognitive applications which demonstrate the significant potential of software defined and cognitive radios

    Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    Get PDF
    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013

    Performance Analysis and Electromagnetic Compatibility of a Novel Wideband Radio Frequency Remote Sensing Payload

    Get PDF
    The increase in scale, complexity, and sensitivity of small satellite radio frequency payloads presents challenges in spacecraft level environmental performance testing. The Space Flight Laboratory is developing a novel wideband radio frequency payload for use on multiple satellites as part of a distributed remote sensing system. Qualification of this payload at the spacecraft level is complicated by the range of frequencies requiring analysis, the variety of received signal types, and having to qualify the payload on multiple satellites with differing configurations. This paper presents the system level radio frequency performance testing framework developed to efficiently qualify this new payload consistently in different bus configurations. The goals of this framework were to reliably determine payload receiver performance with frequencies ranging from VHF to X-band, evaluate the impacts of electromagnetic interference, and automate the electromagnetic compatibility and performance test processes such that they could be efficiently run on multiple satellites. Ultimately, this framework has yielded the ability to characterize the performance of a complex wideband radio frequency payload, and efficiently scale that characterization to a fleet of spacecraft

    Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Get PDF
    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Centers Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Centers agility to develop technologies supporting each of NASAs core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASAs mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Dont hesitate to contact them for more information or for collaboration ideas

    Drones

    Get PDF
    Abstract Drone technology is evolving rapidly. Microdrones—what the FAA calls “sUAS”—already on the market at the $1,000 level, have the capability to supplement manned helicopters in support of public safety operations, news reporting, and powerline and pipeline patrol, when manned helicopter support is infeasible, untimely, or unsafe. Larger drones– machodrones”–are not yet available outside battlefield and counterterrorism spaces. Approximating the size of manned helicopters, but without pilots, or with human pilots being optional, their design is still in its infancy as designers await greater clarity in the regulatory requirements that will drive airworthiness certification. This article evaluates drone technology and design and considers how well existing and likely drone capabilities satisfy mission requirements. It draws upon the authors’ collective experience in flying news helicopters, giving helicopter flight instruction, practicing and teaching law, flying drug surveillance mission, evaluating best practices for helicopter support for public safety activities, and in aeronautical engineering. Its analysis and conclusions with respect to microdrones are supported by empirical results obtained from a series of flight tests of currently available microdrones. The ready availability of microdrones will tempt users to deploy them even before their operational use is legal. If the FAA wants to achieve its goal of managing the introduction of these new flight technologies into the national airspace system safely, it must accelerate the regulatory process and do a better job of matching regulatory requirements with mission reality and likely aircraft characteristics. Integration of machodrones will take longer, and the FAA has more time to work with stakeholders to evolve a framework to test the limits of remote control technologies as substitutes for pilots in the cockpit. The main question here is not whether the FAA will be able to channel technology, but whether the ultimate cost and capabilities of machodrones will make them attractive to purchasers and operators and whether actual vehicles will be able to compete with manned helicopters

    Study of the Business Model of three Earth Observation (EO) companies already present in the Very Low Earth Orbit market (VLEO)

    Get PDF
    The emergence of a new private spaceflight industry has taken the Earth Observation (EO) sector by surprise. NewSpace companies are challenging the traditional satellite sector by addressing their services to mass market requirements of high-quality and low-cost EO. As part of the DISCOVERER project, this study aims to determine the Key Success Factors to consider by a new EO company at Low Earth Orbit (LEO). Hence, three businesses fitting the description were analyzed with the Case Study Methodology to establish their Business Model Canvas (BMC), associated Patterns, and Key Success Factors. The investigation consolidated the newly proposed Democratizing Business Model Pattern and added new characteristics. Successful EO NewSpace firms are getting divided between integrated operators, integrated manufacturers, and end-user specialists. A new EO company should consider the Democratizing Pattern success factors and the Vertically Integrated Strategies (VIS), depending on its disruptive idea and resource capabilities. Further research is needed to identify new factors, strengthen the validity of the Pattern, and VIS tendencies
    • …
    corecore