594 research outputs found

    Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2

    Full text link
    Finding an exact maximum distance of two points in the given set is a fundamental computational problem which is solved in many applications. This paper presents a fast, simple to implement and robust algorithm for finding this maximum distance of two points in E2. This algorithm is based on a polar subdivision followed by division of remaining points into uniform grid. The main idea of the algorithm is to eliminate as many input points as possible before finding the maximum distance. The proposed algorithm gives the significant speed up compared to the standard algorithm

    Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions

    Full text link
    Let PP be a set of nn points and QQ a convex kk-gon in R2{\mathbb R}^2. We analyze in detail the topological (or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of PP, under the convex distance function defined by QQ, as the points of PP move along prespecified continuous trajectories. Assuming that each point of PP moves along an algebraic trajectory of bounded degree, we establish an upper bound of O(k4nλr(n))O(k^4n\lambda_r(n)) on the number of topological changes experienced by the diagrams throughout the motion; here λr(n)\lambda_r(n) is the maximum length of an (n,r)(n,r)-Davenport-Schinzel sequence, and rr is a constant depending on the algebraic degree of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the above structures, using the kinetic data structure (KDS) framework

    Intersection of three-dimensional geometric surfaces

    Get PDF
    Calculating the line of intersection between two three-dimensional objects and using the information to generate a third object is a key element in a geometry development system. Techniques are presented for the generation of three-dimensional objects, the calculation of a line of intersection between two objects, and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bicubic parametric patches using Bezier basis functions. The intersection determination involves subdividing the patches that make up the objects until they are approximately planar and then calculating the intersection between planes. The resulting straight-line segments are connected to form the curve of intersection. The polygons in the neighborhood of the intersection are reconstructed and put back into the Bezier representation. A third object can be generated using various combinations of the original two. Several examples are presented. Special cases and problems were encountered, and the method for handling them is discussed. The special cases and problems included intersection of patch edges, gaps between adjacent patches because of unequal subdivision, holes, or islands within patches, and computer round-off error

    Regular homotopy and total curvature

    Full text link
    We consider properties of the total absolute geodesic curvature functional on circle immersions into a Riemann surface. In particular, we study its behavior under regular homotopies, its infima in regular homotopy classes, and the homotopy types of spaces of its local minima. We consider properties of the total curvature functional on the space of 2-sphere immersions into 3-space. We show that the infimum over all sphere eversions of the maximum of the total curvature during an eversion is at most 8\pi and we establish a non-injectivity result for local minima.Comment: This is the version published by Algebraic & Geometric Topology on 23 March 2006. arXiv admin note: this version concatenates two articles published in Algebraic & Geometric Topolog

    Universal circles for quasigeodesic flows

    Get PDF
    We show that if M is a hyperbolic 3-manifold which admits a quasigeodesic flow, then pi_1(M) acts faithfully on a universal circle by homeomorphisms, and preserves a pair of invariant laminations of this circle. As a corollary, we show that the Thurston norm can be characterized by quasigeodesic flows, thereby generalizing a theorem of Mosher, and we give the first example of a closed hyperbolic 3-manifold without a quasigeodesic flow, answering a long-standing question of Thurston.Comment: This is the version published by Geometry & Topology on 29 November 2006. V4: typsetting correction

    Doctor of Philosophy

    Get PDF
    dissertationMany algorithms have been developed for synthesizing shaded images of three dimensional objects modeled by computer. In spite of widely differing approaches the current state of the art algorithms are surprisingly similar with respect to the richness of the scenes they can process. One attribute these algorithms have in common is the use of a conventional passive data base to represent the objects being modeled. This paper postulates and explores the use of an alternative modeling technique which uses procedures to represent the objects being modeled. The properties and structure of such "procedure models" are investigated and an algorithm based on them is presented

    Counting Integer flows in Networks

    Full text link
    This paper discusses new analytic algorithms and software for the enumeration of all integer flows inside a network. Concrete applications abound in graph theory \cite{Jaeger}, representation theory \cite{kirillov}, and statistics \cite{persi}. Our methods clearly surpass traditional exhaustive enumeration and other algorithms and can even yield formulas when the input data contains some parameters. These methods are based on the study of rational functions with poles on arrangements of hyperplanes
    • …
    corecore