3 research outputs found

    Space Complexity of the Directed Reachability Problem over Surface-Embedded Graphs

    Full text link
    The graph reachability problem, the computational task of deciding whether there is a path between two given nodes in a graph is the canonical problem for studying space bounded computations. Three central open questions regarding the space complexity of the reachabil-ity problem over directed graphs are: (1) improving Savitch’s O(log2 n) space bound, (2) designing a polynomial-time algorithm with O(n1−) space bound, and (3) designing an unambiguous non-deterministic log-space (UL) algorithm. These are well-known open questions in complex-ity theory, and solving any one of them will be a major breakthrough. We will discuss some of the recent progress reported on these questions for certain subclasses of surface-embedded directed graphs

    New Time-Space Upperbounds for Directed Reachability in High-genus and H-minor-free Graphs

    Get PDF
    We obtain the following new simultaneous time-space upper bounds for the directed reachability problem. (1) A polynomial-time, O(n^{2/3} * g^{1/3})-space algorithm for directed graphs embedded on orientable surfaces of genus g. (2) A polynomial-time, O(n^{2/3})-space algorithm for all H-minor-free graphs given the tree decomposition, and (3) for K_{3,3}-free and K_5-free graphs, a polynomial-time, O(n^{1/2 + epsilon})-space algorithm, for every epsilon > 0. For the general directed reachability problem, the best known simultaneous time-space upper bound is the BBRS bound, due to Barnes, Buss, Ruzzo, and Schieber, which achieves a space bound of O(n/2^{k * sqrt(log(n))}) with polynomial running time, for any constant k. It is a significant open question to improve this bound for reachability over general directed graphs. Our algorithms beat the BBRS bound for graphs embedded on surfaces of genus n/2^{omega(sqrt(log(n))}, and for all H-minor-free graphs. This significantly broadens the class of directed graphs for which the BBRS bound can be improved
    corecore