432 research outputs found

    Towards Informative Path Planning for Acoustic SLAM

    Get PDF
    Acoustic scene mapping is a challenging task as microphone arrays can often localize sound sources only in terms of their directions. Spatial diversity can be exploited constructively to infer source-sensor range when using microphone arrays installed on moving platforms, such as robots. As the absolute location of a moving robot is often unknown in practice, Acoustic Simultaneous Localization And Mapping (a-SLAM) is required in order to localize the moving robot’s positions and jointly map the sound sources. Using a novel a-SLAM approach, this paper investigates the impact of the choice of robot paths on source mapping accuracy. Simulation results demonstrate that a-SLAM performance can be improved by informatively planning robot paths

    Microphone array signal processing for robot audition

    Get PDF
    Robot audition for humanoid robots interacting naturally with humans in an unconstrained real-world environment is a hitherto unsolved challenge. The recorded microphone signals are usually distorted by background and interfering noise sources (speakers) as well as room reverberation. In addition, the movements of a robot and its actuators cause ego-noise which degrades the recorded signals significantly. The movement of the robot body and its head also complicates the detection and tracking of the desired, possibly moving, sound sources of interest. This paper presents an overview of the concepts in microphone array processing for robot audition and some recent achievements

    ODAS: Open embeddeD Audition System

    Full text link
    Artificial audition aims at providing hearing capabilities to machines, computers and robots. Existing frameworks in robot audition offer interesting sound source localization, tracking and separation performance, but involve a significant amount of computations that limit their use on robots with embedded computing capabilities. This paper presents ODAS, the Open embeddeD Audition System framework, which includes strategies to reduce the computational load and perform robot audition tasks on low-cost embedded computing systems. It presents key features of ODAS, along with cases illustrating its uses in different robots and artificial audition applications

    The LOCATA challenge data corpus for acoustic source localization and tracking

    Get PDF
    Algorithms for acoustic source localization and tracking are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. Numerous algorithms have been proposed for this purpose which, however, are not evaluated and compared against each other by using a common database so far. The IEEE-AASP Challenge on sound source localization and tracking (LOCATA) provides a novel, comprehensive data corpus for the objective benchmarking of state-of-the-art algorithms on sound source localization and tracking. The data corpus comprises six tasks ranging from the localization of a single static sound source with a static microphone array to the tracking of multiple moving speakers with a moving microphone array. It contains real-world multichannel audio recordings, obtained by hearing aids, microphones integrated in a robot head, a planar and a spherical microphone array in an enclosed acoustic environment as well as positional information about the involved arrays and sound sources represented by moving human talkers or static loudspeakers

    Acoustic simultaneous localization and mapping (A-SLAM) of a moving microphone array and its surrounding speakers

    Get PDF
    Acoustic scene mapping creates a representation of positions of audio sources such as talkers within the surrounding environment of a microphone array. By allowing the array to move, the acoustic scene can be explored in order to improve the map. Furthermore, the spatial diversity of the kinematic array allows for estimation of the source-sensor distance in scenarios where source directions of arrival are measured. As sound source localization is performed relative to the array position, mapping of acoustic sources requires knowledge of the absolute position of the microphone array in the room. If the array is moving, its absolute position is unknown in practice. Hence, Simultaneous Localization and Mapping (SLAM) is required in order to localize the microphone array position and map the surrounding sound sources. In realistic environments, microphone arrays receive a convolutive mixture of direct-path speech signals, noise and reflections due to reverberation. A key challenge of Acoustic SLAM (a-SLAM) is robustness against reverberant clutter measurements and missing source detections. This paper proposes a novel bearing-only a-SLAM approach using a Single-Cluster Probability Hypothesis Density filter. Results demonstrate convergence to accurate estimates of the array trajectory and source positions
    • …
    corecore