128 research outputs found

    Tracking Time-Vertex Propagation using Dynamic Graph Wavelets

    Get PDF
    Graph Signal Processing generalizes classical signal processing to signal or data indexed by the vertices of a weighted graph. So far, the research efforts have been focused on static graph signals. However numerous applications involve graph signals evolving in time, such as spreading or propagation of waves on a network. The analysis of this type of data requires a new set of methods that fully takes into account the time and graph dimensions. We propose a novel class of wavelet frames named Dynamic Graph Wavelets, whose time-vertex evolution follows a dynamic process. We demonstrate that this set of functions can be combined with sparsity based approaches such as compressive sensing to reveal information on the dynamic processes occurring on a graph. Experiments on real seismological data show the efficiency of the technique, allowing to estimate the epicenter of earthquake events recorded by a seismic network

    Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology

    Get PDF
    The goal of cardiac electrophysiology is to obtain information about the mechanism, function, and performance of the electrical activities of the heart, the identification of deviation from normal pattern and the design of treatments. Offering a better insight into cardiac arrhythmias comprehension and management, signal processing can help the physician to enhance the treatment strategies, in particular in case of atrial fibrillation (AF), a very common atrial arrhythmia which is associated to significant morbidities, such as increased risk of mortality, heart failure, and thromboembolic events. Catheter ablation of AF is a therapeutic technique which uses radiofrequency energy to destroy atrial tissue involved in the arrhythmia sustenance, typically aiming at the electrical disconnection of the of the pulmonary veins triggers. However, recurrence rate is still very high, showing that the very complex and heterogeneous nature of AF still represents a challenging problem. Leveraging the tools of non-stationary and statistical signal processing, the first part of our work has a twofold focus: firstly, we compare the performance of two different ablation technologies, based on contact force sensing or remote magnetic controlled, using signal-based criteria as surrogates for lesion assessment. Furthermore, we investigate the role of ablation parameters in lesion formation using the late-gadolinium enhanced magnetic resonance imaging. Secondly, we hypothesized that in human atria the frequency content of the bipolar signal is directly related to the local conduction velocity (CV), a key parameter characterizing the substrate abnormality and influencing atrial arrhythmias. Comparing the degree of spectral compression among signals recorded at different points of the endocardial surface in response to decreasing pacing rate, our experimental data demonstrate a significant correlation between CV and the corresponding spectral centroids. However, complex spatio-temporal propagation pattern characterizing AF spurred the need for new signals acquisition and processing methods. Multi-electrode catheters allow whole-chamber panoramic mapping of electrical activity but produce an amount of data which need to be preprocessed and analyzed to provide clinically relevant support to the physician. Graph signal processing has shown its potential on a variety of applications involving high-dimensional data on irregular domains and complex network. Nevertheless, though state-of-the-art graph-based methods have been successful for many tasks, so far they predominantly ignore the time-dimension of data. To address this shortcoming, in the second part of this dissertation, we put forth a Time-Vertex Signal Processing Framework, as a particular case of the multi-dimensional graph signal processing. Linking together the time-domain signal processing techniques with the tools of GSP, the Time-Vertex Signal Processing facilitates the analysis of graph structured data which also evolve in time. We motivate our framework leveraging the notion of partial differential equations on graphs. We introduce joint operators, such as time-vertex localization and we present a novel approach to significantly improve the accuracy of fast joint filtering. We also illustrate how to build time-vertex dictionaries, providing conditions for efficient invertibility and examples of constructions. The experimental results on a variety of datasets suggest that the proposed tools can bring significant benefits in various signal processing and learning tasks involving time-series on graphs. We close the gap between the two parts illustrating the application of graph and time-vertex signal processing to the challenging case of multi-channels intracardiac signals

    Robust Network Topology Inference and Processing of Graph Signals

    Full text link
    The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder estimation performance. While many GSP works have looked at the presence of perturbations in the signals, much fewer have looked at the presence of perturbations in the graph, and almost none at their joint effect. While this is not surprising (GSP is a relatively new field), we expect this to change in the upcoming years. Motivated by the previous discussion, the goal of this thesis is to advance toward a robust GSP paradigm where the algorithms are carefully designed to incorporate the influence of perturbations in the graph signals, the graph support, and both. To do so, we consider different types of perturbations, evaluate their disruptive impact on fundamental GSP tasks, and design robust algorithms to address them.Comment: Dissertatio

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example
    • …
    corecore