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Abstract—Graph Signal Processing generalizes classical signal
processing to signal or data indexed by the vertices of a weighted
graph. So far, the research efforts have been focused on static
graph signals. However numerous applications involve graph sig-
nals evolving in time, such as spreading or propagation of waves
on a network. The analysis of this type of data requires a new
set of methods that fully takes into account the time and graph
dimensions. We propose a novel class of wavelet frames named
Dynamic Graph Wavelets, whose time-vertex evolution follows a
dynamic process. We demonstrate that this set of functions can
be combined with sparsity based approaches such as compressive
sensing to reveal information on the dynamic processes occurring
on a graph. Experiments on real seismological data show the
efficiency of the technique, allowing to estimate the epicenter of
earthquake events recorded by a seismic network.

Index Terms—Graph signal processing, time-vertex signal
processing, convex optimization, dynamic processes on graphs,
wave equation

I. INTRODUCTION

Complex signals and high-dimensional datasets collected
from a variety of fields of science, such as physics, engi-
neering, genetics, molecular biology and many others, can
be naturally modeled as values on the vertices of weighted
graphs [1], [2]. Recently, dynamic activity over networks has
been the subject of intense research in order to develop new
models to understand and analyze epidemic spreading [3],
rumor spreading over social networks [4], [5] or activity on
sensor networks. The advances in the graph research has
led to new tools to process and analyze time-varying graph
and/or signal on the graph, such as multilayer graphs and
tensor product of graphs [6], [7]. However, there is still a
lack of signal processing methods able to retrieve or process
information on dynamic phenomena taking place over graphs.
For example the wavelets on graphs [8], [9] or the vertex-
frequency transform [10] are dedicated to the study of a static
signal over a graph.

Motivated by an increasing amount of applications, we
design a new class of wavelet frames named Dynamic Graph
Wavelets (DGW) whose time evolution depends on the graph
topology and follows a dynamic process. Each atom of the
frame is a time-varying function defined on the graph. Com-
bined with sparse recovery methods, such as compressive
sensing, this allows for the detection and analysis of time-
varying processes on graphs. These processes can be, for
example, waves propagating over the nodes of a graph where
we need to find the origin and speed of propagation or the
existence of multiple sources.

We demonstrate the efficiency of the DGW on real data by
tracking the origin of earthquake events recorded by a network
of sensors.

II. PRELIMINARIES

A. Notation

Throughout this contribution, we will use bold upper and
lower case letters for linear operators (or matrices) M and
column vectors v, respectively. Furthermore, x will denote
the vectorized version of X . Complex conjugate, transpose
and conjugate transpose are denoted as X , Xᵀ and X∗,
respectively. Lower case letters a will denote scalars and upper
case letters A will denote fixed constant. For any symmetric
positive definite matrix M with singular value decomposition
M = UΛU∗, the matrix function f(M) is defined as
f(M) = Uf(Λ)U∗, where the scalar function f has been
applied to each diagonal entry of Λ. The Kronecker product
between two matrices (or vectors) is denoted as M1 ⊗M2,
hence, the cartesian product between matrices (or vectors) is
M1 ×M2 =M1 ⊗ I2 + I1 ⊗M2, where In is the identity
matrix with size equal to Mn.

B. Graph Signal Processing

Consider a graph G = (V, E ,W) of N nodes and E edges,
where V indicates the set of nodes and E the set of edges.
The weight function W : V × V → R reflects to what
extent two nodes are related to each other. WG is the weight
matrix associated to this function. The combinatorial Lapla-
cian LG =DG −WG associated to the graph G is always
symmetric positive semi-definite, therefore, due to the spectral
theorem, it is characterized by a complete set of orthonormal
eigenvectors [11]. We denote them by UG(n, `) = u`(n). The
Laplacian matrix can thus be decomposed as LG = UGΛGU

∗
G,

with ΛG(`, `) = λ`. Let x : V → R be a graph signal
defined on the graph nodes, whose n-th component x(n) ∈ R
represents the value of signal at the n-th node. The Graph
Fourier Transform (GFT) of x is x̃ = U∗Gx and its inverse
x = UGx̃.

III. TIME-VERTEX REPRESENTATION

A. Definition

Let X ∈ RN×T be a set of N temporal signals of length T .
The signals are evolving with time over the N vertices of the
graph G. We call the cartesian product between time and graph
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domain the time-vertex domain and X time-vertex signal. The
time-vertex domain can be interpreted as a cartesian product
between the generic graph G = (V, E ,W) with Laplacian LG
and the ring graph GT (assuming periodic boundary conditions
in time) with Laplacian LT . The joint Laplacian is

(LT ×LG)x = LGX +XLT (1)

where the second term is obtained using the property of the
Kronecker product (M1 ⊗M2)x =M2XM

ᵀ
1 .

In equation (1) the Laplacian LT represents the discrete
second order derivative with respect to time:

[XLT ](n, t) =X(n, t+ 1)− 2X(n, t) +X(n, t− 1).

It can be decomposed as LT = UTΩU
∗
T where UT is the dis-

crete Fourier basis [12] and Ω(k, k) = ωk are the eigenvalues
of the classical DFT that are linked to the normalized discrete
frequencies k

T by the following relation:

ωk = 2

(
cos

(
π
k

T

)
− 1

)
. (2)

B. Joint Time-Vertex Fourier Transform

Since the time-vertex representation is obtained from the
cartesian product of the two original domains, the joint time-
vertex Fourier transform (JFT) is obtained by applying the
GFT on the graph dimension and the DFT along the time
dimension [13]:

X̂(`, k) =
1√
T

N∑
n=1

T−1∑
t=0

X(n, t)u∗` (n)e
−jωk tT

that can be conveniently rewritten in matrix form as:

X̂ = JFT(X) = U∗GXUT . (3)

The spectral domain helps in defining the localization of
functions on the graph, as in [8].

IV. DYNAMIC GRAPH WAVELETS

The DGW differ from classical wavelets as they are not
dilated versions of an initial mother wavelet. Indeed, they
are propagating functions on the graph that evolve in time,
according to a PDE. We will use the joint representation
for the signal to characterize spectral relationships between
the two domains and solve the PDE in the spectral domain
obtaining an useful tool to analyze time-vertex signals that
evolve according to this dynamic process. Finally, we will use
the kernel to build the set of DGW. Because of the lack of
translation invariance of graph, the kernel will always act in
graph spectral domain and will be localized on the graph using
the localization operator as in [8]. On the contrary the time
dependence can be defined either in the spectral or in the time
domain. In this contribution, we use for convenience the time
domain.

A. Heat diffusion on graph

Let us first provide a basic example for our model. The
diffusion of heat on a graph can be seen as a simple dynamic
process over a network. It is described by the following
(discretized) differential equation:

X(n, t)−X(n, t− 1) = −sLGX, (4)

with initial distribution X(i, 0) = ψ(i). The closed form solu-
tion is given by X = e−stLGψ. Therefore, the heat diffusion
spectral kernel is

K̃(sλ`, t) = e−sλ`t (5)

where the parameter s is the thermal diffusivity in classic
heat diffusion problems and can be interpreted as a scale
parameter for multiscale dynamic graph wavelet analysis [9].
This equation models the spreading of a function on the graph
over time. However, in the present work we want to focus on
a propagating process, moving away from an initial point as
time passes. Hence we introduce a second model.

B. The wave equation on graphs

To model functions evolving on a graph, we will use mainly
the PDE associated to the wave equation. Here, the wave
equation is defined on the graph, and, as such, differs from
the standard one. This partial differential equation relates
the second order derivative in time to the spatial Laplacian
operator of a function:

(LT ⊗ IG)x = −α2(IT ⊗LG)x
XLT = −α2LGX (6)

where α is the propagation speed parameter. Assuming a
vanishing initial velocity, i.e. first derivative in time of the
initial distribution equals zero, the solution to this PDE can
be written using functional calculus as [14]:

X( · , t) = K(sLG, t)ψ =Kt,sψ (7)

where ψ(n) =X(n, 0) and Kt,s = K(sLG, t) is the ma-
trix function K applied to the scaled Laplacian sLG and
parametrized by the time t. Notice that we use the scale
s = α2 to represent the speed parameter of the propagation.
Substituting (7) into (6), we obtain

Kt,sψLT = −sLGKt,sψ. (8)

To obtain a closed form solution for the kernel Ks we analyze
the equation (8) in the graph spectral domain:

K̃t,sψ̃LT = −sΛGK̃t,sψ̃ (9)

where K̃t,s = K(sΛG, t). Equation (9) requires K(sλ`, t) to
be an eigenvector of LT . From (2) we obtain:

K̃(sλ`, t) = cos

(
t arccos

(
1− sλ`

2

))
. (10)

Since the arccos(x) is defined only for x ∈ [−1, 1], to guar-
antee filter stability the parameter s must satisfy s < 4/λmax.
This result is in agreement with stability analysis of numerical
solver for discrete wave equation [15].
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The wave equation is a hyperbolic differential equation and
several difficulties arise when discretizing it for numerical
computation of the solution [14]. Moreover, the graph being
an irregular domain, the solution of the above equation is not
any more a smooth wave after few iterations. Here we focus
on the propagation (away from its origin) of the wave rather
than its exact expression.

C. General definition
In the following, we will generalize the DGW using arbi-

trary time-vertex kernel. The goal is to design a transform that
helps detecting a class of dynamic events on graphs. These
events are assumed to start from an initial joint distribution
Φm,τ (n, t) = [ψm⊗φᵀ

τ ](n, t) localized around vertex m and
time τ . The general expression of the DGW Wm,τ,s at time t
and at vertex n can be written as:

Wm,τ,s(n, t) = [Kt,sΦm,τ ] (n, t), ∀ t ≥ 0 (11)

where, like earlier, Kt,s = K(sLG, t) is the matrix function
K applied to the scaled Laplacian sLG and parametrized by
the time t. Depending on the dynamic graph kernel, the DGW
can resemble a wave solution of the wave equation, a diffusion
process, or a generic dynamic process.

D. Causal Damped Wave Dynamic Graph Kernel
We define the DGW to be the solutions of Eq. (6), for

different α =
√
s. In addition, we require two other properties.

Firstly, we want the wave to be causal, i.e. to have an initial
starting point in time. Secondly, in many applications, the wave
propagation is affected by an attenuation over time. We thus
introduce a damping term. The DGW defined in the graph
spectral domain is thus

W̃s(λ`, t) = H(t) e−βt cos

(
t arccos

(
1− sλ`

2

))
, (12)

where H(t) is the Heaviside function and e−βt is the damped
decaying exponential function in time.

The damping term has two remarkable effects. Firstly, it
lower the importance of the chosen boundary conditions in
time (e.g. periodic or reflective) as the wave vanishes before
touching them. Secondly, it favors the construction of a frame
of DGW: we will see in the following that β is involved in
the lower frame bound of the DGW.

E. Dynamic Graph Frames
We define SW as the DGW analysis operator. The wavelet

coefficients C are given by

C(m, τ, s) = {SW (X)} (m, τ, s) =
∑
n,t

Wm,τ,s(n, t)X(n, t)

=
1√
T

∑
`,k

Ŵs(λ`, ωk)X̂(`, k)u`(m)e−jωk
τ
T ,

and the synthesis operator gives

X ′(n, t) = {Sᵀ
W (C)} (n, t) =

∑
j,τ,s

Wm,τ,s(n, t)C(m, τ, s)

=
1√
T

∑
s

∑
`,k

Ŵs(λ`, ωk)Ĉ(`, k, s)u`(i)e
−2πjωk τT .

The following theorem provides conditions to assert that no
information will be lost when these operators are applied to
a time-vertex signals. This implies that any signal X can be
constructed from the synthesis operation: X = Sᵀ

W (C).

Theorem 1. If the set of time-vertex DGW satisfies:

A = min
l,k

∑
s

|Ŵs(λ`, ωk)|2 > 0

B = max
l,k

∑
s

|Ŵs(λ`, ωk)|2 <∞

with 0 < A ≤ B < ∞, then SW is a frame operator in the
sense:

A‖X‖22 ≤ ‖{SW (X)}‖22 ≤ B‖X‖
2
2 (13)

for any time-vertex signal X with ‖X‖2 > 0.

Proof. In the joint spectral domain we can write:

‖{SW (X)}‖22 =
∑
m,τ,s

|{SW (X)} (m, τ, s)|2

=
∑
m,τ,s

∣∣∣∣∣∣
∑
n,t

X(n, t)
∑
`,k

Ŵs(λ`, ωk)u
∗
` (n)u`(m)e−jωk

t−τ
T

∣∣∣∣∣∣
2

=
∑
s,m,τ

∑
n,t

X(n, t)
∑
`,k

Ŵs(λ`, ωk)u
∗
` (n)u`(m)e−jωk

t−τ
T


∑
n′,t′

X(n′, t′)
∑
`′,k′

Ŵs(λ`′ , ωk′)u
∗
`′(n

′)u`′(m)e−jωk′
t′−τ
T

∗

=
∑
s,`,k

Ŵs(λ`, ωk)Ŵ
∗
s (λ`, ωk)X̂(`, k)X̂∗(`, k)

=
∑
s,`,k

|Ŵs(λ`, ωk)|2|X̂(`, k)|2 =
∑
s

‖Ŵs · X̂‖22.

Using Parseval relation ‖X̂‖2 = ‖X‖2, we find

A‖X‖22 = A‖X̂‖22 ≤ ‖{SW (X)}‖22 ≤ B‖X̂‖
2
2 = B‖X‖22

where ‖·‖2 is used here for the Froebenius norm, i.e:
‖X‖2 = ‖x‖2.

In the following we will use this condition to prove that the
DGW given in equation (12) is a frame.

Corollary 1. The set of DGW defined by Eq.(12) is a frame
for all β > 0.

Proof. We define θ` = arccos(1− sλ`
2 ). The DGW in the joint

spectral domain is∣∣∣Ŵ (λ`, ωk)
∣∣∣2 =

∣∣∣∣∣∑
t>0

e−βt cos(t arccos(1− sλ`
2

))e−jωkt

∣∣∣∣∣
2

=

∣∣∣∣12
(

1

1− e−(β+j(ωk+θ`)
+

1

1− e−(β+j(ωk−θ`)

)∣∣∣∣2
=

∣∣∣∣12 2− e−β−jωk(e−jθ + ejθ)

1− e−β−jωk(e−jθ + ejθ) + e−2β−2jωk

∣∣∣∣2
=

∣∣∣∣ 1− e−β−jωk cos θ`
1− 2e−β−jωk cos θ` + e−2β−2jωk

∣∣∣∣2 ≥ ∣∣∣∣1− e−β

4

∣∣∣∣2 > 0.
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Hence A > 0. To prove that B <∞ we find the roots of the
denominator of the above expression. We call z = e−β−jωk

and we obtain the following equation:

1− 2z cos θ` + z2 = 0

whose roots are |ż| = |cos(θ`) ± j sin(θ`)| = 1. Since
|z| = e−β , |z| 6= |ż| ∀β > 0.

V. SPARSE REPRESENTATION

Particular processes, such as wave propagation, can be well
approximated by only a few elements of the DGW, i.e. the
DGW transform of the signal is a sparse representation of
the information it contains. In that case, we inspire ourselves
from compressive sensing techniques and define the following
convex minimization problem

Ċ = argmin
C
‖Sᵀ

W (C)− Y ‖22 + γ‖C‖1. (14)

Here γ is the parameter controlling the trade-off between the
fidelity term ‖Sᵀ

WC−Y ‖22 and the sparsity assumption of the
DGW coefficients ‖C‖1 =

∑
m,τ,s|C(m, τ, s)|. The solution

Ċ provides useful information about the signal. Firstly, the
synthesis Sᵀ

W Ċ is a de-noised version of the original process.
Secondly, from the position of the non zero coefficients of Ċ,
we can derive the origin on the graph m and in time τ , the
speed of propagation s and the amplitude |C(m, τ, s)| of the
different waves.

Problem (14) can be solved using proximal splitting
methods [16] and the fast iterative soft thresholding al-
gorithm (FISTA) [17] is particularly well suited. Let us
define g(C) = ‖STWC − Y ‖22, the gradient of g is
∇g(C) = 2SW (STWC − Y ). Note that the Lipschitz constant
of ∇g is 2D. We define the function h(C) = γ‖C‖1. The
proximal operator of h is the `1 soft-thresholding given by
the elementwise operations (here ◦ is the Hadamard product)

prox
γ,h

(C) = C + sgn(C) ◦max(|C| − γ, 0).

The FISTA algorithm [17] can now be stated as Algorithm
1, where ν is the step size (we use ν = 1

2D ), ε the stopping
tolerance and J the maximum number of iterations. δ is a
very small number to avoid a possible division by 0. Our
implementation of the frame SW is based on the GSPBox [18]
and Problem (14) is solved using the UNLocBoX [19].

Algorithm 1 FISTA for Problem (14)

INPUT: c1 = y, u0 = y, t1 = 1, ε > 0
for j = 1, . . . J do

uj+1 = proxνjh(cj − νj∇g(cj))

tj+1 =
1+
√

1+4t2j
2

cj+1 = uj +
tj−1
tj+1

(uj − uj−1)
if ‖cj+1−cj‖22

‖cj‖22+δ
< ε then

BREAK
end if

end for

SNR [dB]
Event ID 100 20 10 2 0
2014p139747 28.88 28.92 29.24 31.41 32.35
2015p822263 28.35 28.25 29.13 28.53 29.97
2015p850906 17.80 18.38 15.18 16.60 21.26
2016p235495 37.39 37.41 37.58 37.83 37.83

Table I: Distance in kilometers between real and estimated
epicenter for different seismic events and decreasing SNR.

VI. APPLICATION

A. Earthquake epicenter estimation

We demonstrate the performance of the DGW on a source
localization problem, where a dynamical event evolves accord-
ing to a specific time-space behavior. We analyze waveforms
recorded by seismic stations geographically distributed in New
Zealand, connected to the GeoNet Network. The graph is
constructed using the coordinates of the available seismic sta-
tions and connecting the closest nodes. We consider different
seismic events whose epicenters were located in different areas
of New Zealand1. Each waveform consists of 300 seconds
sampled at 100Hz, starting few seconds before the seismic
event. Seismic waveforms can be modeled as oscillating
damped waves. This model is valid when the spatial domain
where the waves are propagating is a continuous domain or
a regular lattice [20]. Here, the domain is the network of
sensors and we assume that a damped wave propagating on
this network is still a good approximation. Thus we expect
the waveforms of the DGW defined in Eq.(12) to be good
approximations of the seismic waves recorded by the sensors.
We create a frame of DGW, SW , using 10 different values for
the propagation velocity parameter s linearly spaced between
0 and 2 (corresponding to physically plausible values). The
damping β was fixed and chosen to fit the damping present in
the seismic signals.

To estimate the epicenter of the seismic event we solved
the convex optimization problem (14). The sparse matrix
C contains few non-zero coefficients corresponding to the
waveforms that constitute the seismic wave. We averaged the
coordinates of the vertices corresponding to the sources of
the waves with highest energy coefficients. Figure 1 shows
the results of the analysis for different seismic events. For
each plot, the recorded waveforms are shown superposed
using different colors. Real and estimated epicenters are shown
respectively with a red square and a black circle on the graph
plots.

Finally, we investigated the performance of the source
localization algorithm by adding white Gaussian noise to the
signals, decreasing the SNR of the waveforms from 100 to
0 dB, such that the SNR is the same for all the waveforms.
Table I shows the distance between the real and estimated
epicenter in kilometers in four different events and increasing
amounts of noise. The small variations of the results demon-
strate the high robustness of the method.

1The dataset is freely available at http://www.geonet.org.nz/quakes
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Figure 1: Results for 3 different seismic events in New Zealand. Top: the graph is created using the coordinates of the available
stations for each event and connecting the closest stations. The red squares and the black dots are the true and estimated sources
of the seismic wave respectively. Bottom: Signal recorded by the sensors (different color per sensor) over time for each event.
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Arenas, “Mathematical formulation of multilayer networks,” Physical
Review X, vol. 3, no. 4, pp. 041022, 2013.

[8] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval,
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