Graph Signal Processing generalizes classical signal processing to signal or
data indexed by the vertices of a weighted graph. So far, the research efforts
have been focused on static graph signals. However numerous applications
involve graph signals evolving in time, such as spreading or propagation of
waves on a network. The analysis of this type of data requires a new set of
methods that fully takes into account the time and graph dimensions. We propose
a novel class of wavelet frames named Dynamic Graph Wavelets, whose time-vertex
evolution follows a dynamic process. We demonstrate that this set of functions
can be combined with sparsity based approaches such as compressive sensing to
reveal information on the dynamic processes occurring on a graph. Experiments
on real seismological data show the efficiency of the technique, allowing to
estimate the epicenter of earthquake events recorded by a seismic network