370,370 research outputs found

    Source Polarization

    Get PDF
    The notion of source polarization is introduced and investigated. This complements the earlier work on channel polarization. An application to Slepian-Wolf coding is also considered. The paper is restricted to the case of binary alphabets. Extension of results to non-binary alphabets is discussed briefly.Comment: To be presented at the IEEE 2010 International Symposium on Information Theory

    Compton drag as a mechanism for very high linear polarization in Gamma-Ray Bursts

    Full text link
    The recent claim by Coburn & Boggs to have detected a very high degree of linear polarization in the prompt emission of GRB 021206 has stimulated interest in how much polarization could arise in gamma-ray bursts from synchrotron emission. Alternatively, as Shaviv & Dar have shown, GRB polarization could be produced by inverse Compton scattering in the point-source limit. We discuss polarization from a fireball that upscatters a soft radiation field. We show that, after the proper angular integration, the residual polarization can be large, in some cases approaching the point-source limit. We discuss the probability of realizing the geometrical conditions in which a large polarization is obtained showing that, for a particularly bright burst as GRB 021206, the detection of polarization at the first attempt in the Compton drag scenario is not unlikely.Comment: Accepted for publication in MNRA

    Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A*

    Get PDF
    We report here the detection of circular polarization in the Galactic Center black hole candidate, Sagittarius A*. The detection was made at 4.8 GHz and 8.4 GHz with the Very Large Array. We find that the fractional circular polarization at 4.8 GHz is mc=−0.36±0.05m_c=-0.36 \pm 0.05% and that the spectral index of the circular polarization is α=−0.6±0.3\alpha=-0.6 \pm 0.3 (mc∝Μαm_c \propto \nu^{\alpha}). The systematic error in mcm_c is less than 0.04% at both frequencies. In light of our recent lower limits on the linear polarization in Sgr A*, this detection is difficult to interpret with standard models. We consider briefly whether scattering mechanisms could produce the observed polarization. Detailed modeling of the source and the scattering medium is necessary. We propose a simple model in which low energy electrons reduce linear polarization through Faraday depolarization and convert linear polarization into circular polarization. Circular polarization may represent a significant new parameter for studying the obscured centimeter wavelength radio source in Sgr A*.Comment: ApJL accepted, 11 pages including 1 figur

    Ultra-bright source of polarization-entangled photons

    Get PDF
    Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level of entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-σ\sigma violation of Bell's inequalities in less than three minutes.Comment: 4 pages, 5 encapsulated Postscript figures. To appear in Physical Review A (Rapid Communication

    Weak-Lensing by Large-Scale Structure and the Polarization Properties of Distant Radio-Sources

    Get PDF
    We estimate the effects of weak lensing by large-scale density inhomogeneities and long-wavelength gravitational waves upon the polarization properties of electromagnetic radiation as it propagates from cosmologically distant sources. Scalar (density) fluctuations do not rotate neither the plane of polarization of the electromagnetic radiation nor the source image. They produce, however, an appreciable shear, which distorts the image shape, leading to an apparent rotation of the image orientation relative to its plane of polarization. In sources with large ellipticity the apparent rotation is rather small, of the order (in radians) of the dimensionless shear. The effect is larger at smaller source eccentricity. A shear of 1% can induce apparent rotations of around 5 degrees in radio sources with the smallest eccentricity among those with a significant degree of integrated linear polarization. We discuss the possibility that weak lensing by shear with rms value around or below 5% may be the cause for the dispersion in the direction of integrated linear polarization of cosmologically distant radio sources away from the perpendicular to their major axis, as expected from models for their magnetic fields. A rms shear larger than 5% would be incompatible with the observed correlation between polarization properties and source orientation in distant radio galaxies and quasars. Gravity waves do rotate both the plane of polarization as well as the source image. Their weak lensing effects, however, are negligible.Comment: 23 pages, 2 eps figures, Aastex 4.0 macros. Final version, as accepted by ApJ. Additional references and some changes in the introduction and conclusion
    • 

    corecore