8,697 research outputs found

    Static Analysis of Run-Time Errors in Embedded Real-Time Parallel C Programs

    Get PDF
    We present a static analysis by Abstract Interpretation to check for run-time errors in parallel and multi-threaded C programs. Following our work on Astr\'ee, we focus on embedded critical programs without recursion nor dynamic memory allocation, but extend the analysis to a static set of threads communicating implicitly through a shared memory and explicitly using a finite set of mutual exclusion locks, and scheduled according to a real-time scheduling policy and fixed priorities. Our method is thread-modular. It is based on a slightly modified non-parallel analysis that, when analyzing a thread, applies and enriches an abstract set of thread interferences. An iterator then re-analyzes each thread in turn until interferences stabilize. We prove the soundness of our method with respect to the sequential consistency semantics, but also with respect to a reasonable weakly consistent memory semantics. We also show how to take into account mutual exclusion and thread priorities through a partitioning over an abstraction of the scheduler state. We present preliminary experimental results analyzing an industrial program with our prototype, Th\'es\'ee, and demonstrate the scalability of our approach

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Hybrid Information Flow Analysis for Programs with Arrays

    Full text link
    Information flow analysis checks whether certain pieces of (confidential) data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    Thread-Modular Static Analysis for Relaxed Memory Models

    Full text link
    We propose a memory-model-aware static program analysis method for accurately analyzing the behavior of concurrent software running on processors with weak consistency models such as x86-TSO, SPARC-PSO, and SPARC-RMO. At the center of our method is a unified framework for deciding the feasibility of inter-thread interferences to avoid propagating spurious data flows during static analysis and thus boost the performance of the static analyzer. We formulate the checking of interference feasibility as a set of Datalog rules which are both efficiently solvable and general enough to capture a range of hardware-level memory models. Compared to existing techniques, our method can significantly reduce the number of bogus alarms as well as unsound proofs. We implemented the method and evaluated it on a large set of multithreaded C programs. Our experiments showthe method significantly outperforms state-of-the-art techniques in terms of accuracy with only moderate run-time overhead.Comment: revised version of the ESEC/FSE 2017 pape

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    SmartTrack: Efficient Predictive Race Detection

    Full text link
    Widely used data race detectors, including the state-of-the-art FastTrack algorithm, incur performance costs that are acceptable for regular in-house testing, but miss races detectable from the analyzed execution. Predictive analyses detect more data races in an analyzed execution than FastTrack detects, but at significantly higher performance cost. This paper presents SmartTrack, an algorithm that optimizes predictive race detection analyses, including two analyses from prior work and a new analysis introduced in this paper. SmartTrack's algorithm incorporates two main optimizations: (1) epoch and ownership optimizations from prior work, applied to predictive analysis for the first time; and (2) novel conflicting critical section optimizations introduced by this paper. Our evaluation shows that SmartTrack achieves performance competitive with FastTrack-a qualitative improvement in the state of the art for data race detection.Comment: Extended arXiv version of PLDI 2020 paper (adds Appendices A-E) #228 SmartTrack: Efficient Predictive Race Detectio
    corecore