33 research outputs found

    Concurrent Knowledge-Extraction in the Public-Key Model

    Get PDF
    Knowledge extraction is a fundamental notion, modelling machine possession of values (witnesses) in a computational complexity sense. The notion provides an essential tool for cryptographic protocol design and analysis, enabling one to argue about the internal state of protocol players without ever looking at this supposedly secret state. However, when transactions are concurrent (e.g., over the Internet) with players possessing public-keys (as is common in cryptography), assuring that entities ``know'' what they claim to know, where adversaries may be well coordinated across different transactions, turns out to be much more subtle and in need of re-examination. Here, we investigate how to formally treat knowledge possession by parties (with registered public-keys) interacting over the Internet. Stated more technically, we look into the relative power of the notion of ``concurrent knowledge-extraction'' (CKE) in the concurrent zero-knowledge (CZK) bare public-key (BPK) model.Comment: 38 pages, 4 figure

    Resettable Zero Knowledge in the Bare Public-Key Model under Standard Assumption

    Full text link
    In this paper we resolve an open problem regarding resettable zero knowledge in the bare public-key (BPK for short) model: Does there exist constant round resettable zero knowledge argument with concurrent soundness for NP\mathcal{NP} in BPK model without assuming \emph{sub-exponential hardness}? We give a positive answer to this question by presenting such a protocol for any language in NP\mathcal{NP} in the bare public-key model assuming only collision-resistant hash functions against \emph{polynomial-time} adversaries.Comment: 19 pag

    Concurrently Non-Malleable Zero Knowledge in the Authenticated Public-Key Model

    Full text link
    We consider a type of zero-knowledge protocols that are of interest for their practical applications within networks like the Internet: efficient zero-knowledge arguments of knowledge that remain secure against concurrent man-in-the-middle attacks. In an effort to reduce the setup assumptions required for efficient zero-knowledge arguments of knowledge that remain secure against concurrent man-in-the-middle attacks, we consider a model, which we call the Authenticated Public-Key (APK) model. The APK model seems to significantly reduce the setup assumptions made by the CRS model (as no trusted party or honest execution of a centralized algorithm are required), and can be seen as a slightly stronger variation of the Bare Public-Key (BPK) model from \cite{CGGM,MR}, and a weaker variation of the registered public-key model used in \cite{BCNP}. We then define and study man-in-the-middle attacks in the APK model. Our main result is a constant-round concurrent non-malleable zero-knowledge argument of knowledge for any polynomial-time relation (associated to a language in NP\mathcal{NP}), under the (minimal) assumption of the existence of a one-way function family. Furthermore,We show time-efficient instantiations of our protocol based on known number-theoretic assumptions. We also note a negative result with respect to further reducing the setup assumptions of our protocol to those in the (unauthenticated) BPK model, by showing that concurrently non-malleable zero-knowledge arguments of knowledge in the BPK model are only possible for trivial languages

    Constant-Round Concurrent Non-Malleable Zero Knowledge in the Bare Public-Key Model

    Get PDF
    One of the central questions in Cryptography is the design of round-efficient protocols that are secure under concurrent man-in-the- middle attacks. In this paper we present the first constant-round concurrent non-malleable zero-knowledge argument system for NP in the Bare Public-Key model [Canetti et al., STOC 2000], resolving one of the major open problems in this area. To achieve our result, we introduce and study the notion of non-malleable witness indistinguishability, which is of independent interest. Previous results either achieved relaxed forms of concurrency/security or needed stronger setup assumptions or required a non-constant round complexity

    Resettably-Sound Zero-Knowledge and its Applications

    Get PDF
    Resettably-sound proofs and arguments remain sound even when the prover can reset the verifier, and so force it to use the same random coins in repeated executions of the protocol. We show that resettably-sound zero-knowledge {\em arguments} for NP exist if collision-resistant hash functions exist. In contrast, resettably-sound zero-knowledge {\em proofs} are possible only for languages in P/poly. We present two applications of resettably-sound zero-knowledge arguments. First, we construct resettable zero-knowledge arguments of knowledge for NP, using a natural relaxation of the definition of arguments (and proofs) of knowledge. We note that, under the standard definition of proofs of knowledge, it is impossible to obtain resettable zero-knowledge arguments of knowledge for languages outside BPP. Second, we construct a constant-round resettable zero-knowledge argument for NP in the public-key model, under the assumption that collision-resistant hash functions exist. This improves upon the sub-exponential hardness assumption required by previous constructions. We emphasize that our results use non-black-box zero-knowledge simulations. Indeed, we show that some of the results are {\em impossible} to achieve using black-box simulations. In particular, only languages in BPP have resettably-sound arguments that are zero-knowledge with respect to black-box simulation

    Concurrent Non-Malleable Commitments (and More) in 3 Rounds

    Get PDF
    The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal et al. [22] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [41]. The state of affairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable commitment schemes. In this paper we solve the above open problem by showing how to transform any 3-round (one-left one-right) non-malleable commitment scheme (with some extractability property) in a 3-round concurrent nonmalleable commitment scheme. Our transform makes use of complexity leveraging and when instantiated with the construction of [22] gives a 3-round concurrent non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-time adversaries. We also show a 3-round arguments of knowledge and a 3-round identification scheme secure against concurrent man-in-the-middle attacks

    New Notions of Soundness and Simultaneous Resettability in the Public-Key Model

    Get PDF
    I n this paper, some new notions of soundness in public-key model are presented. We clarify the relationships among our new notions of soundness and the original 4 soundness notions presented by Micali and Reyzin. Our new soundness notions also characterize a new model for ZK protocols in public key model: weak soundness model. By ``weak” we mean for each common input x selected by a malicious prover on the fly, x is used by the malicious prover at most a-priori bounded polynomial times. The weak soundness model just lies in between BPK model and UPK model. Namely, it is weaker than BPK model but stronger than UPK model. In the weak soundness model (also in the UPK model, since weak soundness model implies UPK model), we get a 3-round black-box rZK arguments with weak resettable soundness for NP. Note that simultaneous resettability is an important open problem in the field of ZK protocols. And Reyzin has proven that there are no ZK protocols with resettable soundness in the BPK model. It means that to achieve simultaneous resettability one needs to augment the BPK model in a reasonable fashion. Although Barak et al. [BGGL01] have proven that any language which has a black-box ZK arguments with resettable soundness is in BPP. It is the weak soundness that makes us to get simultaneous resettability. More interestingly, our protocols work in a somewhat ``parallel repetition” manner to reduce the error probability and the verifier indeed has secret information with respect to historical transcripts. Note that in general the error probability of such protocols can not be reduced by parallel repetition. [BIN97] At last, we give a 3-round non-black-box rZK arguments system with resettable soundness for NP in the preprocessing model in which a trusted third party is assumed. Our construction for such protocol is quite simple. Note that although the preprocessing model is quite imposing but it is still quite reasonable as indicated in [CGGM00]. For example, in many e-commerce setting a trusted third party is often assumed. The critical tools used in this paper are: verifiable pseudorandom functions, zap and complexity leveraging. To our knowledge, our protocols are also the second application of verifiable pseudorandom functions. The first application is the 3-round rZK arguments with one-time soundness for NP in the public-key model as indicated by Micali and Reyzin [MR01a]

    Resettable Public-Key Encryption: How to Encrypt on a Virtual Machine

    Get PDF
    Typical security models used for proving security of deployed cryptographic primitives do not allow adversaries to rewind or reset honest parties to an earlier state. Thus, it is common to see cryptographic protocols rely on the assumption that fresh random numbers can be continually generated. In this paper, we argue that because of the growing popularity of virtual machines and, specifically, their state snapshot and revert features, the security of cryptographic protocols proven under these assumptions is called into question. We focus on public-key encryption security in a setting where resetting is possible and random numbers might be reused. We show that existing schemes and security models are insufficient in this setting. We then provide new formal security models and show that making a simple and efficient modification to any existing PKE scheme gives us security under our new models

    Constructing Verifiable Random Functions with Large Input Spaces

    Get PDF
    We present a family of verifiable random functions which are provably secure for exponentially-large input spaces under a non-interactive complexity assumption. Prior constructions required either an interactive complexity assumption or one that could tolerate a factor 2^n security loss for n-bit inputs. Our construction is practical and inspired by the pseudorandom functions of Naor and Reingold and the verifiable random functions of Lysyanskaya. Set in a bilinear group, where the Decisional Diffie-Hellman problem is easy to solve, we require the Decisional Diffie-Hellman Exponent assumption in the standard model, without a common reference string. Our core idea is to apply a simulation technique where the large space of VRF inputs is collapsed into a small (polynomial-size) input in the view of the reduction algorithm. This view, however, is information-theoretically hidden from the attacker. Since the input space is exponentially large, we can first apply a collision-resistant hash function to handle arbitrarily-large inputs
    corecore