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Abstract. One of the central questions in Cryptography is the design
of round-efficient protocols that are secure under concurrent man-in-the-
middle attacks. In this paper we present the first constant-round concur-
rent non-malleable zero-knowledge argument system for NP in the Bare
Public-Key model [Canetti et al., STOC 2000], resolving one of the ma-
jor open problems in this area. To achieve our result, we introduce and
study the notion of non-malleable witness indistinguishability, which is
of independent interest. Previous results either achieved relaxed forms of
concurrency/security or needed stronger setup assumptions or required
a non-constant round complexity.
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1 Introduction

In [1] Dolev, Dwork and Naor proposed the notion of a non-malleable zero-
knowledge (NMZK, for short) proof system where security must be preserved
even under a man-in-the-middle attack. This strong attack allows the adversary
to act as a prover in a proof and as a verifier in another proof with full con-
trol over the scheduling of the messages. The notion of NMZK is proved to be
extremely important in cryptography, since it captures the notion of proof in-
dependence, and led to multiple applications. Feasibility results for NMZK have
been shown by using either black-box techniques and a super-constant number
of rounds by Dolev et al. [1] or by using non-black-box techniques and obtain-
ing computational soundness in a constant number of rounds by Barak [2] and
Pass and Rosen [3]. Another strong security notion for proof systems is that
of concurrent zero knowledge, introduced by Dwork, Naor and Sahai [4], where
security has to work against adversaries that are involved in many concurrent
executions of a proof system.

In this paper we consider an adversary A mounting a concurrent man-in-the-
middle attack in which A acts as a verifier interacting with a honest prover in
polynomially many left proofs and acts as a prover interacting with honest veri-
fiers in polynomially many right proofs. The problem of designing protocols that

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 548–559, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Constant-Round Concurrent Non-malleable Zero Knowledge 549

combine concurrent security with security against man-in-the-middle adversaries
has received a lot of attention; several questions still remain open, though. In
particular, constant-round concurrent non-malleable zero-knowledge (cNMZK,
for short) proof systems have been shown to exist by assuming the existence of
trusted third parties or a trusted common reference string or using relaxed secu-
rity notions or relaxed concurrency. A construction with poly-logarithmic round
complexity for concurrent NMZK in the plain model has been given by Barak,
Prabhakaran, and Sahai [5]. The possibility of constructing constant round cN-
MZK proof systems in the plain model or under weaker setup assumptions is
still an open problem.

Witness indistinguishability. A weaker but still useful security notion for proof
systems is that of witness indistinguishability [6], where it is required that the
adversarial verifier does not distinguish the witness used by the prover. Despite
the tremendous applicability of witness indistinguishability, while a lot of atten-
tion has been given to zero knowledge with respect to man-in-the-middle attacks,
very little attention has been given to witness indistinguishability with respect
to concurrent man-in-the-middle attacks.

1.1 Our Results

In this paper we study concurrent man-in-the-middle attacks with respect to
proof systems and show the following two results.

We first show the definition and construction of a new concurrent non-malleable
primitive that extends the notion of witness indistinguishability to the setting in
which the adversary is a concurrentman-in-the-middle. For defining this newprim-
itive, we focus on a specific class of argument systems referred to as commit-and-
prove1 functionality introduced in [7]. We then construct a constant-round con-
current non-malleable witness indistinguishable (cNMWI, for short) argument of
knowledge (under Def. 2) for all NP in the plain model (see Theorem 1). This con-
struction relies upon the work by Pass and Rosen [8] where constant-round con-
current non-malleable (NM, for short) commitments have been achieved. In a next
work we also show that the notions of NMWI and NMZK argument systems are
incomparable, this is surprising since all previously introduced notions of witness
indistinguishability were implied by the corresponding notions of zero knowledge.

Second, we show the construction of a a constant-round cNMZK argument
system under standard complexity theoretic assumptions and security notions in
the Bare Public-Key model, a set-up assumption introduced in [9] that does not
require any trusted third party. So far this has been achieved only under stronger
setup assumptions. Previously, constant-round concurrent zero knowledge has
been obtained in the BPK model in [9] (in [10] with a concurrent soundness
guarantee, and in [11, 12] under standard assumptions). Given our results, the

1 We restrict our study to this class of argument systems as: 1) they allow us to define the
notion of witness encoded in a proof; 2) they suffice for our constructions and applica-
tions. It is possible however to generalize this notion.
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BPK model is, at the best of our knowledge, the weakest model in which constant-
round cNMZK has been achieved.

Corruption model and adaptive inputs. In all our results we consider the static
corruption model where the adversary has to choose the corrupted parties before
the protocols start. Following the previous work on NMZK, in the proof of
our concurrent NMZK argument of knowledge in the BPK model we assume
that the inputs (i.e., statements) for honest parties are fixed according to some
predetermined distribution while the adversary can choose its inputs adaptively.
Instead, for our cNMWI argument of knowledge in the plain model, following [13]
we also allow the adversary to choose the inputs of the prover by giving it both
the statements and the witnesses.

Work related to witness indistinguishability and cNMZK zero knowledge in the
plain model. Recently and independently from our work Micali, Pass and Rosen
[14] presented an extension of the notion of witness indistinguishability for achiev-
ing a relaxed notion of secure computation that does not resort to the simulation
paradigm. Their techniques are similar to ours but in this work, in contrast to [14],
we achieve arguments of knowledge and focus on the use of these strong notions of
witness indistinguishability for achieving a notion of security based on simulation
(i.e., concurrent NMZK). Moreover, achieving input-indistinguishability involves
significantly more complicated protocols; furthermore, it is not clear how easy this
notion is to work with when used as a “sub-protocol”. The power of our simple
and specific definition of non-malleable witness indistinguishability is that it can
be achieved essentially directly by relying on the non-malleable commitment pro-
tocol of [8] and it is easy to work with.

We observe that in the plain model constant-round (non-concurrent) NMZK
has been recently obtained [2, 3] whereas obtaining constant-round concurrent
zero knowledge in the plain model has been open for quite some time. The only
constant-round concurrent zero-knowledge arguments known in the plain model
impose a bound on the number of concurrent executions that the adversary can
perform [15]. If we do not insist on constant-round protocols, non-malleability
and security in a concurrent setting have been achieved by [5] which present a
protocol with logarithmic round complexity.

2 Non-malleable Witness Indistinguishability

For lack of space, the definition of standard tools and the ones about non-
malleability can be found in the full version of this work [16, 17].

We now start by discussing and defining the new non-malleable notion of proof
systems. In our definition of NM witness indistinguishability we shall require
that the witness encoded in the proof given by the man-in-the-middle adversary
A is independent from the witness used by the honest prover in the left proof.
Notice that A might be unaware of the witness it has used in the right proof.
More specifically, we focus on a specific class of argument systems referred to as
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commit-and-prove argument systems (previously considered in [7]). Informally,
the transcript of a commit-and-prove argument encodes in an unambiguous way
the witness used by the prover (even though it might not be efficiently extracted
from the transcript). In a NMWI commit-and-prove argument we require the
witness encoded in the proof produced by the man-in-the-middle adversary to
be independent of the witness used (by the honest prover) in the proof in which
the adversary acts as a verifier.

For general argument systems it is not clear whether the notion of witness
encoded is well defined as there could be more than one. Therefore, we focus on
commit-and-prove argument systems for which the notion of the witness encoded
is well defined and commit-and-prove arguments actually suffice for proving our
next result (i.e., cNMZK n the BPK model).

Commit-and-prove argument systems. A commit-and-prove argument system
Π = 〈P, V 〉 for a language L is a two-stage protocol. On input x, in the first
stage the prover and the verifier execute a commitment protocol by which the
prover commits to a string w. In the second stage, the prover proves to the
verifier that the committed string w is a valid witness for “x ∈ L”. We study
commit-and-prove argument systems in which the commitment scheme used in
the first stage is non-interactive and statistically binding, therefore the notion
of witness encoded in the proof is well defined and it corresponds to the string
committed to by the first prover-to-verifier message. If the proof is not accepted
by the verifier, we consider the witness to be encoded in the proof to be the
string ⊥. We shall require that in a NMWI commit-and-prove argument system
the man-in-the-middle adversary encodes in the right proof a witness that is
independent from the one that the honest prover has used in the left proof.

Tag-basedNMWI commit-and-prove arguments. We consider a man-in-the-middle
adversaryA interacting in the left proofwith tag tagwith the honest proverP that
is running on input instance x and witness w. In the right proof, A is interacting
with the honest verifier V on common input x̃ and tag ˜tag of its choice. We denote
by z the auxiliary information available to A.

The notion of tag-based NM witness indistinguishability is defined in terms of
the random variable wmimA(tag, x, w, z) that is the distribution of the output
of the following process: a transcript trans of an interaction of A, including the
left and the right proof, is picked according to distribution ViewP

A(tag, x, w, z)
(i.e., the view of A when running with z as auxiliary input and playing with
P that runs on input (x, w) and tag tag) and the output of a procedure wit
applied to trans is returned. The procedure wit returns ⊥ if the right proof is
not accepting (i.e., V outputs 0) or tag is the tag of the right proof. Otherwise
it returns the witness encoded in the right proof.

Definition 1 (tag-based NMWI argument). A family of commit-and-prove
argument systems Π = {〈Ptag, Vtag〉}tag for an NP-language L is a tag-based
non-malleable witness indistinguishable (tag-based NMWI, in short) argument
with tags of length � if, for all probabilistic polynomial-time man-in-the-middle
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adversaries A, for all probabilistic polynomial-time algorithms D, there exists a
negligible function ν such that for all x ∈ L, for all tags tag ∈ {0, 1}�, for all
pairs (w, w′) of witnesses for x, and for all auxiliary information z it holds that

|Prob[ D(x, w, w′, wmimA(tag, x, w, z), z) = 1 ]−

Prob[ D(x, w, w′, wmimA(tag, x, w′, z), z) = 1 ]| < ν(|x|).
A NMWI argument system is an argument of knowledge when for any prover that
proves a given statement with probability p, there exists an efficient extractor
that outputs a valid witness with essentially the same probability p (see the
definition of [18]).

Comparison with NMZK and NM commitments. We stress here that NMZK
requires the existence of a simulator while NM witness indistinguishability does
not. Instead, NM witness indistinguishability crucially considers the possible
witnesses that are encoded in the proofs given by the man-in-the-middle while
NMZK requirements are satisfied when a valid witness is given in output by the
simulator-extractor. The notion of NM witness indistinguishability is similar to
the notion of NM commitment with respect to commitment [1, 3]. Indeed, both
notions concern the security of a primitive against man-in-the-middle attacks
by considering a string that is encoded in the messages sent by the adversary.
This string is a committed message in case of NM commitments while it is an
encoded witness in case of NM witness indistinguishability.

2.1 Concurrent and Simulation-Based NMWI Arguments

We extend the notion of non-malleable witness indistinguishability to the con-
current setting by considering a concurrent man-in-the-middle adversary A that
opens m = poly(k) left and right proofs each with a common input of length
n = poly(k). Here k refers to the security parameter. A interacts in the i-th left
proof with an instance of the honest prover P on common input “xi ∈ L” and
private prover’s input wi ∈ W (xi). In the j-th right proof A is interacting with
the honest verifier V on common input x̃j of its choice.

To define concurrent non-malleable witness indistinguishability, we extend
wmimA(X, W, z) to sequences of inputs and witnesses in the following way.
The distribution wmimA(X, W, z) is the distribution of the output of the fol-
lowing procedure. First a transcript trans is sampled according to the view
ViewP

A(X, W, z) of A. Then the output of the following extension of the procedure
wit applied to trans is returned. Procedure wit returns a sequence (w̃1, · · · , w̃m)
where m is the number of right proofs and it holds that: if the j-th right proof
is non-accepting or has the same common input as one of the left proofs then
w̃j =⊥; otherwise, w̃j is the witness encoded in the j-th right proof.

As done for non-malleable witness indistinguishability, we can obtain a tag-
based definition of concurrent non-malleable witness indistinguishability and we
define wmimA(T, X, W, z) so to take into account the tags and not the inputs of
the right proofs. We stress again that A is allowed to choose the inputs and the
tags for the right proofs.
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Definition 2 (tag-based cNMWI argument). A family of commit-and-prove
argument systems Π = {〈Ptag, Vtag〉}tag for the language L is a tag-based con-
current non-malleable witness indistinguishable argument (a tag-based cNMWI)
with tags of length � if, for all probabilistic polynomial-time concurrent man-in-the-
middle adversaries A, for all m = poly(k), for all n = poly(k) and for all proba-
bilistic polynomial-time algorithms D, there exists a negligible function ν such that
for all k, for all sequences X of m elements of L of length n, for all sequences T of
tags of length �, for all sequences W and W ′ of witnesses for X, and for all auxiliary
information z it holds that

|Prob[ D(X, W, W ′, wmimA(T, X, W, z), z) = 1 ]−

Prob[ D(X, W, W ′, wmimA(T, X, W ′, z), z) = 1 ]| < ν(k).

We stress that the two above definitions can be adapted by requiring that each
statement to be proved is adaptively chosen by the adversary (that will also
provide valid witnesses to the provers) before the corresponding proof starts, as
discussed in [19]. Our constructions will enjoy this extra property.

We will also consider a relaxed notion of concurrent non-malleable witness
indistinguishability where the adversary is allowed to run only one left proof.
We denote this restricted notion of concurrent NM witness indistinguishability
as one-left many-right concurrent NM witness indistinguishability.

Simulation-based cNMWI Arguments. We also give a simulation-based definition
of non-malleable witness indistinguishability. We consider only the tag-based case.
Let A be a concurrentman-in-the-middle adversary and consider the following two
executions. The first execution is the man-in-the-middle execution where the con-
current man-in-the-middle adversary A interacts with several copies of the honest
prover in the left proofs and with several copies of the honest verifier in the right
proofs. For this execution we define distribution wmimA(T, X, W, z) as done pre-
viously. Also, we stress that A can choose the inputs for the right proofs as well
as the tags. In the second execution, called the stand-alone execution, we con-
sider a simulator S that, without receiving any witness for the inputs X of the left
instances and without interacting with a honest prover, manages to output the
transcripts of the left and the right proofs. We denote by wstaS(T, X, z) the ran-
dom variable that describes output of the following procedure. First a transcript
trans is sampled according to the distribution of the output of S(T, X, z). Then
the procedure wit is applied to trans and the output is returned.

Definition 3 (tag-based SBcNMWI argument). A family of commit-and-
prove argument system Π = {〈Ptag, Vtag〉}tag is a tag-based simulation-based
concurrent non-malleable witness indistinguishable (tag-based SBcNMWI, in
short) argument for the language L, if for all polynomials m = poly(k) and
n = poly(k), for all probabilistic polynomial-time concurrent man-in-the-middle
adversaries A, there exists a simulator S running in expected polynomial time,
such that the following distributions are computationally indistinguishable:

{wmimA(T, X, W, z)}T∈{0,1}ml,X∈Lm
n ,W∈W (X),z∈{0,1}� and
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{wstaS(T, X, z)}T∈{0,1}ml,X∈Lm
n ,z∈{0,1}� .

The notion of a simulation-based non-malleable witness indistinguishable
commit-and-prove argument of knowledge can be obtained by further requir-
ing that S is able to extract witnesses from the right proofs whenever they use
tags different from the left proofs.

The notion of one-left many-right SBcNMWI argument can be obtained by
restricting the adversary to be involved only in one left proof.

Theorem 1. Assume that there exists a family of claw-free permutations. Then
there exists a constant-round tag-based cNMWI commit-and-prove argument of
knowledge for all NP in the plain model.

The proof of this theorem is obtained by first noticing that a variation of the
commitment scheme of [3] actually allows one to obtain a one-left many-right
SBcNMWI argument of knowledge, then by noticing that any one-left many-right
SBcNMWI argument of knowledge is a one-left many-right cNMWI argument
of knowledge, and finally by noticing that any one-left many-right cNMWI ar-
gument of knowledge is a many-left many-right cNMWI argument of knowledge
(see the full version of this work [16,17] for the protocol and the security proof.)

We finally stress that the above theorem still holds in case the adversary
chooses the inputs of the honest prover, by feeding it also valid witnesses.

3 cNMZK in the BPK Model

In the BPK model [9], each verifier registers some public information (called
the public key) in a public file during a preprocessing stage. Each public key
is associated with some secret information (called the secret key) that is known
only to the owner of the public key. After the preprocessing is completed, parties
engage in the proof stage where proofs are run.

We will define and construct in the BPK model constant-round arguments for
any NP-language that are secure with respect to a BPK concurrent man-in-the-
middle adversary A which during the preprocessing stage has complete control
over the public file where keys are registered (that is, A can modify, omit and, add
new adaptively chosen keys to the public file) and, once the preprocessing stage
is completed, A acts as a concurrent man-in-the-middle adversary. We stress
that no form of key-authentication is required thus making the BPK model a
setting very close to the plain model.

The BPK model for interactive argument systems. We now review the definition
of an interactive argument system in the BPK model that were previously given
in [20] and the extension to the concurrent man-in-the-middle attack case.

Formally, a BPK pair is a pair 〈P, V 〉 where P is a probabilistic polynomial-
time algorithm and V is a pair V = (V0, V1) of probabilistic polynomial-time
algorithms. The interaction between provers and verifiers takes place in two
stages. In the first stage, called the set-up stage, verifiers run algorithm V0, on
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input a security parameter 1k, to obtain a pair (pk, sk) consisting of a public
and a secret key. Each verifier publishes his public key pk in a public file F . The
second stage, called the proof stage, consists of polynomially (in the security
parameter) many proofs. In each of them a prover interacts with a verifier;
specifically, the prover runs algorithm P on input x (of length polynomial in the
security parameter), some auxiliary information w (typically w is a witness for
x to be member of some fixed language L) and the public key pk chosen by the
verifier. The verifier instead runs algorithm V1 on input x and sk.

ABPK pair 〈P, V 〉 is complete for the language L if in any interaction on common
inputx ∈ LandpkconstructedbyV0,whereP receivesasadditionalinputw ∈ W (x),
andV1 secretkeyskassociatedwithpk,V1 acceptsexceptwithnegligiblyprobability.

The definitions of argument systems in the BPK model can be found in [9],
in particular in [20, 21] the notions of concurrent zero-knowledge and concurrent
soundness have been defined. We will focus on cNMZK arguments of knowledge in
the BPK model that imply both concurrent zero knowledge and concurrent sound-
ness. Indeed, concurrent zero-knowledge corresponds to a special case where the
man-in-the-middle does not run any right proof. Instead, concurrent soundness
corresponds to the special case where the man-in-the-middle does not run any left
proof and is implied by the fact that we require that a legal NP witness is obtained
for any accepting proof given by the adversary (i.e. proofs where V outputs 1).

We next define cNMZK argument of knowledge in the BPK model.
A BPK concurrent man-in-the-middle adversary A = (A0, A1) is a pair of

probabilistic algorithms. A0 on input an auxiliary information z receives the
public file F containing the public keys as computed by the honest verifiers and
outputs a modified public file F ′. In computing F ′, A0 is allowed to add new
adaptively chosen keys and to remove some of the keys of the honest verifiers.
A0 also outputs some secret auxiliary information Z relative to F ′. Once F ′ is
made public by A0, it cannot be changed and the control passes to A1 that runs
on input F ′ and Z. In the proof stage, A1 behaves like a concurrent man-in-
the-middle adversary with the only restriction that he can start right proofs in
which he plays as a prover with honest verifiers only with respect to entries of
F ′ that were chosen by the honest verifiers and not modified by A0.

We define the view BViewA(X, W, z) of a BPK concurrent man-in-the-middle
adversary A = (A0, A1) with respect to the vector X of left inputs with witnesses
W as consisting of the initial public file received by A0, of all messages received
by A1 in the proof stage both in the left proofs run on input X and right proofs
run on inputs adaptively chosen by A1, along with the sequence of internal states
of A0 and A1 and coin tosses, and the output of the honest verifiers.

Definition 4. (cNMZK arguments of knowledge in the BPK) A BPK pair Π =
〈P, V 〉 complete for the language L is a BPK cNMZK argument of knowledge if
for every probabilistic polynomial-time BPK concurrent man-in-the-middle ad-
versary A, there exists a probabilistic algorithm S running in expected polyno-
mial time such that, for all m = poly(k) and n = poly(k), by denoting with
S(X, z) = (S0(X, z), S1(X, z)) the output of S on input (X, z), we have
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1. {S0(X, z)}X∈Lm
n ,z∈{0,1}� and {BViewA(X, W, z)}X∈Lm

n ,W∈W (X),z∈{0,1}� are
computationally indistinguishable.

2. Writing the second component of S’s output as S1(X, z) = (w̃1, . . . , w̃m),
we have that, for all accepting right proofs j of S0(X, z) with common input
x̃j �∈ X, w̃j ∈ W (x̃j) except with negligible probability.

We stress that the adversary can always see the output of the verifier. This is
an important issue for proof systems in which the internal state of the verifier is
needed to decide whether a proof is accepted or not.

As a concurrent verifier and a concurrent prover are both special cases of
a concurrent man-in-the-middle adversary, then it is obvious that a cNMZK
argument of knowledge in the BPK model is both concurrent zero-knowledge
and concurrently sound.

3.1 The Constant-Round Protocol

The main idea is to use the FLS paradigm by having the prover prove knowledge
of either a legal witness of the input statement or of the secret key of the verifier.
The goal is to design a simulator that runs the honest verifier algorithm and plays
the role of the prover by first extracting the secret keys used by the adversary
and then by using them as witnesses running in a straight-line fashion the honest
prover algorithm. In order to make this possible, we have the verifier first prove
knowledge of his secret key so that the simulator will first extract the secret keys
of the adversary. To withstand concurrent man-in-the-middle attack, we employ
the cNMWI argument of knowledge we have developed in the previous section
along with the two-key technique by [6].

More in details, in the preprocessing stage, each verifier computes a pair of
public keys along with the corresponding secret keys. He then randomly chooses
one of the two secret keys and discards the other one. This step can be implement
by using a one-way function f in the following way: randomly pick two messages
sk0, sk1 in the domain of f ; compute public keys pk0 = f(sk0), pk1 = f(sk1);
randomly select b ← {0, 1}; set sk = (b, skb) and pk = (pk0, pk1).

The actual argument on input x consists of a sequential composition of two
instances of the tag-based constant-round cNMWI commit-and-prove argument
of knowledge we have constructed. First the verifier proves knowledge of one of
the two secret keys associated to his entry in the public file (this is obviously
done by NP-reducing this instance to the NP-complete language used by the sub-
protocol). This subprotocol is run using x◦0 as tag. Obviously the honest verifier
uses his knowledge of one of two secret keys to successfully complete this subpro-
tocol. In the second execution the prover proves knowledge of either w such that
R(x, w) = 1 or of one of the two secret keys associated with the two public keys
of the verifier. The tag used in this subprotocol is x ◦ 1. Obviously the honest
prover uses knowledge of a witness w for R(x, ·) to complete the protocol.

Let us explain how we plan to perform simulation of the protocol. Simulation
is easy for right proofs where the simulator plays the role of the honest verifier.
Indeed right proofs are executed relatively to entry of the public file that have
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been constructed by the simulator itself and thus it knows one of the secret keys
to perform the first subprotocol of a right proof. Simulating the second subpro-
tocol of right proofs and the first subprotocol of the left proofs is trivial as the
simulator can simply play the honest verifier algorithm of the subprotocol. In or-
der to simulate the second subprotocol of left proofs instead the simulator needs
to know either a witness for “x ∈ L” or one of the secret keys associated with the
corresponding entries of the public file that are used by the adversary. However,
the adversary has just proved knowledge of at least one of the two keys in the first
subprotocol of the same proof. Therefore we plan on extracting one of these keys
from the adversary and then use it to perform the second subprotocol. The use
of rewinds is dangerous in concurrent setting but not in the BPK model as shown
in [9]. Indeed the number of extraction procedures that have to be successfully run
is independent of the number of concurrent proofs, since it is bounded by the size
of the public file. Once the simulator knows at least one secret key for each of the
entries of the public file used by the adversary, the simulation is straight-line.

Let us now explain why we can also extract valid witness for all theorems
proved by the adversary. We know that in all succeeding proofs for x ∈ L given
by the adversary, there is a cNMWI argument of knowledge for proving that
x ∈ L or that the adversary knows one of the two secret keys of the verifier.
During the simulated game we can run the extractor for all these proofs in
order to obtain the valid witnesses thus satisfying definition 4. If instead we
extract as witnesses the secret keys of the verifier, we distinguish two cases. In
the former case we extract a secret key that was not used by the simulator; we
show how to reduce this case to an adversary that inverts the one-way function
used for generating the public keys. In the latter case we always extract the
same secret keys used by the simulator; this last case means that the adversary
succeeded in encoding in the cNMWI arguments of knowledge that it proved, the
same witness encoded by the simulator in the cNMWI arguments of knowledge
where the adversary played as verifier. This last case contradicts the NM witness
indistinguishability of the cNMWI arguments of knowledge.

The protocol in details. Let L be an NP-language with polynomial-time relation
R and let f be a one-way function. Associated with L and f , we consider two
auxiliary NP-languages L1 and L2 with polynomial-time relations R1 and R2
defined as follows:

– (pk0, pk1) ∈ L1 iff there exist b and sk such that pkb = f(sk);
– (x, pk0, pk1) ∈ L2 iff x ∈ L or (pk0, pk1) ∈ L1.

In the description of our BPK cNMZK argument of knowledge (P, V ) for any NP-
language L we will use a tag-based cNMWI argument of knowledge Π
= {〈Ptag, Vtag〉}tag for an NP-complete language Λ. When we say that we ex-
ecute Π for proving that τ ∈ L1 (or σ ∈ L2) we actually mean that τ (or σ)
is reduced to an instance of Λ and Ptag and Vtag are executed on input this in-
stance. We also remark that known reductions have the property that, if a witness
for τ ∈ L1 (or for σ ∈ L2) is known then a witness for the new instance can be
constructed in polynomial time. (The protocol is formally described in Fig. 1.)
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Input: security parameter 1k.

Preprocessing stage:
Entry l of the public file is constructed by V0 as follows:

pick skl
0, sk

l
1 ← {0, 1}k, compute pkl

0 = f(skl
0) and pkl

1 = f(skl
1),

randomly pick bl ← {0, 1}, set pkl = (pkl
0, pkl

1) and skl = (bl, skl
bl

).

output: (pk, sk).

Proof stage:
Sub-protocol: tag-based cNMWI argument of knowledge Π =

{〈Ptag, Vtag〉}tag for a NP-complete language Λ.
Common input: the public file F , entry pkl = (pkl

0, pkl
1) of F , n = poly(k)-bit

string x ∈ L.

P ’s private input: a witness w for x ∈ L.

V1’s private input: secret key skl = (bl, skl
bl

).

V1 −→ P : V1 and P engage in an execution of Π with tag x ◦ 0 where V1

runs Px◦0 to prove to P (running Vx◦0) knowledge of a witness (bl, skl) for
σ = (pkl

0, pkl
1) ∈ L1.

P −→ V1: P and V1 engage in an execution of Π with tag x◦1 where P runs Px◦1

to prove to V1 (running Vx◦1) knowledge of a witness for τ = (x,pkl
0, pkl

1) ∈ L2.

Fig. 1. The constant-round BPK cNMZK argument of knowledge 〈P, V 〉 for NP

Lemma 1. If f is a one-way function and Π is a cNMWI argument of knowl-
edge then the protocol of Fig. 1 is a cNMZK argument of knowledge in the BPK
model for any NP language.

For lack of space, the formal proof can be found in [17, 16].

Theorem 2. If a family of claw-free permutations exists, then in the BPK model
there exists a constant-round cNMZK argument of knowledge for all NP.

The proof follows by Theorem 1, and by the observation that claw-free permu-
tations imply the existence of one-way functions.
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