1,713 research outputs found

    Powertrain Architectures and Technologies for New Emission and Fuel Consumption Standards

    Get PDF
    New powertrain design is highly influenced by CO2 and pollutant limits defined by legislations, the demand of fuel economy in for real conditions, high performances and acceptable cost. To reach the requirements coming from both end-users and legislations, several powertrain architectures and engine technologies are possible (e.g. SI or CI engines), with many new technologies, new fuels, and different degree of electrification. The benefits and costs given by the possible architectures and technology mix must be accurately evaluated by means of objective procedures and tools in order to choose among the best alternatives. This work presents a basic design methodology and a comparison at concept level of the main powertrain architectures and technologies that are currently being developed, considering technical benefits and their cost effectiveness. The analysis is carried out on the basis of studies from the technical literature, integrating missing data with evaluations performed by means of powertrain-vehicle simplified models, considering the most important powertrain architectures. Technology pathways for passenger cars up to 2025 and beyond have been defined. After that, with support of more detailed models and experimentations, the investigation has been focused on the more promising technologies to improve internal combustion engine, such as: water injection, low temperature combustions and heat recovery systems

    Powertrain dynamics and control of a two speed dual clutch transmission for electric vehicles

    Full text link
    © 2016 Elsevier Ltd The purpose of this paper is to demonstrate the application of torque based powertrain control for multi-speed power shifting capable electric vehicles. To do so simulation and experimental studies of the shift transient behaviour of dual clutch transmission equipped electric vehicle powertrains is undertaken. To that end a series of power-on and power-off shift control strategies are then developed for both up and down gear shifts, taking note of the friction load requirements to maintain positive driving load for power-on shifting. A mathematical model of an electric vehicle powertrain is developed including a DC equivalent circuit model for the electric machine and multi-body dynamic model of the powertrain system is then developed and integrated with a hydraulic clutch control system model. Integral control of the powertrain is then performed through simulations on the develop powertrain system model for each of the four shift cases. These simulation results are then replicated on a full scale powertrain test rig. To evaluate the performance of results shift duration and vehicle jerk are used as metrics to demonstrate that the presented strategies are effective for shift control in electric vehicles. Qualitative comparison of both theoretical and experimental results demonstrates reasonable agreement between simulated and experimental outcomes

    Research and Development on Noise, Vibration, and Harshness of Road Vehicles Using Driving Simulators - A Review

    Get PDF
    Noise, vibration, and harshness (NVH) is a key aspect in the vehicle development. Reducing noise and vibration to create a comfortable environment is one of the main objectives in vehicle design. In the literature, many theoretical and experimental methods have been presented for improving the NVH performances of vehicles. However, in the great majority of situations, physical prototypes are still required as NVH is highly dependent on subjective human perception and a pure computational approach often does not suffice. In this article, driving simulators are discussed as a tool to reduce the need of physical prototypes allowing a reduction in development time while providing a deep understanding of vehicle NVH characteristics. The present article provides a review of the current development of driving simulator focused on problems, challenges, and solutions for NVH applications. Starting from the definition of the human response to noise and vibration, this article describes the different driving simulator technologies to tackle all the involved perception aspects. The different available technologies are discussed and compared as to provide design engineers with a complete picture of the current possibilities and future trends

    Eliminating the torque hole: Using a mild hybrid EV architecture to deliver better driveability

    Full text link
    © 2016 IEEE. Hybrid vehicle engineering has traditionally and dominantly focused on fuel economy benefits and emissions reductions. Although the transient power delivery benefits of hybrid powertrains are well-understood, these are not a primary focus of the majority of research and development efforts, with some exceptions. Our approach to this problem is to deliver a low-cost, low-tech mild-hybrid powertrain, with unique power delivery features designed to appeal to price-sensitive, but aspirational consumers. The powertrain is a simple post-transmission parallel hybrid configuration. It utilizes a low-powered four-cylinder engine coupled to a four-speed manual transmission through a robotically-actuated clutch. A low-voltage BLDC motor is directly connected to the transmission output shaft, before the final drive. Our research focuses on bringing the benefits of HEV architecture to the world's developing cities, where, it can be confidently argued, local emissions reductions are needed the most. Crucial to the success of this research is the understanding that compared to an equivalent ICE-powered vehicle, an HEV competes at a price disadvantage, no matter how cost-effective the solution is. This disadvantage is amplified in regions of low-middle income, where price sensitivity is greatest. It must, therefore, present better value than an equivalent conventional vehicle if it is to be commercially successful in these particularly price-sensitive markets. We discuss the extent to which control can be used to deliver transient power delivery gains in such a setup, and offer an example powertrain for simulation. To validate the concept, simulation of this research is performed in MATLAB and Simulink. The prototype is based on a generic engine and a BLDC motor. The results mainly focus on the electric drive and comparison of the transient response of drivetrains

    Comparative system dynamic modeling of a conventional and hybrid electric powertrain

    Full text link
    © 2017 Taylor & Francis Group, London. Hybrid Electric Vehicles (HEVs) provide many known benefits over conventional vehicles, including reduced emissions, increased fuel economy, and performance. The high cost of HEVs has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. As part of our ongoing project to develop a cost-effective and viable mild HEV for these markets, dynamic simulations are required to ensure that the proposed designs are to achieve their desired targets. In this paper, mathematical models of the powertrain are used to analyze and compare the dynamics of both a conventional power train and one with the addition of components required for the Mild Hybrid system. Using Matlab and Simulink, simulations of both powertrains under particular driving conditions are performed to observe the advantages of the MHEV over conventional drivetrains. These benefits include torque-hole filling between gear changes, increased fuel efficiency and performance

    Grinding and fine finishing of future automotive powertrain components

    Get PDF
    The automotive industry is undergoing a major transformation driven by regulations and a fast-paced electrification. A critical analysis of technological trends and associated requirements for major automotive powertrain components is carried out in close collaboration with industry – covering the perspectives of OEMs, suppliers, and machine builders. The main focus is to review the state of the art with regard to grinding, dressing, texturing and fine-finishing technologies. A survey of research papers and patents is accompanied by case studies that provide further insights into the production value chain. Finally, key industrial and research challenges are summarized

    The architecture of pneumatic regenerative systems for the diesel engine

    Get PDF
    For vehicles whose duty cycle is dominated by start-stop operation, fuel consumption may be significantly improved by better management of the start-stop process. Pneumatic hybrid technology represents one technology pathway to realise this goal. Vehicle kinetic energy is converted to pneumatic energy by compressing air into air tank(s) during the braking. The recovered air is reused to supply an air starter, or supply energy to the air path in order to reduce turbo-lag. This research aims to explore the concept and control of a novel pneumatic hybrid powertrain for a city bus application to identify the potential for improvements in fuel economy and drivability. In order to support the investigation of energy management, system architecture and control methodologies, two kinds of simulation models are created. Backward-facing simulation models have been built using Simulink. Forward-facing models have been developed in the GT-POWER and Simulink co-simulation. After comparison, the fully controllable hybrid braking system is chosen to realize the regenerative braking function. A number of architectures for managing a rapid energy transfer into the powertrain to reduce turbo-lag have been investigated. A city bus energy control strategy has been proposed to realize the Stop-Start Function, Boost Function, and Regenerative Braking Function as well as the normal operations. An optimisation study is conducted to identify the relationships between operating parameters and respectively fuel consumption, performance and energy usage. In conclusion, pneumatic hybrid technology can improve the city bus fuel economy by at least 6% in a typical bus driving cycle, and reduce the engine brake torque response and vehicle acceleration. Based on the findings, it can be learned that the pneumatic hybrid technology offers a clear and low-cost alternative to the electric hybrid technology in improving fuel economy and vehicle drivability

    EU Renewable Energy Targets in 2020 - Analysis of Scenarios for Transport - JEC Biofuels Programme

    Get PDF
    In the three-year JEC Biofuels Programme, the research collaboration between the Joint Research Centre of the European Commission, EUCAR and CONCAWE has investigated the potential role of biofuels and other renewable and alternative energy sources in achieving the mandatory 10% renewable energy target in the transport sector by 2020 with an associated calculation of the impact of renewable fuels on the Fuel Quality directive target. The focus of the analysis was on road transport although all other transport modes have been considered. A dedicated analytical tool, the so-called Fleet and Fuels (F&F) model, has been developed and used. The modelled fleet development leads to a transport fuel demand and constitutes the basis on which penetration and distribution of alternative motor fuels - and availability thereof - are analysed. The impacts of key parameters on the achievement of the RED 10% target are analysed in sensitivity cases.JRC.DDG.F.9-Sustainable Transport (Ispra

    Overview of Sensitivity Analysis Methods Capabilities for Traction AC Machines in Electrified Vehicles

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.A robust design in electrified powertrains substantially helps to enhance the vehicle's overall efficiency. Robustness analyses come with complexity and computational costs at the vehicle level. The use of sensitivity analysis (SA) methods in the design phase has gained popularity in recent years to improve the performance of road vehicles while optimizing the resources, reducing the costs, and shortening the development time. Designers have started to utilize the SA methods to explore: i) how the component and vehicle level design options affect the main outputs i.e. energy efficiency and energy consumption; ii) observing sub-dependent parameters, which might be influenced by the variation of the targeted controllable (i.e. magnet thickness) and uncontrollable (i.e. magnet temperature) variables, in nonlinear dynamic systems; and iii) evaluating the interactions, of both dependent, and sub-dependent controllable/uncontrollable variables, under transient conditions. Hence the aim of this study is to succinctly review recent utilization of SA methods in the design of AC electric machines (EM)s used in vehicle powertrains, to evaluate and discuss the findings presented in recent research papers while summarizing the current state of knowledge. By systematically reviewing the literature on applied SAs in electrified powertrains, we offer a bibliometric analysis of the trends of application-oriented SA studies in the last and next decades. Finally, a numerical-based case study on a third-generation TOYOTA Prius EM will be given, to verify the SA-related findings of this article, alongside future works recommendations.Peer reviewe

    INCORPORATING DRIVER’S BEHAVIOR INTO PREDICTIVE POWERTRAIN ENERGY MANAGEMENT FOR A POWER-SPLIT HYBRID ELECTRIC VEHICLE

    Get PDF
    The goal of this series of research is to advance hybrid electric vehicle (HEV) energy management by incorporating driver’s driving behavior and driving cycle information. To reduce HEV fuel consumption, the objectives of this research are divided into the following three parts. The first part of the research investigates the impact of driver’s behavior on the overall fuel efficiency of a hybrid electric vehicle and the energy efficiency of individual powertrain components under various driving cycles. Between the sticker number fuel economy and actual fuel economy, it is well known that a noticeable difference occur when a driver drives aggressively. To simulate aggressive driving, the input driving cycles are scaled up from the baseline driving cycles to higher levels of acceleration/deceleration. The simulation study is conducted using Autonomie®, a powertrain simulation and analysis software. The performance of the major powertrain components is analyzed when the HEV is operated at different level of aggressiveness. In the second part of the study, the vehicle driving cycles affect the performance of a hybrid vehicle control strategy and the corresponding overall performance of the vehicle. By identifying the driving cycles of a vehicle, the HEV supervisor controller system will be dynamically adapt the control strategy to the changes of vehicle driving patterns. With pattern recognition method, a driving cycle is represented by feature vectors that are formed by a set of parameters to which the driving cycle is sensitive. To establish reference driving cycle database, the representative feature vectors of four federal driving cycles are generated using feature extraction method. The performance of the presented adaptive control strategy based on driving pattern recognition is evaluated using Autonomie. In the last part of the study, a predictive control method is developed and investigated for hybrid electric vehicle energy management in effort to improve HEV fuel economy. Model Predictive Control (MPC), a predictive control method, is applied to improve the fuel economy of a power-split HEV. The study compares the performance of MPC method and conventional rule-base control method. A parametric study is conducted to understand the influence of 3 weighting factors in MPC formulation on the performance of the vehicles
    • …
    corecore