19 research outputs found

    m-sophistication

    Get PDF
    The m-sophistication of a finite binary string x is introduced as a generalization of some parameter in the proof that complexity of complexity is rare. A probabilistic near sufficient statistic of x is given which length is upper bounded by the m-sophistication of x within small additive terms. This shows that m-sophistication is lower bounded by coarse sophistication and upper bounded by sophistication within small additive terms. It is also shown that m-sophistication and coarse sophistication can not be approximated by an upper or lower semicomputable function, not even within very large error.Comment: 13 pages, draf

    Effective complexity of stationary process realizations

    Full text link
    The concept of effective complexity of an object as the minimal description length of its regularities has been initiated by Gell-Mann and Lloyd. The regularities are modeled by means of ensembles, that is probability distributions on finite binary strings. In our previous paper we propose a definition of effective complexity in precise terms of algorithmic information theory. Here we investigate the effective complexity of binary strings generated by stationary, in general not computable, processes. We show that under not too strong conditions long typical process realizations are effectively simple. Our results become most transparent in the context of coarse effective complexity which is a modification of the original notion of effective complexity that uses less parameters in its definition. A similar modification of the related concept of sophistication has been suggested by Antunes and Fortnow.Comment: 14 pages, no figure

    Algorithmic Statistics

    Full text link
    While Kolmogorov complexity is the accepted absolute measure of information content of an individual finite object, a similarly absolute notion is needed for the relation between an individual data sample and an individual model summarizing the information in the data, for example, a finite set (or probability distribution) where the data sample typically came from. The statistical theory based on such relations between individual objects can be called algorithmic statistics, in contrast to classical statistical theory that deals with relations between probabilistic ensembles. We develop the algorithmic theory of statistic, sufficient statistic, and minimal sufficient statistic. This theory is based on two-part codes consisting of the code for the statistic (the model summarizing the regularity, the meaningful information, in the data) and the model-to-data code. In contrast to the situation in probabilistic statistical theory, the algorithmic relation of (minimal) sufficiency is an absolute relation between the individual model and the individual data sample. We distinguish implicit and explicit descriptions of the models. We give characterizations of algorithmic (Kolmogorov) minimal sufficient statistic for all data samples for both description modes--in the explicit mode under some constraints. We also strengthen and elaborate earlier results on the ``Kolmogorov structure function'' and ``absolutely non-stochastic objects''--those rare objects for which the simplest models that summarize their relevant information (minimal sufficient statistics) are at least as complex as the objects themselves. We demonstrate a close relation between the probabilistic notions and the algorithmic ones.Comment: LaTeX, 22 pages, 1 figure, with correction to the published journal versio

    Quantifying the Rise and Fall of Complexity in Closed Systems: The Coffee Automaton

    Get PDF
    In contrast to entropy, which increases monotonically, the "complexity" or "interestingness" of closed systems seems intuitively to increase at first and then decrease as equilibrium is approached. For example, our universe lacked complex structures at the Big Bang and will also lack them after black holes evaporate and particles are dispersed. This paper makes an initial attempt to quantify this pattern. As a model system, we use a simple, two-dimensional cellular automaton that simulates the mixing of two liquids ("coffee" and "cream"). A plausible complexity measure is then the Kolmogorov complexity of a coarse-grained approximation of the automaton's state, which we dub the "apparent complexity." We study this complexity measure, and show analytically that it never becomes large when the liquid particles are non-interacting. By contrast, when the particles do interact, we give numerical evidence that the complexity reaches a maximum comparable to the "coffee cup's" horizontal dimension. We raise the problem of proving this behavior analytically

    Kolmogorov Last Discovery? (Kolmogorov and Algorithmic Statictics)

    Full text link
    The last theme of Kolmogorov's mathematics research was algorithmic theory of information, now often called Kolmogorov complexity theory. There are only two main publications of Kolmogorov (1965 and 1968-1969) on this topic. So Kolmogorov's ideas that did not appear as proven (and published) theorems can be reconstructed only partially based on work of his students and collaborators, short abstracts of his talks and the recollections of people who were present at these talks. In this survey we try to reconstruct the development of Kolmogorov's ideas related to algorithmic statistics (resource-bounded complexity, structure function and stochastic objects).Comment: [version 2: typos and minor errors corrected

    The Value of Existence Beyond Life: Towards a More Versatile Environmental Ethics

    Get PDF
    This paper argues that those that subscribe to “Biocentrism”, specifically the Biocentrism argued for by Paul Taylor, ought to adopt “Ontocentrism” instead. Biocentrism, the theory that all and only living things are morally considerable, fails to account for important moral differences between living things. It cannot justify, without ad-hoc addition, the intuition that a man is worth more than a pig, and a pig is worth more than a mouse. It similarly fails to account for the status of larger systems such as ecosystems, and lastly it fails to account for the status of non-biological entities and artificial life. Ontocentrism, the theory that all existing things, broadly construed, are morally considerable, ought to be adopted because it can account for these things without being ad-hoc and arbitrary

    Algorithmic statistics: forty years later

    Full text link
    Algorithmic statistics has two different (and almost orthogonal) motivations. From the philosophical point of view, it tries to formalize how the statistics works and why some statistical models are better than others. After this notion of a "good model" is introduced, a natural question arises: it is possible that for some piece of data there is no good model? If yes, how often these bad ("non-stochastic") data appear "in real life"? Another, more technical motivation comes from algorithmic information theory. In this theory a notion of complexity of a finite object (=amount of information in this object) is introduced; it assigns to every object some number, called its algorithmic complexity (or Kolmogorov complexity). Algorithmic statistic provides a more fine-grained classification: for each finite object some curve is defined that characterizes its behavior. It turns out that several different definitions give (approximately) the same curve. In this survey we try to provide an exposition of the main results in the field (including full proofs for the most important ones), as well as some historical comments. We assume that the reader is familiar with the main notions of algorithmic information (Kolmogorov complexity) theory.Comment: Missing proofs adde
    corecore