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Abstract. The m-sophistication of a finite binary string x is introduced
as a generalization of some parameter in the proof that complexity of
complexity is rare. A probabilistic near sufficient statistic of x is given
whose length is upper bounded by the m-sophistication of x within small
additive terms. This shows that m-sophistication is lower bounded by
coarse sophistication and upper bounded by sophistication within small
additive terms. It is also shown that m-sophistication and coarse sophis-
tication can not be approximated by an upper or lower semicomputable
function, not even within very large error. Furthermore, connections with
important problems in the field of computability and statistics are dis-
cussed.
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Introduction

The Kolmogorov complexity of a finite binary sequence is a measure for the
amount of structure in the sequence. Computational and logical depth [1, 2, 4,
13, 22] expresses how much computation time is needed to optimally encode the
structure in the sequence. Sophistication [3, 24] informally corresponds to the
minimal description length of a function that is able to encode such structure.
Here m-sophistication is introduced as a variant of logical depth [13]. It is shown
that it is lower-bounded by sophistication and upper bounded by coarse sophis-
tication within small bounds. This justifies the name m-sophistication. It is also
discussed that m-sophistication is related to three important questions in the
field of statistics and computability.

– If the Kolmogorov complexity K(x) is low for some binary finite sequence
x, then x can be interpreted as “deterministically” generated, and “non-
deterministically” generated otherwise. The structure function [23, 26, 31]
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for some x, maps each natural number k to the logarithm of the minimal
cardinality of a set containing x that has descriptional complexity below k.
If for some x, the structure function decreases for low k to the value K(x)−
k, these sequences are called “positively random”. Positive randomness is
satisfied with high probability if x is “stochastically” generated. Such x allow
a useful definition of frequentistic probabilities satisfying the Kolmogorov
probability axioms. The requirement of positive randomness leads to a set
variant of the definition of sophistication. The question rises whether for
any x that is negative random but not positive random, x contains much
information on the Halting problem.

– A sumtest for a computable semimeasure is an abstraction of a statistical
significance test for a simple hypothesis [26]. It can be argued that for many
composite hypotheses, a theoretical ideal statistical test is given by a sumtest
for a lower semicomputable semimeasure [7, 9]. The question rises whether in
some computability class, there exists an unbounded sumtest for some lower
semicomputable semimeasure. It turns out that for the hypotheses of inde-
pendence on the finite binary strings x, there are no unbounded computable
and lower semicomputable sumtests, but there are upper semicomputable
sumtests of maximal magnitude l(x) [9, 12]. There are also no computable
or lower semicomputable sumtests for a lower semicomputable universal
semimeasure, but there are upper semicomputable sumtests of magnitude
log l(x) − O(log log l(x)) [5, 9]. The proof relies on the observation that the
introduced m-sophistication for a universal lower semicomputable semimea-
sure m, is within logarithmic terms a sumtest for m.

– The coding theorem justifies the approximation of the logarithm of a lower
semicomputable universal semimeasure by data-compression heuristics [16,
17, 29]. The hypothesis of a timeseries x being influence-free of another time-
series y corresponds to a universal lower semicomputable online semimeasure
[7, 9, 15]. Also the approximation of such a semimeasure is related to online
Kolmogorov complexity [7, 15]. The error in such a coding result is given by
logarithmic terms in the m-sophistication [6, 9].

Overview and results. The paper uses definitions and observations from [14]
and basically runs through the proof of the theorem that high complexity of com-
plexity is rare as in [19], see also [18, 20, 26]. m-sophistication is a generalization
of a parameter used in this proof. It allows some simple observations related to
the questions above. Let k be the m-sophistication of a finite sequence x. It is
shown that the amount K(x) of information in x can be decomposed as k bits of
Halting information and K(x)− k bits of additional information, within 2 log k
error terms. The first k bits of the Halting probability compute an approximate
sufficient statistic for x. It is shown that within O(log k) terms m-sophistication
is larger than coarse sophistication, and smaller than sophistication. Finally it is
shown that m-sophistication and coarse sophistication define within logarithmic
terms a sumtest relative to the universal semimeasure, and that they have no
lower and upper semicomputable approximation, not even within large error.
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Definitions and notation. For an introduction to Kolmogorov complexity and
computability we refer to [20, 26, 30], and for extensive specialized background
to [18, 27, 28]. Let ω be the set of natural numbers. The binary strings 2<ω of
finite length can be associated with ω: ε↔ 0; [0]↔ 1; [1]↔ 2; . . . . For x ∈ 2<ω,
let l(x) denote the length of x. For x ∈ ω, let l(x) denote the length of x in
its binary expansion. Let 2n and 2<n be the sets of x ∈ 2<ω with l(x) = n,
and l(x) < n. Let ω<ω be the set of finite sequences in ω. The real numbers in
[0, 1] are associated with Cantor space1. For α ∈ 2ω, αk denotes α1α2...αk. For
x ∈ 2<ω, xk denotes x1x2...xk. For α ∈ [0, 1], αk denotes 0.α0 . . . αk. Notice that
the finite binary sequences can be associated with the dyadic numbers, it is: the
rational numbers p/q such that q = 2k for some k. In this way one can observe
for any α ∈ 2ω or α ∈ [0, 1] that

αk 6 α 6 α+ 2−k.

A semimeasure P is a positive real function that satisfies
∑
{P (x) : x ∈ ω} 6

1. A measure is semimeasure that satisfies
∑
{P (x) : x ∈ ω} = 1. A semimeasure

P (multiplicatively) dominates a semimeasure Q, notation: P >∗ Q, if a constant
c exists such that for all x: cP (x) > Q(x). The notation P 6∗ Q, is used
for Q >∗ P , and P =∗ Q, means that both P 6∗ Q and Q 6∗ P . A set
S of semimeasures has a universal element m if m ∈ S and m dominates all
semimeasures in S. Let f, g be functions depending on parameters t, x, and
n. f dominates g, iff there is a constant c which satisfies for all t, x and n:
f(t, x, n) + c > g(t, x, n), notation: f >+ g. c may depend on any parameter
except t, x, n. f 6+ g iff g >+ f . f =+ g iff both f >+ g and f 6+ g.

If for some function f , and for some argument x the function value f(x) is
defined, then it is written: f(x) ↓, otherwise it is written f(x) ↑. A prefix-free
Turing machine is a Turing machine that defines a function

Φ : ω × 2<ω × ω<ω → ω<ω : (t, p, x)→ Φt(p|x),

such that for all p, w ∈ 2<ω such that w 6= ε, and for all x ∈ ω<ω, iff Φ(p|x) ↓
then Φ(pw|x) ↑. For t ∈ ω, p ∈ 2<ω, and x ∈ ω<ω: Φt(p|x) ↓= y means that Φ
on input p, x outputs y, and halts in less than t computation steps. We repeat
that in this definition, as well as in the whole paper, t is not a function, but
t ∈ ω. A prefix-free Turing machine is optimal universal, iff for any prefix-free
Turing machine Ψ , there exists a w ∈ 2<ω such that for all p, x: Ψ(p|x) ↓ implies
Φ(wp|x). From now on, a fixed optimal universal prefix-free Turing machine Φ
is assumed.

A real function f : ω → [0, 1] is computable if there is a p ∈ 2<ω such that
for all k, x: Φ(p|x, k) ↓= f(x)k. An enumeration of a real function f(x) is a
computable real function g(x, t) such that for all t: g(u, t) 6 g(u, t+ 1) and such
that limt,k g(u, t) = f(u). A lower semicomputable function f is a function f
that has an enumeration. A function f is upper semicomputable if −f is lower
semicomputable. With abuse of notation, an enumeration of f is denoted as ft.
1 This association is not bijective since the real 0.a0111... equals the real 0.a1000...

for any a ∈ 2<ω, however, this omission does not cause problems.
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For x, y ∈ ω<ω, let the prefix-free Kolmogorov complexity be

Kt(x) = min{l(p) : Φt(p|y) ↓= x}
K(x) = lim

t→∞
Kt(x).

For all n ∈ ω ⊂ ω<ω: K(n) 6+ log n + 2 log log n and for all x ∈ 2n ⊂ ω<ω:
K(x) 6+ n+ 2 log n. Let x∗ represent the lexicographic first program that pro-
duces x. Prefix-free Kolmogorov complexity satisfies the additivity property

K(x, y) =+ K(y) +K(x|y∗) =+ K(y) +K(x|y,K(y)).

A Halting program can output itself, and thus also its own length, therefore
K(x) =+ K(x,K(x)). The coding theorem shows that

Qp,t(x) =
∑
{2−l(p) : Φt(p) ↓= x} (1)

QK,t(x) = 2−Kt(x) (2)

define enumerations of lower semicomputable universal semimeasures. This im-
plies that for any universal lower semicomputable semimeasure m, one has
− logm(x) =+ K(x).

1 Halting probability and a variant of a Busy Beaver
function

This section introduces some technical results that will be used later. Further-
more, it also raises some questions, related to the dependency of m-sophistication
on the choice of m.

In computability theory, the number Ω is typically defined as the prior prob-
ability that some universal prefix-free Turing machine halts [14, 19]. Here gener-
alized version is studied: the probability that a universal lower semicomputable
semimeasure is defined.

Definition 1. Let mt be some enumeration of some universal lower semicom-
putable semimeasure over ω.

Ωm,t =
∑

l(x)<t

mt(x)

Ωm = lim
t→∞

Ωt

The original definition in [14, 19] is obtained by choosing mt = Qp,t, as in Equa-
tion (1). ΩQp

satisfies the following well known theorem.

Theorem 1. [14, 19] For all n: K(Ωn
Qp

) >+ n. There is a constant c such that
for all n, the Halting of any program p ∈ 2<n can be decided by Ωn+c.
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These properties of ΩQp remain for general Ωm by the same argument (see
further). For a, b elements or tuples of elements in 2<ω, ω, and/or ω<ω, that
possibly depend on parameters t, x and n, the notation: a −→ b or with explicit
dependencies, a(t, x, n) −→ b(t, x, n), means that K(b(t, x, n)|a(t, x, n)) 6+ 0.
For α, β ∈ 2ω, the relation αn −→ βn defines a partial order on 2ω, which is
equivalent with the ‘domination’ relation in [25]. ΩQp is stable with respect to
the choice of universal machine Φ. Let Φ and Φ′ be two optimal universal prefix-
free Turing machines and let Qp, and Q′p be defined as in equation (1), according
to Φ and Φ′. It is easily observed that

Ωn
Qp
←→ Ωn

Q′p
.

An other example of such a relation is

Ωn
Qp
−→ Ωn

QK
,

where QK is defined in Equation (2). It is an interesting question whether the
opposite direction also holds.

Following the proof that high K(K(x)|x) is rare in [20], the times tn are
defined. Fix some universal lower semicomputable semimeasure m, and let for
each n:

tn = min{t : Ωn
m 6 Ωm,t}.

Lemma 1.
Ωn

m ←→ n, tn

Proof. By definition. ut

The prefix-free Busy Beaver function is defined by:

PBB(n) = max{0} ∪ {Φ(p) : l(p) 6 n ∧ Φ(p) ↓∈ ω}.

Lemma 2 shows that tn is a very fast growing function that oscillates between
PBB(n−O(1)) and PBB(n+ 2 log n+O(1)).

Lemma 2. For all n

n 6+ K(tn) 6+ n+ 2 log n.

There exists a constant c such that:

PBB(n− c) 6 tn < PBB(n+ 2 log n+ c).

A proof is given in [11, 9]. The dependence of tn on the choice of m is given by
the subsequent corollary.
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Corollary 1. For all universal semimeasures m, and m′, there is some constant
c such that

tn < t′n+2 log n+c,

with tn and t′n defined by m and m′.

Proof.
tn 6 PBB(n+ 2 log n+ c) < t′n+2 log n+2c

ut

A real number α ∈ 2ω is random if for any n: K(αn) >+ n. It follows by
Lemma 2 that

Corollary 2. Ωm is random.

Proof. Since n 6+ K(tn) 6+ K(Ωn
m). ut

By Corollary 1 it follows that

Lemma 3. for m,m′ universal lower semicomputable semimeasures

Ωn
m −→ Ωn−2 log n

m′ .

Proof.
Ωn

m −→ n, tn −→ n, t′n−2 log n −→ Ωn−2 log n
m′

ut

The question rises whether the set of all Ωm for some universal lower semicom-
putable semimeasures has a maximal element relative to the −→ order. Notice
that it is shown in [25] that the set of all Ωm with m universal lower semicom-
putable semimeasures, corresponds to all computable enumerable random real
numbers. Such an optimal Ωm would give rise to an m-sophistication that is
minimal within a constant.

2 m-sophistication and complexity of complexity

The logical depth of an x ∈ 2<ω [13], is defined as the minimal computation time
needed by a program of length close to K(x) that produces x [13]. Intuitively, this
is the computation time needed to encode all structure in x. m-sophistication is
now defined by taking the inverse function of t : n→ tn of the logical depth.

Definition 2. For some c ∈ ω, the m-sophistication of x ∈ 2<ω is given by:

kc(x) = min{k : Ktk
(x) 6 K(x) + c}.

For fixed c, the function kc(x) is not computable, nor lower semicomputable nor
upper semicomputable by Proposition 1, however, from the definition it follows
that it is limit-computable. From Corollary 1 it is observed that kc is relatively
stable with respect to changes of universal lower semicomputable semimeasure
m.
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Corollary 3. Let m,m′ be two universal lower semicomputable semimeasures
and let k and k′ be the corresponding m-sophistication and m′-sophistication,
for any c

kc 6+ k′c + 2 log k′c.

As for sophistication (see further), also m-sophistication is unstable with respect
to the parameter c.

Lemma 4. For all c, there is a c′ such that for infinitely many x:

kc(x)− kc+c′(x) >+ l(x)− 4 log l(x).

Informally, one chooses an x that is only a little compressible, by some constant
c+c′, for c′ large enough, thus, kc+c′(x) = 0, and such that this little compression
is only possible within a time tn−O(log n). Therefore, kc(x) is much larger. A
formal detailed proof needs some care, and is given in [11, 9]. Lemma’s 5 and
6 lead to Corollaries 4 and 5. Let k′(x) be the QK-sophistication k0(x). High
QK-sophistication is rare.

Lemma 5. For any i and Si = {x : k′(x) > i}:

m(Si) 6 2−i+1.

Proof.
1
2
m(Si) 6 m(Si)−mti

(Si) 6 Ω −Ωti
6 2−i.

ut

Lemma 6. For all x

K(K(x)|x) 6+ k′(x) + 2 log k′(x).

Proof. Notice that tk′(x), x −→ K(x), thus

K(K(x)|x) 6+ K(tk′(x)) 6+ K(Ωk′(x)) 6+ k′(x) + 2 log k′(x),

ut

Corollary 4. [19, 20] There exists a constant c > 0 such that

m({K(K(x)|x) > k}) 6 c2−k−2 log k.

Lemma 7. For any c large enough: k′ > kc.

Proof. By some time-bounded version of the coding theorem [9]:

Ktk′(x)+c
(x) 6+ − logmtk′(x)

(x) =+ − logm(x) =+ K(x).

ut
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A sumtest d for a semimeasure P is a function d : 2<ω → Z such that∑
x∈2<ω

P (x)2d(x) 6 1.

Corollary 5. For k = k′ and for k = kc with c large enough, k− 2 log k defines
a sumtest for m.

Proof.∑
x∈2<ω

m(x)2k′(x)−2 log k′(x)−2 6
∑
k∈ω

m(Sk)2k−2 log k−2 6
∑
k∈ω

2−2 log k−1 6 1

ut

kc and k′ are not computable, and not even a logarithmic lower bound can be
computed.

Proposition 1. For k = k′ and for k = kc with c large enough, k can not be
approximated by a lower or upper semicomputable function within k − 2 log k +
O(1) error.

A proof is given in [11, 9].

3 Sophistication and coarse sophistication

Typically a computable function is a partial computable function that is total
in its domain. For prefix-free functions this definition can not longer be applied,
since the domain of such a function can only be a strict subset of 2<ω. Therefore
a prefix-free function f on 2<ω is defined to be computable iff the set

Uf = {α ∈ 2ω : ∀n ∈ ω
[
f(αn) ↑

]
}

has measure zero.

Definition 3. Let f be a computable function. A function f -sufficient statistic
for x ∈ 2<ω is a computable prefix-free function g such that there exists a d ∈
g−1(x) with

K(g) + l(d) 6 K(x) + f(l(x)).

The sophistication [24] of x ∈ 2<ω is given by:

ksoph
c (x) = min{K(f) : f is a c-sufficient statistic of x}.

Notice that there is a slight deviation from [24, 32] since it is also required that
f is prefix-free. This is necessary to interpret sophistication as the length of a
minimal sufficient statistic [21], which is defined there using prefix-free functions.
Also remark that now Lemma 8 is true. Let pbb(x) be the inverse of the Busy
Beaver function, it is pbb(x) = min{k : x 6 PBB(k)}. It is a very slow growing
function, dominated by any unbounded non-decreasing function [12].
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Proposition 2. There exists a c′ such that for all c, x:

kc+c′(x) 6+ ksoph
c (x) + pbb(x).

A proof is given in [11, 9].

Definition 4. A probabilistic f -sufficient statistic of x ∈ 2<ω, is a computable
measure2 P such that

K(P )− logP (x) 6 K(x) + f(l(x)).

Since prefix-free functions are used here, probabilistic and function sufficient
statistics are equivalent.

Lemma 8. There is a constant c such that every probabilistic f -sufficient statis-
tic P defines a function (f + c)-sufficient statistic g with abs(K(P )−K(g)) 6 c,
and every function f -sufficient statistic g defines a probabilistic (f+c)-sufficient
statistic P with abs(K(P )−K(g)) 6 c.

Let
Pk(x) = N2−k(mtk

(x)−mtk−1(x)),

Where N is a normalization constant such that Pk defines a computable prob-
ability distribution. Notice that 2 6 N < 4. Also remark that this can be
considered as the probabilistic equivalent of the “explicit minimal near sufficient
set statistic” described in [21]. By the following Lemma, it follows that strings
with high m-sophistication, contain a lot of information on the Halting problem.

Lemma 9. For all x

K(x|Ωk′(x)) 6+ K(x)− k′(x).

A proof is given in [11, 9]. To relate Pk to sophistication, it is shown that it
defines some f -sufficient statistic.

Proposition 3. There exists a c such that Pk′(x) is a probabilistic (2 log k′(x)+
c)-sufficient statistic for x. There exists a c such that for any c′, there is a
k 6+ kc′(x) such that Pk is a (3 log kc(x) + c+ c′)-sufficient statistic for x.

A proof is given in [11, 9].
The online coding theorem [15] relates the logarithm of a universal lower semi-

computable online semimeasures (causal semimeasure) to online Kolmogorov
complexity, which is a variant of conditional Kolmogorov complexity K(x|y) for
x, y ∈ 2<ω, where yi is only known to the Turing machine Φ after it has com-
puted xi−1. The online coding theorem has an error term, which is improved
for the length-conditional case in [6, 10]. In the proof of the improved online
2 Remind that a measure is a semimeasure with

P
x∈ω P (x) = 1
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coding theorem, an online computable semimeasure is associated with Pk′(x).
It is shown that the value of the logarithm of the universal lower semicom-
putable online semimeasure and the associated semimeasure for x equals within
a O(log k′(x)) term. Since the associated semimeasure is computable, a variant
of Shannon-Fano code can be applied.

In [8] it is shown that the result of Proposition can not be further improved
to eliminate the logarithmic terms in order to consider Pk as a probabilistic c-
sufficient statistic. It is shown that any minimal sufficient statistic of some finite
binary sequence can contain a substantial amount of non-Halting information.
From the proof it can be conjectured that that in contrast with m-sophistication,
sophistication does not define a sumtest. However, it is shown in [8] that Pk

defines a minimal typical model as defined in [33].
Sophistication is unstable with respect to the parameter c, therefore in [3]

coarse sophistication is defined. The prefix-free variant is given by

kcsoph(x) = min
c
{kc(x) + c}.

As a corollary of Proposition 3 it follows that:

Corollary 6. For k = k′(x) and k = kc(x) for c large enough

kcsoph(x) 6+ k(x) + 2 log k(x).

Together with Proposition 3, this shows that within small terms,m-sophistication
is lower bound by sophistication and upper bounded by coarse sophistication.
This also justifies the choice of the term m-sophistication.

Proposition 4. kcsoph(x) − 4 log kcsoph(x) defines a sumtest for m. kcsoph can
not be approximated by a lower or upper semicomputable function within k −
2 log k +O(1) error.

Proof. This follows from Corollary 6 and the same proof as 1. ut
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