44 research outputs found

    Hypercontractive Inequality for Pseudo-Boolean Functions of Bounded Fourier Width

    Get PDF
    A function f: {1,1}nRf:\ \{-1,1\}^n\rightarrow \mathbb{R} is called pseudo-Boolean. It is well-known that each pseudo-Boolean function ff can be written as f(x)=IFf^(I)χI(x),f(x)=\sum_{I\in {\cal F}}\hat{f}(I)\chi_I(x), where ${\cal F}\subseteq \{I:\ I\subseteq [n]\},, [n]=\{1,2,...,n\},and, and \chi_I(x)=\prod_{i\in I}x_iand and \hat{f}(I)arenonzeroreals.Thedegreeof are non-zero reals. The degree of fis is \max \{|I|:\ I\in {\cal F}\}andthewidthof and the width of fistheminimuminteger is the minimum integer \rhosuchthatevery such that every i\in [n]appearsinatmost appears in at most \rhosetsin sets in \cal F.For. For i\in [n],let, let \mathbf{x}_ibearandomvariabletakingvalues1or1uniformlyandindependentlyfromallothervariables be a random variable taking values 1 or -1 uniformly and independently from all other variables \mathbf{x}_j,, j\neq i.Let Let \mathbf{x}=(\mathbf{x}_1,...,\mathbf{x}_n).The. The pnormof-norm of fis is ||f||_p=(\mathbb E[|f(\mathbf{x})|^p])^{1/p}forany for any p\ge 1.Itiswellknownthat. It is well-known that ||f||_q\ge ||f||_pwhenever whenever q> p\ge 1.However,thehighernormcanbeboundedbythelowernormtimesacoefficientnotdirectlydependingon. However, the higher norm can be bounded by the lower norm times a coefficient not directly depending on f:if: if fisofdegree is of degree dand and q> p>1then then ||f||_q\le (\frac{q-1}{p-1})^{d/2}||f||_p.ThisinequalityiscalledtheHypercontractiveInequality.Weshowthatonecanreplace This inequality is called the Hypercontractive Inequality. We show that one can replace dby by \rhointheHypercontractiveInequalityforeach in the Hypercontractive Inequality for each q> p\ge 2asfollows: as follows: ||f||_q\le ((2r)!\rho^{r-1})^{1/(2r)}||f||_p,where where r=\lceil q/2\rceil.Forthecase. For the case q=4and and p=2,whichisimportantinmanyapplications,weproveastrongerinequality:, which is important in many applications, we prove a stronger inequality: ||f||_4\le (2\rho+1)^{1/4}||f||_2.

    Better Non-Local Games from Hidden Matching

    Full text link
    We construct a non-locality game that can be won with certainty by a quantum strategy using log n shared EPR-pairs, while any classical strategy has winning probability at most 1/2+O(log n/sqrt{n}). This improves upon a recent result of Junge et al. in a number of ways.Comment: 11 pages, late

    An Exploration of the Role of Principal Inertia Components in Information Theory

    Full text link
    The principal inertia components of the joint distribution of two random variables XX and YY are inherently connected to how an observation of YY is statistically related to a hidden variable XX. In this paper, we explore this connection within an information theoretic framework. We show that, under certain symmetry conditions, the principal inertia components play an important role in estimating one-bit functions of XX, namely f(X)f(X), given an observation of YY. In particular, the principal inertia components bear an interpretation as filter coefficients in the linear transformation of pf(X)Xp_{f(X)|X} into pf(X)Yp_{f(X)|Y}. This interpretation naturally leads to the conjecture that the mutual information between f(X)f(X) and YY is maximized when all the principal inertia components have equal value. We also study the role of the principal inertia components in the Markov chain BXYB^B\rightarrow X\rightarrow Y\rightarrow \widehat{B}, where BB and B^\widehat{B} are binary random variables. We illustrate our results for the setting where XX and YY are binary strings and YY is the result of sending XX through an additive noise binary channel.Comment: Submitted to the 2014 IEEE Information Theory Workshop (ITW

    Systems of Linear Equations over F2\mathbb{F}_2 and Problems Parameterized Above Average

    Full text link
    In the problem Max Lin, we are given a system Az=bAz=b of mm linear equations with nn variables over F2\mathbb{F}_2 in which each equation is assigned a positive weight and we wish to find an assignment of values to the variables that maximizes the excess, which is the total weight of satisfied equations minus the total weight of falsified equations. Using an algebraic approach, we obtain a lower bound for the maximum excess. Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin introduced by Mahajan et al. (Proc. IWPEC'06 and J. Comput. Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are to decide whether the maximum excess is at least kk, where kk is the parameter. It is not hard to see that we may assume that no two equations in Az=bAz=b have the same left-hand side and n=rankAn={\rm rank A}. Using our maximum excess results, we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable for a wide special case: m2p(n)m\le 2^{p(n)} for an arbitrary fixed function p(n)=o(n)p(n)=o(n). Max rr-Lin AA is a special case of Max Lin AA, where each equation has at most rr variables. In Max Exact rr-SAT AA we are given a multiset of mm clauses on nn variables such that each clause has rr variables and asked whether there is a truth assignment to the nn variables that satisfies at least (12r)m+k2r(1-2^{-r})m + k2^{-r} clauses. Using our maximum excess results, we prove that for each fixed r2r\ge 2, Max rr-Lin AA and Max Exact rr-SAT AA can be solved in time 2O(klogk)+mO(1).2^{O(k \log k)}+m^{O(1)}. This improves 2O(k2)+mO(1)2^{O(k^2)}+m^{O(1)}-time algorithms for the two problems obtained by Gutin et al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively
    corecore