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a b s t r a c t

A function f : {−1, 1}n → R is called pseudo-Boolean. It is well-known that each pseudo-
Boolean function f can be written as f (x) =


I∈F f̂ (I)χI(x), where F ⊆ {I : I ⊆ [n]},

[n] = {1, 2, . . . , n}, χI(x) =


i∈I xi and f̂ (I) are non-zero reals. The degree of f is
max{|I| : I ∈ F } and the width of f is the minimum integer ρ such that every i ∈ [n]
appears in at most ρ sets in F . For i ∈ [n], let xi be a random variable taking values 1 or
−1 uniformly and independently from all other variables xj, j ≠ i. Let x = (x1, . . . , xn).
The p-norm of f is ∥f ∥p = (E[|f (x) |

p
])1/p for any p ≥ 1. It is well-known that ∥f ∥q ≥ ∥f ∥p

whenever q > p ≥ 1. However, the higher norm can be bounded by the lower norm times
a coefficient not directly depending on f : if f is of degree d and q > p > 1 then ∥f ∥q ≤

q−1
p−1

d/2
∥f ∥p. This inequality is called the Hypercontractive Inequality. We show that one

can replace d by ρ in the Hypercontractive Inequality for each q > p ≥ 2 as follows:
∥f ∥q ≤ ((2r)!ρr−1)1/(2r)∥f ∥p, where r = ⌈q/2⌉. For the case q = 4 and p = 2, which is
important in many applications, we prove a stronger inequality: ∥f ∥4 ≤ (2ρ + 1)1/4∥f ∥2.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fourier analysis of pseudo-Boolean functions,1 i.e., functions f : {−1, 1}n → R, has been used in many areas of computer
science (cf. [1,6,15,19,7]), social choice theory (cf. [10,16,18]), combinatorics, learning theory, coding theory, and many
others (cf. [19,7]). We will use the following well-known and easy to prove fact [19]: each function f : {−1, 1}n → R
can be uniquely written as

f (x) =


I∈F

f̂ (I)χI(x), (1)

where F ⊆ {I : I ⊆ [n]}, [n] = {1, 2, . . . , n}, and χI(x) =


i∈I xi and f̂ (I) are non-zero reals. Formula (1) is the
Fourier expansion of f and f̂ (I) are the Fourier coefficients of f . The right-hand size of (1) is a polynomial and the degree
max{|I| : I ∈ F } of this polynomial will be called the degree of f . For i ∈ [n], let ρi be the number of sets I ∈ F such that
i ∈ I . Let us call ρ = max{ρi : i ∈ [n]} the Fourier width (or, just width) of f . The Fourier width was introduced in [12]
without giving it a name.

∗ Corresponding author.
E-mail addresses: gutin@cs.rhul.ac.uk (G. Gutin), andersyeo@gmail.com (A. Yeo).

1 Often functions f : {0, 1}n → R are called pseudo-Boolean [4]. In Fourier Analysis, the Boolean domain is often assumed to be {−1, 1}n rather than
the more usual {0, 1}n and we will follow this assumption in our paper.
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The degree and width can be viewed as dual parameters in the following sense. Consider a bipartite graph Gwith partite
sets V and T , where V is the set of variables in f and T is the set of terms in f in (1), and zt is an edge in G if z is a variable
in t ∈ T . Note that the degree of f is the maximum degree of a vertex in T and the width of f is the maximum degree of a
vertex in V .

For i ∈ [n], let xi be a random variable taking values 1 or −1 uniformly and independently from all other variables xj,
j ≠ i. Let x = (x1, . . . , xn). Then f (x) is a random variable and the p-norm of f is ∥f ∥p = (E[|f (x)|p])1/p for any p ≥ 1. It
is easy to show that ∥f ∥2

2 =


I∈F f̂ (I)2, which is Parseval’s Identity for pseudo-Boolean functions. It is well-known and
easy to show that ∥f ∥q ≥ ∥f ∥p whenever q ≥ p ≥ 1. However, the higher norm can be bounded by the lower norm times a
coefficient not depending on f : if f is of degree d then

∥f ∥q ≤


q − 1
p − 1

d/2

∥f ∥p. (2)

The last inequality is called the Hypercontractive Inequality. (In fact, the Hypercontractive Inequality is often stated
differently, but the Hypercontractive Inequality in the original form and (2) are equivalent.) Since ∥f ∥2 is easy to compute,
the Hypercontractive Inequality is quite useful for p = 2 and is often used for p = 2 and q = 4; this special case of the
Hypercontractive Inequality has been applied in many papers on algorithmics, social choice theory and many other areas,
see, e.g., [1,2,10,13,12,15,16,18] and was given special proofs (cf. [11] and the extended abstract of [18]). We will call this
case the (4, 2)-Hypercontractive Inequality.

Theorem 1 proved below replaces the coefficient 3d/2 before ∥f ∥2 in the (4, 2)-Hypercontractive Inequality by (2ρ +

1 −
2ρ
m )1/4, where ρ is the width of f and m = |F |. For functions with 2ρ + 1 < 9d, Theorem 1 provides an important

special case of the Hypercontractive Inequality with a smaller coefficient. Note that in some cases one can change variables
(using a different basis) such that the degree of f decreases significantly. However, this is not always possible and, even if
it is possible, it might be hard to find an appropriate basis. Our application of Theorem 1 in Section 4 provides a nontrivial
illustration of such a situation. Note that Theorem 1 improves Lemma 7 in [12].While in Lemma 7 [12], the coefficient before
∥f ∥2 is (2ρ2)1/4 (ρ ≥ 2), in Theorem1,we decrease it to (2ρ+1−

2ρ
m )1/4.Weprovide examples showing that this coefficient

is tight.
Due to Theorem 1, we know that the width can replace the degree as a parameter in the coefficient before ∥f ∥2 in the

(4, 2)-Hypercontractive Inequality. A natural question iswhether the same is true in the general case of theHypercontractive
Inequality for pseudo-Boolean functions. We show that we can replace d by ρ for each q ≥ p ≥ 2 as follows: ∥f ∥q ≤

((2r)!ρr−1)1/(2r)∥f ∥p, where r = ⌈q/2⌉.

2. (4, 2)-Hypercontractive inequality

In (1), let F = {I1, . . . , Im}, fj(x) = f̂ (Ij)χIj(x) and wj = f̂ (Ij), j ∈ [m]. If ∅ ∈ F , we will assume that I1 = ∅.

Theorem 1. Let f (x) be a pseudo-Boolean function of width ρ ≥ 0. Then ∥f ∥4 ≤ (2ρ + 1 −
2ρ
m )1/4∥f ∥2.

Proof. If ρ = 0 then f (x) = c , where c is a constant and hence ∥f ∥4 = ∥f ∥2 = c . Thus, assume that ρ ≥ 1. Let S be the set
of quadruples (p1, p2, p3, p4) ∈ [m]

4 such that
4

j=1 |{i} ∩ Ipj | is even for each i ∈ [n], S ′
= {(p1, p2, p3, p4) ∈ S : p1 = p2}

and S ′′
= S \ S ′. Note that if a product fp(x)fq(x)fs(x)ft(x) contains a variable xi in only one or three of the factors, then

E[fp(x)fq(x)fs(x)ft(x)] = E[P] · E(xi) = 0, where P is a polynomial in random variables xl, l ∈ [n] \ {i}. Thus,

E[f (x)4] =


(p,q,s,t)∈S

E[fp(x)fq(x)fs(x)ft(x)].

Observe that if (p, q, s, t) ∈ S ′ then p = q and s = t and, thus,


(p,q,s,t)∈S′ E[fp(x)fq(x)fs(x)ft(x)] =
m

p=1
m

s=1 w2
pw

2
s .

For a pair (p, q) ∈ [m]
2, let N(p, q) = |{(s, t) ∈ [m]

2
: (p, q, s, t) ∈ S ′′

}|. Let a quadruple (p, q, s, t) ∈ S ′′. Since p ≠ q,
there must be an iwhich belongs to just one of the two sets Ip and Iq. Since (p, q, s, t) ∈ S ′′, imust also belong to just one of
the two sets Is and It (two choices). Assume that i ∈ Is. Then by the definition of ρ, s can be chosen from a subset of [m] of
cardinality at most ρ. Once s is chosen, there is a unique choice for t . Therefore, N(p, q) ≤ 2ρ.

Note that (p, q, s, t) ∈ S ′′ if and only if (s, t, p, q) ∈ S ′′, which implies that there are at most N(p, q) tuples in S ′′ of the
form (s, t, p, q). We also have

E[fp(x)fq(x)fs(x)ft(x)] ≤ wpwqwswt ≤ (w2
pw

2
q + w2

s w
2
t )/2.

Thus, 
(p,q,s,t)∈S′′

E[fp(x)fq(x)fs(x)ft(x)] ≤


1≤p≠q≤m

2N(p, q)
w2

pw
2
q

2
≤ 2ρ


1≤p≠q≤m

w2
pw

2
q .
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Hence,

E[f (x)4] ≤

m
p=1

m
s=1

w2
pw

2
s + 2ρ


1≤p≠q≤m

w2
pw

2
q = (2ρ + 1)

m
p=1

m
s=1

w2
pw

2
s − 2ρ

m
p=1

w4
p .

We have
m

p=1
w4

p

m
p=1

m
s=1

w2
pw

2
s

≥

m
p=1

w4
p

m
p=1

m
s=1

[w4
p/2 + w4

s /2]
=

m
p=1

w4
p

m
m

p=1
w4

p

=
1
m

.

Thus,E[f (x)4] ≤ (2ρ+1−
2ρ
m )
m

i=1 w2
i

2
= (2ρ+1−

2ρ
m )E[f (x)2]2. The last equality follows from Parseval’s Identity. �

The following two examples show the sharpness of this theorem.
Let f (x) = 1+

n
i=1 xi. By Parseval’s Indentity,E[f (x)2] = n+1. It is easy to check thatE[f (x)4] = (n+1)+


4
2

 
n+1
2


=

3n2
+4n+1. Clearly, ρ = 1 andm = n+1 and, thus, 2ρ+1−

2ρ
m = 3−

2
n+1 .Also,E[f (x)4]/E[f (x)2]2 =

3n2+4n+1
(n+1)2

= 3−
2

n+1 .
Let f (x) =


I⊆[n] χI(x). Clearly, E[f (x)2] = m = 2n. To compute E[f (x)4] observe that when p, q and s are arbitrarily

fixed we have E[fp(x)fq(x)fs(x)ft(x)] ≠ 0 for a unique (one in 2n) choice of t . Hence, E[f (x)4] = m4/2n
= 23n. Thus,

E[f (x)4]/E[f (x)2]2 = 2n. Observe that ρ = 2n−1 and 2ρ + 1 −
2ρ
m = 2n as well.

3. Hypercontractive inequality

A multiset may contain multiple appearances of the same element. For multisets we will use the same notation as for
sets, but we will stress it when we deal with multisets. We do not attempt to optimize g(r) in the following theorem.

Theorem 2. Let f (x) be a pseudo-Boolean function of width ρ ≥ 1. Then for each positive integer r we have ∥f ∥2r ≤

[g(r)ρr−1
]

1
2r · ∥f ∥2, where g(r) = (2r)!.

Proof. Observe thatE[f (x)2r ] =


2r
α1···αm


E[f α1

1 (x) · · · f αm
m (x)], where the sum is taken over all partitionsα1+· · ·+αm =

2r of 2r intom non-negatives summands. Consider a non-zero term E[f α1
1 (x) · · · f αm

m (x)]. Note that each variable xi appears
in an even number of the factors in f α1

1 (x) · · · f αm
m (x). We denote the set of all suchm-tuples α = (α1, . . . , αm) by E . Then

E[f (x)2r ] =


α∈E


2r
α

 m
i=1

w
αi
i . (3)

It is useful for us to view f α1
1 (x) · · · f αm

m (x), α ∈ E , as a product of 2r factors fi(x), i.e.,

E[f α1
1 (x) · · · f αm

m (x)] = E[ft1(x) · · · ft2r (x)].

Let I be a subset of the multiset {t1, . . . , t2r} (I is a multiset). We call I nontrivial if it contains at least two elements (not
necessarily distinct). A subset J of I is called minimally even if J is nontrivial, E[


i∈J fi(x)] ≠ 0 but E[


i∈K fi(x)] = 0 for

each nontrivial subset K of the multiset J . If I1 = ∅ (that is ∅ ∈ F ) and 1 is an element of I without repetition (i.e., only one
copy of 1 is in I), then {1} is also called a minimally even subset. (Thus, if I contains two or more elements 1 then {1, 1} is
minimally even, but {1} is not; however, if I contains just one element 1, then {1} is minimally even.)

Let µ1 be an element in the multiset T1 := {t1, . . . , t2r} such that w2
µ1

= max{w2
ti : ti ∈ T1}, and let M1 be a minimally

even subset of T1 containing µ1. For j ≥ 2, let µj be an element in the multiset Tj := {t1, . . . , t2r} \ (∪
j−1
i=1 Mi) such that

w2
µj

= max{w2
ti : ti ∈ Tj}, and let Mj be a minimally even subset of Tj containing µj. Let s be the largest j for which µj is

defined above. Observe that s ≤ r as at most one of the minimally even setsM1,M2, . . . ,Ms has size one. If s < r , for every
j ∈ {s + 1, s + 2, . . . , r} let µj be an element in the multiset T1 such that w2

µj
= max{w2

q : q ∈ T1 \ {µ1, . . . , µj−1}}.
Let α ∈ E . For every i ∈ [m], let βi = βi(α) be the number of copies of i in the multiset {µ1, . . . , µr}. Let E ′

:= {β(α) :

α ∈ E}. The 2r terms in


t∈T1
wt =

m
i=1 w

αi
i can be split into r pairs such that each pair contains exactly one element with

its index in the multiset {µ1, . . . , µr} and, furthermore, in each pair, the element with its index in the multiset has at least
as high an absolute value as the other element. Therefore the following holds.

m
i=1

w
αi
i ≤

m
i=1

w
2βi(α)

i . (4)

For anm-tuple β ∈ E ′, let N(β) be the number ofm-tuples α ∈ E such that β = β(α).Wewill now give an upper bound
on N(β), by showing how to construct all possible α with β(α) = β . Let M = {µ1, . . . , µr} be the multiset containing βi
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copies of i. We first partition M into any number of non-empty subsets. This can be done in at most r! ways, since we can
place µ1 in the ‘‘first’’ subset, µ2 in the same subset or in the ‘‘second’’ subset, etc.. Each of the subsets will be a subset of
a minimal even multiset. Thus, while any multiset, M ′

i , is not a minimally even subset, there is an xj of odd total degree in
t∈M ′

i
ft(x). Thus, to construct a minimally even subset fromM ′

i , we have to add toM ′

i an element q such that fq(x) contains
xj, which restricts q to at most ρ choices. Continuing in this manner, observe that we have at most ρ choices for the r extra
elements we need to add. As the very last element we add has to be unique we note that we construct at most r!ρr−1

partitions of T1 into minimally even subsets in this way. For each such partition, we have α = (α1, . . . , αm), where αi is the
number of occurrences of i in T1. Note that every α for which β(α) = β can be constructed this way, which implies that

N(β) ≤ ρr−1r!. (5)

Let α ∈ E and β(α) = (β1, . . . , βm). By the construction of β(α), each non-zero βi appears in the multiset {β1, . . . , βm}

at least as many times as in {α1, . . . , αm}. This implies that
2r
α


r

β(α)


≤ (2r)!/r!. (6)

By Parseval’s Identity,

E[f (x)2]r =


m
i=1

w2
i

r

=


r

b1 · · · bm


w

2b1
1 · · · w2bm

m , (7)

where the last sum is taken over all partitions b1 + · · · + bm = r of r intom non-negatives integral summands.
Now by (3)–(7), we have

E[f (x)2r ] =


α∈E


2r
α

 m
i=1

w
αi
i

≤


α∈E


2r
α


r

β(α)


r

β(α)

 m
i=1

w
2βi(α)

i

≤


β∈E ′

N(β)((2r)!/r!)


r
β

 m
i=1

w
2βi
i

≤ (2r)!ρr−1

β∈E ′


r
β

 m
i=1

w
2βi
i

≤ (2r)!ρr−1E[f (x)2]r . �

We can get a better bound on N(β) in the proof of this theorem as follows. Note that the number of partitions of a set of

cardinality r into non-empty subsets is called the rth Bell number, Br , and there is an upper bound on Br : Br <


0.792r
ln(r+1)

r
[3]. This upper bound is better than the crude one, Br ≤ r!, that we used in the proof of this theorem, but our bound allowed
us to obtain a simple expression for g(r). Moreover, we believe that the following, much stronger, inequality holds.

Conjecture 1. There exists a constant c such that for every pseudo-Boolean function f (x) of width ρ ≥ 1 we have ∥f ∥2r ≤

c
√
rρ∥f ∥2 for each positive integer r.

If Conjecture 1 holds then it would be best possible, in a sense, due to the following example. Let f (x) =
n

i=1 xi. By
Parseval’s Indentity, E[f (x)2] = n. We will now give a bound for E[f (x)2r ]. Define (a1, a2, . . . , a2r) to be a good vector if all
ai belong to [n] = {1, 2, . . . , n} and any number from [n] appears in the vector zero times or exactly twice. The number of
good vectors is equal to

 n
r


(2r!)
2r , which implies that E[f (x)2r ] ≥

 n
r


(2r!)
2r =

n!
(n−r)! ×

(2r)!
2r r! .

Note that (2r)!
2r r! = (2r − 1)!! > (r/e)r and, when n tends to infinity, n!

(n−r)! tends to nr
= E[f (x)2]r . Therefore, the bound

in Conjecture 1 (for ρ = 1) cannot be less than c
√
r for some constant c .

Theorem 2 can be easily extended as follows.

Corollary 1. Let f (x) be a pseudo-Boolean function of width ρ ≥ 1. Then for each q > p ≥ 2 we have ∥f ∥q ≤

((2r)!ρr−1)1/(2r)∥f ∥p, where r = ⌈q/2⌉.

Proof. Let r = ⌈q/2⌉. Using Theorem 2 and the fact that ∥f ∥s ≥ ∥f ∥t for each s > t > 1, we obtain

∥f ∥q ≤ ∥f ∥2r ≤ ((2r)!ρr−1)1/(2r)∥f ∥2 ≤ ((2r)!ρr−1)1/(2r)∥f ∥p. �
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4. Application of Theorem 1

Consider the following problem MaxLin-AA, first studied in the literature on approximation algorithms, cf. [14,15].
Håstad [14] succinctly summarized the importance of the maximization version of this problem by saying that it is ‘‘in
many respects as basic as satisfiability’’. We are given a nonnegative integer k and a system S of equations


i∈Ij

xi = bj,
where xi, bj ∈ {−1, 1}, j = 1, . . . ,m and where each equation is assigned a positive integral weight wj. The question is
whether there is an assignment of values {−1, 1} to the variables xi such that the total weight of satisfied equations is at
least W/2 + k, where W is the total weight of all equations. If we assign values randomly, the expected weight of satisfied
equations is W/2 and, thus, W/2 is a lower bound on the total weight of satisfied equations. Hereafter, we assume that no
two equations of S have the same left-hand side.

Mahajan et al. [17] askedwhetherMaxLin-AA is fixed-parameter tractable with respect to the parameter k, i.e., whether2
there exists a function h(k) in k only and a polynomial time algorithm that transforms S into a new system S ′ with m′

equations and n′ variables, and parameter k′ such that n′m′
+ k′

≤ h(k) and we can satisfy equations of S of total weight at
least W/2 + k if and only if we can satisfy equations of S ′ of total weight at least W ′/2 + k′. Here W ′ is the total weight of
all equations in S ′. This question was answered in affirmative in a series of two papers [6,5], where an exponential function
h(k) was obtained. The authors of [5] asked whether the result can be strengthened to h(k) being a polynomial (this is a
natural question in the area of parameterized algorithms and complexity due to applications in preprocessing).

It was proved in [12] that h(k) = O(k4) when (i) every equation has an odd number of variables, or (ii) no equation has
more than r variables, where r is a constant, or (iii) no variable appears in more than ρ equations, where ρ is a constant.
Cases (ii) and (iii) can be extended to r and ρ being functions of n andm, respectively. Belowwe consider (iii) in some detail.
Case (ii) can be treated in a similar way using (2).

Note that the answer to MaxLin-AA is Yes if and only if the maximum of polynomial Q =
m

j=1 cj


i∈Ij
xi is at least 2k,

where cj = wjbj and each xi ∈ {−1, 1}. Assign −1 or 1 to each variable xi independently and uniformly at random. Then Q
is a random variable.

We will use the following lemma of Alon et al. [1]: Let X be a real random variable and suppose that its first, second and
fourth moments satisfy E[X] = 0 and E[X4

] ≤ bE[X2
]
2, where b is a positive constant. Then P(X ≥

1
2


E[X2]/b) > 0.

Observe that E[Q ] = 0 and E[Q 2
] =

m
j=1 c

2
j . By Theorem 1, E[Q 4

] ≤ (2ρ + 1)E[Q 2
]
2 and, thus, P(Q ≥

1
2

m
j=1 c

2
j /(2ρ + 1)) > 0. Since

m
j=1 c

2
j ≥ m we have P(Q ≥

1
2

√
m/(2ρ + 1)) > 0. Thus, if 1

2

√
m/(2ρ + 1) ≥ 2k

the answer toMaxLin-AA is Yes. Otherwise,m ≤ 8(2ρ + 1)k2 and som is bounded by a polynomial in k if ρ ≤ mα for some
constant α < 1. It is shown in [12] that we may assume that n ≤ m, as otherwise we can replace S by an equivalent system
for which n ≤ m holds. This implies that nm is bounded by a polynomial in k if ρ ≤ mα for some constant α < 1.

Now assume that ρ ≤ mα for some constant α < 1. To construct the required system S ′, checkwhether 1
2

√
m/(ρ + 1) ≥

2k. If the answer isYes, let S ′ be an arbitrary consistent systemof 2k equationswith allweights equal 1 and, otherwise, S ′
= S.

The parameter k′
= k.

Note that the bound ρ ≤ mα is only possible because the coefficient in Theorem 1 is so small.

5. Further research

It would be interesting to verify Conjecture 1 and decrease the coefficient before ∥f ∥p in Corollary 1.
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