91,926 research outputs found

    Some Simple Distributed Algorithms for Sparse Networks

    Get PDF
    We give simple, deterministic, distributed algorithms for computing maximal matchings, maximal independent sets and colourings. We show that edge colourings with at most 2D-1 colours, and maximal matchings can be computed within O(log^* n + D) deterministic rounds, where D is the maximum degree of the network. We also show how to find maximal independent sets and (D+1)-vertex colourings within O(log^* n + D^2) deterministic rounds. All hidden constants are very small and the algorithms are very simple

    Some simple distributed algorithms for sparse networks

    Full text link

    Sparse Allreduce: Efficient Scalable Communication for Power-Law Data

    Full text link
    Many large datasets exhibit power-law statistics: The web graph, social networks, text data, click through data etc. Their adjacency graphs are termed natural graphs, and are known to be difficult to partition. As a consequence most distributed algorithms on these graphs are communication intensive. Many algorithms on natural graphs involve an Allreduce: a sum or average of partitioned data which is then shared back to the cluster nodes. Examples include PageRank, spectral partitioning, and many machine learning algorithms including regression, factor (topic) models, and clustering. In this paper we describe an efficient and scalable Allreduce primitive for power-law data. We point out scaling problems with existing butterfly and round-robin networks for Sparse Allreduce, and show that a hybrid approach improves on both. Furthermore, we show that Sparse Allreduce stages should be nested instead of cascaded (as in the dense case). And that the optimum throughput Allreduce network should be a butterfly of heterogeneous degree where degree decreases with depth into the network. Finally, a simple replication scheme is introduced to deal with node failures. We present experiments showing significant improvements over existing systems such as PowerGraph and Hadoop
    • …
    corecore