263,716 research outputs found

    Second-Order Weight Distributions

    Full text link
    A fundamental property of codes, the second-order weight distribution, is proposed to solve the problems such as computing second moments of weight distributions of linear code ensembles. A series of results, parallel to those for weight distributions, is established for second-order weight distributions. In particular, an analogue of MacWilliams identities is proved. The second-order weight distributions of regular LDPC code ensembles are then computed. As easy consequences, the second moments of weight distributions of regular LDPC code ensembles are obtained. Furthermore, the application of second-order weight distributions in random coding approach is discussed. The second-order weight distributions of the ensembles generated by a so-called 2-good random generator or parity-check matrix are computed, where a 2-good random matrix is a kind of generalization of the uniformly distributed random matrix over a finite filed and is very useful for solving problems that involve pairwise or triple-wise properties of sequences. It is shown that the 2-good property is reflected in the second-order weight distribution, which thus plays a fundamental role in some well-known problems in coding theory and combinatorics. An example of linear intersecting codes is finally provided to illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on Information Theory, May 201

    Multi-level bandwidth efficient block modulation codes

    Get PDF
    The multilevel technique is investigated for combining block coding and modulation. There are four parts. In the first part, a formulation is presented for signal sets on which modulation codes are to be constructed. Distance measures on a signal set are defined and their properties are developed. In the second part, a general formulation is presented for multilevel modulation codes in terms of component codes with appropriate Euclidean distances. The distance properties, Euclidean weight distribution and linear structure of multilevel modulation codes are investigated. In the third part, several specific methods for constructing multilevel block modulation codes with interdependency among component codes are proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C which has the same rate as C, a minimum squared Euclidean distance not less than that of code C, a trellis diagram with the same number of states as that of C and a smaller number of nearest neighbor codewords than that of C. In the last part, error performance of block modulation codes is analyzed for an AWGN channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated based on their Euclidean weight distributions and simulation results

    Properties of trace maps and their applications to coding theory

    Get PDF
    In this thesis we study the application of trace maps over Galois fields and Galois rings in the construction of non-binary linear and non-linear codes and mutually unbiased bases. Properties of the trace map over the Galois fields and Galois rings has been used very successfully in the construction of cocyclic Hadamard, complex Hadamard and Butson Hadamard matrices and consequently to construct linear codes over integers modulo prime and prime powers. These results provide motivation to extend this work to construct codes over integers modulo . The prime factorization of integers paved the way to focus our attention on the direct product of Galois rings and Galois fields of the same degree. We define a new map over the direct product of Galois rings and Galois fields by using the usual trace maps. We study the fundamental properties of the this map and notice that these are very similar to that of the trace map over Galois rings and Galois fields. As such this map called the trace-like map and is used to construct cocyclic Butson Hadamard matrices and consequently to construct linear codes over integers modulo . We notice that the codes construct in this way over the integers modulo 6 is simplex code of type . A further generalization of the trace-like map called the weighted-trace map is defined over the direct product of Galois rings and Galois fields of different degrees. We use the weighted-trace map to construct some non-linear codes and mutually unbiased bases of odd integer dimensions. Further more we study the distribution of over the Galois fields of degree 2 and use it to construct 2-dimensional, two-weight, self-orthogonal codes and constant weight codes over integers modulo prime
    corecore