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Summary

In this thesis we study the application of the trace map over Galois fields and Galois
rings in the construction of non-binary linear and non-linear codes and mutually unbiased
bases. In Chapter 1 there are some preliminary results that will be used throughout the
thesis.

Properties of the trace map over the Galois fields and Galois rings were used very
successfully in this author’s masters thesis [57](published in [58] and [65]) in the con-
struction of cocyclic Hadamard, complex Hadamard and Butson Hadamard matrices
and consequently to construct linear codes over Zs, Z4, Zse and Zpe. These results
provide motivation to extend this work to construct codes over Z, for any positive
integer n. The prime factorisation of n, i.e., n = p{'ps®...p* and the isomorphism
L = Lijer X Lz X ... X Ly paved the way to focus our attention on the ring R(n,m) =
GR(p',m) x GR(ps?,m) x ... x GR(pi¥, m), where m is a positive integer. In Chapter
2 we define a new map over the ring R(n,m) = GR(p{', m) x GR(p5?, m) by

T:R(n,m)— Zy,
T(c) = p5*Tri(c1) + pi*Tra(ca),

where T'ry and T'ry are the trace maps over the Galois rings GR(p7*, m) and GR(p5?,m)
respectively. We study the fundamental properties of T and notice that these are very sim-
ilar to that of the trace maps over Galois fields and Galois rings. As such this map is named
the trace-like map over R(n,m), and is used to construct cocyclic Butson Hadamard ma-
trices H of order n™. Then the exponent matrix A of H is a linear code over Z, with the

e1.ea—1

parameters [n, k,dy| = [n™,m, (n — p{'p3> " )n™ ]

. This construction is extended by us-
ing the trace-like map over the ring R(n, m) = GR(p{*, m) x GR(p3*, m) x.. . x GR(p;*, m).
In the case of n = 6 we notice that the code A is a senary simplex code of type a that
has been studied in [37].

A further generalisation of the trace-like map has been used in [45] and this map is

called the weighted-trace map. We study the properties of the weighted-trace map over



the ring R(d,n) = GR(pS*,m1) X GR(p3?,ma) ... x GR(p*, my), defined by
T, : R(d,n)—Zy,

k
Ty(z) = Z}%Tn(mi),
=1 *?

€1mi1 €2m2 ErM

where d = pi"™'p3>"™* ... py

— €1 .62 (&3]
and n = pi'py®...p~.

T, is used to construct cocyclic
Butson Hadamard matrices H,, of order d. However the exponent matrix A, of H, does
not form a linear code over Z,. It gives a non-linear code over Z, with the parameters
(d, N,wpy), where d = Hle p;i™ is the length of the code, N = Hle p;™ is the number of
codewords and wy = d—pi*™ ... p&™2ps"™ ! is the minimum Hamming weight provided
that pi* < p3®> <...<pFand my <mg <...<my.

The trace map over the Galois field GF(p, m) (respectively the Galois ring GR(4,m))
has also been used in [49] in the form of Tr(ax?® + bx) (respectively Tr((a + 2b)x)) to
construct mutually unbiased bases of odd (respectively even) prime power dimensions.

This work is a motivation to use the weighted-trace map in a similar manner to construct

mutually unbiased bases. In Chapter 3 we use the weighted-trace map 7}, over the ring
R(d,n) = GF(p1,e1) X GF(py,e3) X ... x GF(py,e;,) in the form of T, (az* + bx) to
construct mutually unbiased bases of odd integer dimension d = pi'p5* ... p:".

Since the trace map over the Galois field GF(p, m) has been used in the form of
Tr(ax® + bx) to construct mutually unbiased bases, it is an interesting question to check
whether the trace map can be used in similar manner to construct codes over Z,. In
Chapter 4, for a € GF(p,2) we study the distribution of Tr(az?®) by changing x over
GF(p,2) and use this distribution to construct two-weight, self-orthogonal codes over Z,
with the parameters [n, k, dg] = [p?, 2, (p — 1)

In Chapter 5 we use the trace map over GF(p,2) in the form of Tr(az?), when
Al(p+ 1), and construct two-weight, self-orthogonal codes over Z, with the parameters
[n,k,dg) = [p*%2,(p— (A—1))(p—1)]. In Chapter 6 the next case A\|(p — 1) is considered
and we construct two-weight codes with the parameters [n, k,dg| = [p% 2, (p — 1)?] and
constant-weight codes with the parameters [n, k, dy| = [p?, 2, p(p — 1)] for A > 2-even and
A > 2-odd respectively.

Finally we conclude the thesis with some further research possibilities.



Chapter 1

Preliminaries

1.1 Introduction

Coding theory is an interesting subject to mathematicians as well as engineers because
of its beautiful mathematical structures and applications to communications. Starting
with group theory, together with field theory and ring theory, coding theory provides a
framework for the construction of error-correcting codes, and encoding and decoding of
these codes. In this chapter we include necessary information that will be used throughout
the thesis.

Fundamental properties together with the distribution of the trace map values over
the Galois field GF'(p, m) and Galois ring G R(p®, m) have been used to construct cocyclic
Butson Hadamard matrices of order p™ and p®" and consequently to construct linear
codes over Z, and Z,. respectively in the master’s thesis [57] of this author. These results
have appeared in [58] and [65].

A challenging open problem was the extension of this construction for any integer n.
By taking the advantage of n = p{'p5®...p;" we tackle the problem by defining a new
map, called the trace-like map, T' over the ring R(n,m) = GR(p',m) x GR(p5?,m) X

. X GR(p¥,m) in Chapter 2. For a,z € R(n,m) we study the distribution of T'(ax)
and then use this property to construct cocyclic Butson Hadamard matrices of order
n™ and then some linear codes over Z,. A further generalisation of T is studied and

this map is called the weighted-trace map and denoted by 7,. In this case the ring



that we consider is R(d,n) = GR(pS',m1) X GR(p3?, m2) x ... X GR(p*,my), where

eama erRmy

d = pi"™pg™ L py

€1 ,,62 €k

and n = pi'py®...p.". The weighted-trace map T, is used in

Chapter 3 in the form of T, (az® + bz) to construct mutually unbiased bases of odd
integer dimension d = p{*"™ pg?™* ... pi"E.

Once the argument ax is changed to az? or ax? for elements in GF(p, m), studying the
distribution of the trace values is a difficult task. In this thesis we study the case GF(p,2),
for p > 2, and the distribution of Tr(az?) and Tr(ax?), where \|(p* — 1). In Chapter 4
we use the distribution of Tr(az?) to construct two-weight, self-orthogonal codes over Z,
with the parameters [p?, 2, (p — 1)?]. For A > 2 such that A|(p + 1), the distribution of
Tr(az?) is used in Chapter 5 to construct two-weight, self-orthogonal codes over Z, with
the parameters [p?, 2, (p — (A — 1))(p — 1)]. The distribution of Tr(az?) for even X\ > 2
such that A|(p — 1) is used in Chapter 6 and we are able to construct two-weight codes
over Z, with the parameters [p?, 2, (p — 1)?] which are similar to those in Chapter 4 but
not self-orthogonal. In the case of odd A > 2 such that A\|(p—1), the codes constructed by
using the distribution of T'r(ax?) are constant-weight codes over Z, with the parameter
[p*.2,p(p — 1)].

In Section 1.2 we state some basic results of error-correcting codes. Some basic defini-
tions and results of cocycles and Hadamard matrices are given in Section 1.3. We devote
Section 1.4 to the study of the fundamental properties of the trace maps over the Ga-
lois field GF(p,m) and Galois ring GR(p®,m). Finally in Section 1.5 we briefly describe

mutually unbiased bases.

1.2 Error-correcting codes

In this section we will study definitions and some basic results related to error-correcting
codes.

Let B be a basis for the vector space V. The number of vectors in the basis B denoted
by |B| = k is called the dimension of V. If F is a field then F™ is an n-dimensional vector
space over . Let Z; be a vector space of dimension n over Z, = {0,1,2,...,p—1}, where

p is a prime. Any subset C' of N vectors of Z is called a code and its vectors are called



codewords. If C'is a k-dimensional subspace of Z; then C' is called an [n, k] linear code.
The number of co-ordinates n of each codeword is called the length of the code and k is

called the dimension of the code.

Definition 1.2.1 (Hamming weight). Let v € Z;. The number of non-zero components

in x is called the Hamming weight of x and it is denoted by Wy (x).

Definition 1.2.2 (Hamming distance). Let x,y € Z3. The Hamming distance dy(z,y)

between x and y is the number of co-ordinates in which they differ.

It is clear that dy(z,y) = Wy (z —y). The minimum Hamming distance, dy of a code
C' is the minimum of the Hamming distances of all distinct pairs of its codewords. The
minimum Hamming distance of a linear code is the minimum Hamming weight of all non-
zero codewords. A code with minimum Hamming distance dy can correct up to |41 ]
errors, where |a| denotes the smallest integer not greater than a. Three other useful
weights (distances) in coding theory are the Lee, Euclidean and Chinese Euclidean weights
(distances) respectively. The Lee weight of a € Z, is given by W (a) = min{a,p — a}.
The Euclidean weight of a € Z,, is given by Wg(a) = (Wy(a))?. The Chinese Euclidean
weight of a € Z,, is given by Weg(a) = {2 — 208 <%> } The Lee (Euclidean, Chinese
Euclidean) weight of a vector x € Zj is the sum of the Lee (Euclidean, Chinese Euclidean)
weights of its components. The Lee, Euclidean and Chinese Euclidean distance between
x,y € Z, are given by di(z,y) = Wi(z —y), de(z,y) = Wr(z — y) and dep(z,y) =
Weg(x — y) respectively. The minimum Lee, Euclidean and Chinese Euclidean distance
of a code C are defined by dr, = min{d(z,y)|z,y € C,x # y}, dg = min{dg(x,y)|z,y €
C,z # y} and dop = min{dcg(x,y)|z,y € C,x # y} respectively.

The standard inner product of z,y € Z; is defined by z -y = Yo zy;. The subset
Ct={zeZ|x-y=0,YyeC}is called the dual code of C.

Definition 1.2.3 (Self-orthogonal and self-dual codes). A linear code C is called
self-orthogonal if C C C+ and if C = C* then it is called self-dual.

If C is an [n, k] linear code over Z, then C* is an [n,n — k| linear code. It is well

known that linear self-dual codes over finite fields must have even length n and hence the



dimension k = %. However this is not true for codes over finite rings. In [62] self-dual
codes of odd lengths over Z, are constructed. More details on self-orthogonal and self-dual

codes can be found in [3, 4, 5, 24, 38, 39, 59, 62, 63, 64, 72, 76] and the references therein.

Definition 1.2.4 (Hamming weight distribution). Let Ay (i) be the number of code-
words of Hamming weight i of the code C'. The list of numbers {Ag(0), Ag(1),..., Ag(n)}
18 called the Hamming weight distribution of C.

Similar definitions are given for the Lee, Euclidean and Chinese Euclidean weight

distribution. The polynomial
Hame(x,y) ZAH "y

is called the Hamming weight enumerator of C'. This is the same as the polynomial

Hameg(z,y) Zx" Wi (e ©
ceC

If C'is an [n, k| linear code over Z, with dual code C* then the MacWilliams Identity is
given by Hame(x,y) = ‘—aHamC(m + (p—1)y,z — y), where |C| = p*. The complete
weight enumerator (cwe) for a code C over Z, is defined as

(¢) wl(c W (¢
cwec (o, 1y -, T E S (@),

ceC
where m =p—1, c = (c1,¢,...,¢,) € C, wi(c) = {k:cp = j}.
Definition 1.2.5 (Constant-weight code). If every non-zero codeword of a code has

the same weight then the code is called a constant-weight code.

The weight of a constant-weight code may be Hamming, Lee or Euclidean weight. It
is known that constant Hamming weight codes exist for all dimensions over finite fields.
They almost never exist over Z, that are not fields. Constant Lee or Euclidean weight
codes exist for any module over Zyt. See [80] for more details. Binary constant-weight
codes constitute an important class of error-correcting codes. A table of binary constant-
weight codes of length n < 28 is given in [15] while that for 29 < n < 63 is given in [68].
Ternary codes with constant Hamming weight have been studied in [56] which gives a table
with bounds for the maximum cardinality As(n,d,w). More details of constant-weight

codes can also be found in [33, 53], etc. and the references therein.
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Definition 1.2.6 (Simplex codes). A linear code is called simplez if every pair of

distinct codewords are the same distance apart.

It is clear that linear constant-weight codes are linear simplex codes and vice versa

since every pair of distinct codewords are the same distance apart [53].

Definition 1.2.7 (Equivalent codes). Two codes Cy and Cy are said to be equivalent
if one can be turned into the other by permuting the co-ordinate position of each codeword

and by permuting the code symbols in each position of each codeword.

Codes that differ only by a permutation are said to be permutation equivalent. Per-
mutation equivalent codes have the same complete weight enumerators, but equivalent
codes may have distinct complete weight enumerators. In the case of binary codes, two
codes are equivalent, if they are permutation equivalent. Also codes with the same com-
plete weight enumerators need not be equivalent. Reader may refer to [53, 75| for further

details on weight distributions of codes.

Definition 1.2.8 (Cyclic code). The linear code C' of length n over Z,, is called a cyclic
code if for each ¢ = (co,c1, ..., Cn_2,cn_1) € C, the codeword obtained by the cyclic shift

of co-ordinates (i.e., © = (¢p_1,C0,C1,- -, Cn_2) ) is also a codeword of C'.

Since C'is invariant under this single right cyclic shift, by iteration it is invariant under
any number of right cyclic shifts. Since a single left-cyclic shift is the same as n — 1 right
cyclic shifts, C' is also invariant under a single left-cyclic shift. Hence C' is invariant under
all left-cyclic shifts. Therefore the linear code C' is cyclic when it is invariant under all
cyclic shifts.

When studying cyclic codes over Z,, it is convenient to represents the codewords in
polynomial form ¢(z) = ¢g + 17 + ... + ¢, 22" * + ¢,_12"' € Zy[x] of degree at most
n— 1. With this convention, the shifted codeword ¢ corresponds to the polynomial ¢(z) =
Cn1+CoT+. .. +Cy 2™ Thus ¢(x) = xe(x) if 2™ = 1. That is ¢(z) = xc(x)(mod z"—1).
For a detailed survey of cyclic codes see chapter 4 of [46].

Now we will move off from error-correcting codes to cocycles and Hadamard matrices

as this is the other focus of this thesis.



1.3 Cocycles and Hadamard matrices

In this section first we will study the definitions of cocycle and Hadamard matrices and

then include some known results.

Definition 1.3.1 (Cocycle). Let G be a finite group and C be a finite abelian group.
The set mapping ¢ : G x G — C" which satisfies

o(a,b)p(ab, c) = (b, c)p(a,be), ¥ a,b,c € G is called a cocycle over G.

For instance if G = Z§ and C' = {£1} then ¢(u,v) = (—=1)**, for all u,v € G, is
a cocycle. A cocycle is normalised if p(1,1) = 1. A cocycle is naturally displayed as a
cocyclic matrix, i.e., a square matrix whose rows and columns are indexed by the elements

of G under some fixed ordering, and whose entry in position (a,b) is ¢(a,b).

Definition 1.3.2 (Hadamard matrix). A Hadamard matriz of order n is a square
matric H = [h;;] with entries h;; = £1, 1 < 4,5 < n, whose row vectors are pairwise
orthogonal. In other words HHT = nl, where H' is the transpose of H and I is the

identity matriz of order n.

A Hadamard matrix must have order 1, 2 or a multiple of 4. The Hadamard conjecture

proposes that a Hadamard matrix exists for every n =0 (mod 4).

Definition 1.3.3 (Generalised Hadamard matrix, [30]). Let G be a group of finite
order, H = [h;;] be a square matriz of order n, whose entries are elements of G. Then H
is said to be a Generalised Hadamard matriz GH(n,G) over G if

(i) whenever i # j, the sequence {hmhj_xl} with 1 < x < n contains every element of G
equally often,

(ii) HT has property (i).

A GH(n,G) is normalised if the first row and first column consist entirely of the
identity element of G. In the case of G = {£1} and n = 0(mod 4), the generalised
Hadamard matrix GH (n,G) is a Hadamard matrix.

The next type of matrix is sometimes referred to as a generalised Hadamard matrix
[78] and sometimes as a complex Hadamard matrix [25, 27]. However in this thesis we

will refer to this as a Butson Hadamard matrix.



Definition 1.3.4 (Butson Hadamard matrix, [16]). Let C, be the multiplicative
group of all complex p™ roots of unity. That is C, = {1,z,2°, ... 2P}, where z =
exp(2my/—1/p). A square matriz H = [hy;] of order n with elements from C, is a Butson
Hadamard matriz if and only if HH* = nl, where H* denotes the conjugate transpose of

H and I denotes the identity matriz of order n.

A Butson Hadamard matrix is normally denoted by BH(n,r). Note that r is not
necessarily a prime number. When r = 2 and n = 1,2 or a multiple of 4, BH(n,r) is
a Hadamard matrix. A generalised Hadamard matrix defined over the finite group C, is
a Butson Hadamard matrix. The following theorem gives us a nice relationship between

generalised Hadamard matrices and Butson Hadamard matrices.

Theorem 1.3.5. [Remarks 1.5, [30]]

(i) In the definition of a BH(n,r)-matriz, the condition HH* = nl is equivalent to the
requirement that H*H = nl.

(i1) Every generalised Hadamard matriz over C,. (i.e., GH(n,C,)) is a Butson Hadamard
matriz (i.e., BH(n,r)) .

(113) If v is a prime, every BH (n,r)-matriz over C,. (except for the matriz [1] of order 1)
is a GH(n, C,.)-matriz .

(iv) If r = pt, where p is a prime and t > 1, then there exists a Butson Hadamard matrix

of order p over C,., but certainly no Generalised Hadamard matriz of order p over C..

The next theorem describes the existence of Butson Hadamard matrices and Gener-

alised Hadamard matrices.

Theorem 1.3.6. [Theorem 1, [27]]
For primes p > 2, there ezists a Butson Hadamard matriz BH (n,p) over the cyclic group
C, if and only if there exists a generalised Hadamard matriz GH(n,Z,) over the additive

group Z, ={0,1,2,...,p—1}.

Definition 1.3.7 (Complex Hadamard matrix). The matriz H of order n with entries
from {1,i, —1,—i} that satisfies HH* = nl is called a complex Hadamard matriz of order
n, where i = \/—1, H* is the conjugate transpose of H and I is the identity matriz of

order n.



It is conjectured that a complex Hadamard matrix exists for every even order. In [74]
it is shown that every complex Hadamard matrix has order 1 or divisible by 2. A complex
Hadamard matrix is a special case of a Butson Hadamard matrix BH (n,p) for p = 4.
For the various type of constructions and further studies of complex Hadamard matrices

reader can also refer to [26, 28, 48, 51, 54, 58, 67].

Definition 1.3.8 (Cocyclic Hadamard matrices). Let ¢ be a cocycle over a finite
group G and M, = [p(a,b)]epec. If M, is a Hadamard (Complex Hadamard, Butson
Hadamard) matriz then M, is called a cocyclic Hadamard (Complex Hadamard, Butson

Hadamard) matriz.

Cocycles have been used to construct Hadamard matrices in [3, 6, 43]. In [57], co-
cycles are used to construct cocyclic complex Hadamard and cocyclic Butson Hadamard

matrices. These results have appeared in [58, 65].

Definition 1.3.9 (Hadamard exponent matrix). Let H = [h; ;] be a Butson Hadamard
matriz (in [25, 27] this is referred to as a complex Hadamard matriz) over C,, where
p is a fived prime, p > 2. The matric E = [e;;|, e;; € Z,, which is obtained from
H = [z¢] = [h;;], where x = exp(2m\/—1/p), is called the Hadamard ezponent matriz

associated with H.

By deleting the all zero row and column of E, the remaining elements constitute
a square sub-matrix E,, called the core of H. The elements of the Hadamard exponent
matrix F lie in the Galois field GF(p), and its row vectors can be viewed as the codewords
of a code over Z,.

We give the next definition as a generalisation of the definition of the Hadamard

exponent matrix since we are going to use this in the thesis.

Definition 1.3.10 (Exponent matrix). Let H = [h; ;] be a square matriz over C,, =
{1,z,2°,...,2" '}, where n is a positive integer and v = exp(2m/—1/n). The matriz
E = le;j|, eij € Zy, which is obtained from H = [x%3] = [h, ;| is called the exponent
matriz associated with H.

In the next section we will study the fundamental properties of the trace maps over

Galois fields and Galois rings respectively.
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1.4 The trace map and its fundamental properties

In this section first we will give a brief idea about the Galois field GF(p, m) and basic
properties of the trace map over GF(p,m). Then the Galois ring GR(p®,m) and funda-
mental properties of the trace map over GR(p®, m) are studied.

Finite fields are used in most of the known constructions of codes and for encoding
and decoding. Let p be a prime number and Z, be the set of integers modulo p. This
set forms a field of order p and it is also denoted by GF(p). The elements of GF(p)
are {0,1,2,...,p — 1} and all field arithmetic is carried out mod p. Suppose f(x) is an
irreducible polynomial of degree m over Z,. Then the set of all polynomials in z of degree
<'m — 1 with coefficients from Z,, and calculations performed modulo f(z), forms a field

of order p™. This is called a Galois field of order p™ and is denoted by GF(p, m).

Definition 1.4.1 (Automorphism). Let o be a one to one mapping from GF(p,m)
onto itself. If for all o, 3 € GF(p,m) and a € Z,

(i) ola+P) = a(a) + o (H),

(ii) o(af) = o(a)o(B) and

(111) o(a) = a

then o is called an automorphism of GF(p,m) over Z,.

The set of all such automorphisms of GF'(p, m) over Z, forms a group if we define the

composition of o and 7 by 7o o(a) = 7(0()).

Theorem 1.4.2. [Theorem 2.21, [52]]
The distinct automorphisms of GF(p, m) over Z, are exactly the mappings 0y, 01, . .., Om_1

defined by o;(a) = ¥, for all « € GF(p,m) and 0 < j <m — 1.

The automorphism oy of GF(p,m) over Z, which generates all automorphisms of
GF(p,m) over Z, by Theorem 1.4.2 is called the Frobenius automorphism of GF(p, m)
over Zy.

Let f be the Frobenius automorphism of GF(p, m) over Z, defined as

f:GF(p,m)— GF(p,m)
fla) = o

11



and let T'r be the trace map defined as

Tr:GF(p,m) — Z,
Tr(a) =a+ f(a)+ f2(a)+ ...+ fmH(a).

Theorem 1.4.3. The trace map satisfies the following properties:

For all o, € GF(p,m) and a € Z,

(i) Tr(a+ B) =Tr(a) + Tr(B).

(i1) Tr(ac) = aT' ().

(iii) Tr is a linear transformation from GF(p, m) onto Z,.

(iv) As a ranges over GF(p,m), Tr(«) takes on each value in Z, equally often, i.e., p™ !

times.

For a detailed proof of this theorem, see [52, 53].
Now we will study the Galois ring of characteristic p¢ and dimension m and the
properties of the trace map over the Galois ring. For more details on Galois rings of this

type, the reader may refer to [55].

Definition 1.4.4 (Galois ring). Let p > 2 be a prime and e be a positive integer. The
ring of integers modulo p® is the set Zy = {0,1,2,...,p° — 1}. Let h(x) € Zy|x] be a
basic irreducible monic polynomial of degree m that divides xzP" ' — 1. The Galois ring
of characteristic p° and dimension m is defined as the quotient ring Zy|x]/(h(x)) and is

denoted by GR(p®,m).

The element ( = = + (h(z)) is a root of h(z) and consequently ( is a primitive

m — 1)% root of unity. Therefore we say that ¢ is a primitive element of GR(p¢, m)

(p
and GR(p¢,m) = Zye[(]. Tt follows that GR(p®,m) = < 1,(,¢?,...,¢™ ! > and hence
|GR(p®,m)| = p*™. It is well known that each element v € GR(p®,m) has a unique
representation u = "¢ p'u;, where u; € T = {0,1,(,¢2, ..., ¢?"~2}. This representation
is called the p-adic representation of elements of GR(p®, m) and the set 7 is called the
Teichmuller set. Note that u is invertible if and only if ug # 0. Thus every non-invertible
element of GR(p®, m) can be written as u = Zf;,i p'u;, where k € {1,2,....e — 1}. By
using the p-adic representation of elements of GR(p®, m), the Frobenius automorphism f

has been defined in [12, 18] as
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f:GR(p*,m) — GR(p*,m)
flu) = pud.
Note that when e = 1, f is the usual Frobenius automorphism for the Galois field GF'(p, m)
[52]. The trace map over GR(p®, m) is defined by

Tr:GR(p®,m) — Zye
Tr(u) =u+ f(u)+ f2(u) + ...+ " Hu).

From the definition of Tr the following properties are satisfied:

Theorem 1.4.5. For any u,v € GR(p®,m) and o € Zye
(1) Tr(u+v) =Tr(u) +Tr(v).
(ii) Tr(au) = oTr(u).

(111) Tr is nontrivial.

The trace map can be used to go down from a code defined over an extension field to

a code defined over the ground field. Let I, be the ground field of the extended field F-.

Definition 1.4.6 (Trace code). Let C be an Fy--linear code of length n and
Tr:Fy — F, be the trace map. The code Tr(C), defined as the set of all vectors
(Tr(x1),Tr(xa),...,Tr(z,)) € Fyr, is called the trace code, where (z1,xs,...,x,) € C.

Another method of going down from a code defined over an extension field to a code

defined over the ground field is the subfield code.

Definition 1.4.7 (Subfield code). Let C' be an Fy--linear code of length n. The code
Cr,, defined as Cy, = C'NFY, is called the subfield code.

It is well known that the trace codes and the subfield codes are linear codes over the
ground field [F,. There is a nice relationship between trace code and subfield code which

is clarified by the following famous theorem due to Delsarte.

Theorem 1.4.8. [Theorem 12.14, [11]] Let C be an Fyr-linear code of length n. Then
(Tr(C))* = (CH)g,-

13



It is also known that the trivial bounds for the dimension of the trace code are
dim(C) < dim(7r(C)) < rdim(C). More details on trace codes can also be found in
[22, 36, 41, 69, 70, 73].

As we are going to use the trace map to construct mutually unbiased bases, we will

next study some basic theory of mutually unbiased bases.

1.5 Mutually Unbiased Bases (M UBs)

Let C™ be the complex vector space of dimension n. The inner product of z,y € C™,
where x = (1, 29,...,2,) and y = (y1,Y2, .-, Yn), is denoted by < z,y > and defined by
<w,y>=Y ., x;y;, where g; is the complex conjugate of y;. The norm of z is defined
by || z || = < #,2 >2. Two vectors = and y in C™ are called orthogonal to each other if
< z,y > =0. Let B be a basis of the vector space C". B is called an orthogonal basis if
for all x,y € B, < x,y > = 0. An orthogonal basis B is called an orthonormal basis if
forallz € B, ||z ||=1.

Definition 1.5.1 (Mutually unbiased bases). Let B and B’ be orthonormal bases of
the vector space C™. These bases are called Mutually Unbiased if and only if

\<b,b/>|:\/iﬁ, Vbe Bandb € B'.

The idea of mutually unbiased bases (MUBs) appeared in the literature of quantum
mechanics in 1960 in [66]. As they possess numerous applications in quantum information
science, researchers have allocated more time to study the existence of MUBs and have
introduced different types of construction methods. In [7] it has been proved that for
any dimension n, the number of MUBs, denoted by N(n), is at most n + 1 and when
n is a prime power then N(n) = n + 1. Different construction methods have been used
to construct MUBs. Authors in [49] have used the trace map over the Galois field of
characteristic p > 5 very successfully in order to construct MUBs of odd prime power
dimensions while the trace map over the Galois ring of characteristic 4 has been used to
construct MUBs of even prime power dimensions. For a detailed survey of MUBs the

reader may refer to [1, 2, 9, 20, 31, 32, 35, 50, 60, 61, 79] and the references therein.
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Chapter 2

Cocyclic Codes over Zp

2.1 Introduction

The cocyclic map has been used to construct Hadamard matrices [6] and these Hadamard
matrices were found to yield extremal binary self-dual codes [3]. The nature of the cocyclic
map allowed for substantial cut-down in the computational time needed to generate the
matrices and then the codes. In [58] Pinnawala and Rao exploited this property to
construct cocyclic complex and Butson Hadamard matrices and consequently to construct
simplex codes of type a over Z, and Zsye by defining cocycle maps via the trace maps over
Galois rings GR(4,m) and GR(2¢,m) respectively. In [65], the above authors extended
this method to construct some new linear codes over Z, and Z,. for prime p > 2 and
positive integer e. A challenging open problem was the extension of this method to
construct cocyclic Butson Hadamard matrices of order n for any positive integer n. Since
n = pi'ps?...pi*, where p; are distinct primes and e; are positive integers, i = 1,2, ...k,
the motivation is to focus attention on the ring R(n,m) = GR(p*,m) x GR(ps?*, m) X
... X GR(p;¥, m). However there is no known map over this ring similar to the trace map
over Galois rings and Galois fields. In this chapter we define a new map over the ring
R(n,m), which is called the trace-like map with fundamental properties parallel to the
other trace maps.

In Section 2.2 we include some preliminaries that we need in this chapter and in Section

2.3 we study the basic results of the Galois ring G R(p®, m) and the properties of the trace
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map over GR(p®,m). In Section 2.4 these properties are used to define a cocycle over
GR(p®, m) and to construct a cocyclic Butson Hadamard matrix of order p™. This matrix
is then used to construct a linear code over Z,. These results are from [57] (published in
[58]). Section 2.5 is devoted to the study of the ring R(n,m) = GR(p{*, m) x GR(ps?,m)
and defining a new map called the trace-like map over R(n,m). In Section 2.6, the
fundamental properties of the trace-like map are used to construct Butson Hadamard
matrices of order n™. The exponent matrix associated with this Butson Hadamard matrix
is then used to construct linear codes over Z,. In Section 2.7 we calculate the Lee,
Euclidean and Chinese Euclidean weights of the codes that we construct in Section 2.6.
In [37] Gupta et al. studied the senary simplex code of type «, 3 and v and introduced
a Chinese product type construction. In Section 2.8 we introduce the cocyclic senary
simplex code of type a as a particular case of codes over Z, for n = 6. Finally in section
2.9 we study a further generalisation of the trace-like map 7', called the weighted-trace

map, denoted by T,,.

2.2 Preliminaries

In this section we study the preliminary results that we need to use in other sections of
this chapter.

A linear code C' of length n over the integers modulo k (i.e., Zy = {0,1,2,...,k—1}) is
an additive sub group of Z}'. An element of C'is called a codeword and a generator matrix
of C' is a matrix whose rows generate C'. The Hamming weight Wy (z) of an n-tuple
r = (x1,T9,...,%,) in Z7 is the number of non-zero co-ordinates of x and the Lee
weight Wy (x) of x is Y., min {z;,k — 2;}. The Euclidean weight Wg(z) of x is
S min {z7, (k — z;)*} and the Chinese Euclidean weight Wey () of x is
Yoy {2 — 2cos (%) } The Hamming, Lee, Euclidean and Chinese Euclidean distances
between x,y € Z} are defined and denoted as dy(x,y) = Wg(z—y), dr(z,y) = Wi(z—y),
dg(z,y) = Wg(z —y) and deg(z,y) = Wer(z — y) respectively.

Cocycles (see Definition 1.3.1) have been used in the construction of cocyclic matrices

and consequently in the construction of error-correcting codes. In [44], Horadam and
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Perera define a code over a ring R as a cocyclic code if it can be constructed using a
cocycle or the rows of a cocyclic matrix or is equivalent to such a code.

Let w = exp(%) be the complex k™ root of unity and Cj, = {1, w,w?, ..., w1} be
the multiplicative group of all complex k" roots of unity.

A Butson Hadamard matrix (see Definition 1.3.4), is denoted by B(n, k) and in the
cases of k = 2 and k = 4, B(n,k) provides Hadamard matrices (see Definition 1.3.2)
and complex Hadamard matrices (see Definition 1.3.7) respectively. Several methods
have been introduced to construct complex and Butson Hadamard matrices. In [54]
Matsufuji and Suehiro use real valued bent functions and Cooke and Heng [27] use monic

polynomials. To construct cocyclic Butson Hadmard matrices, we need the properties of

the trace map over GR(p®, m), and we look at these in the next section.

2.3 Galois ring and the trace map

We defined the Galois ring in Definition 1.4.4, but we repeat it here for ease of reading.

Definition 2.3.1 (Galois ring). Let p > 2 be a prime and e be a positive integer. The
ring of integers modulo p® is the set Zy = {0,1,2,...,p° — 1}. Let h(z) € Zye|x] be a
basic monic irreducible polynomial of degree m that divides 2" ~* — 1. The Galois ring
of characteristic p° and dimension m is defined as the quotient ring Zye|x]/(h(x)) and is

denoted by GR(p®, m).

The element ( = x + (h(z)) is a root of h(x) and consequently ¢ is a primitive
(p™ — 1)™ root of unity. Therefore we say that ¢ is a primitive element of GR(p®,m)
and GR(p®,m) = Zy[¢]. Hence GR(p¢,m) =< 1,(,¢%,..., (™' > and |GR(p*,m)| =
p™. It is well known that each element u € GR(p®,m) has a unique representation:
u = 30 plug, where u; € T = {0,1,¢,¢?,...,¢?"~2}. This representation is called the
p-adic representation of elements of GR(p®,m) and the set 7 is called the Teichmuller
set. Note that u is invertible if and only if ug # 0. Thus every non-invertible element of
GR(p®,m) can be written as u = Zf;,i plug, where k € {1,2,...,e — 1}. We represent
elements of GR(p®, m) by u® = Zf;,i p'u;, where k € {0,1,2,...,e — 1}. By using the
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p - adic representation of the elements of GR(p®, m), the Frobenius automorphism f has

been defined in [12, 18, 77] as

f:GR(p*,m) — GR(p*,m)
flu) =320 p'ul

The following properties are satisfied by f:

Lemma 2.3.2. For all u,v € GR(p®,m) and o € Zye
(i) Flu+0) = f(u) + f(0).

(i) f(uv) = f(u)f(v).

(i11) f(a) = a.

Note that when e = 1, f is the usual Frobenius automorphism over the Galois field

GF(p,m) (see [52] for more details). The trace map over GR(p®,m) is defined by

Tr:GR(p®,m) — Zye
Tr(u) =u+ f(u)+ f2(u) +...+ 7 u).

The trace map satisfies the properties given in Theorem 1.4.5. In addition to these

properties, the trace map also satisfies the following property:

Theorem 2.3.3. [Lemma 2.1,[65]]
Given a Galois ring GR(p®,m), let Dy = {p*t | t = 0,1,2,...,p°* — 1} C Z,c and
u® € GR(p®,m), as defined above. As x ranges over GR(p®,m), Tr(zu™) maps to each

(m—1)+k

element in Dy equally often, i.e., p° times, where k =0,1,2,...,e — 1.

Proof:
For any x € GR(p®, m), consider the m - tuple V,, = (Tr(z), Tr(Cz), ..., Tr(¢™ 'z)) over

Zye = Dy. Let V = {V,|x € GR(p®,m)} and consider the following correspondence.
a:GR(p*,m) — V.

It is easy to see that « sets up a one to one correspondence between the elements of
GR(p®,m) and the m - tuples of V' over Dy = Z,e. Thus as z ranges over GR(p®, m),

each co-ordinate Tr(x(?), for i = 0,1,2,...,m — 1, must take each element of Dy equally
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p™ __ e(m—1)
e P

(ie., u® = u® =S piug; u; € T and ug # 0), as & ranges over GR(p®, m), Tr(zu®)

often, i.e., times. In general, for any invertible element u*) € GR(p®, m)

must also assume each element of Dy equally often, i.e., p¢™1) times.
If b is not invertible then «® = S"¢"! piu;, where k € {1,2,...,e — 1}. Now from the

expansion of Tr(zu®) and induction on k, as x ranges over GR(p®, m), Tr(xu®) must

takes each element of Dy equally often, i.e., ;’:jc = pem—(e=k) = pe(m=D1+k times. Il
Note that this proof is also clear from the multiplicative Cayley table of Z,.. For more
details on Galois rings of this type, the reader may refer to [55, 77] and the references
therein. We are now in a position to use the trace map to construct cocyclic Butson

Hadamard matrices of order p™ and codes over Zje

2.4 Cocyclic Butson Hadamard matrices and linear
codes via the trace map

In this section we will use the properties of the trace map over the Galois ring GR(p®, m)
that we studied in Section 2.3 to construct cocyclic Butson Hadamard matrices and con-

sequently to construct linear codes over Ze

Let w = exp(%r) be the complex k™ root of unity. Let C} be the multiplicative
group of all complex k" roots of unity. i.e., Cp = {1,w,w?, ...,w* 1} It is well know
that

k—1
S=» =0 (2.1)
5=0

Let H = [h;;] be a square matrix over C. The matrix E = [e; ], e;; € Zg, which is

obtained from H = [w®] = [h; ;] is called the exponent matrix associated with H.

Theorem 2.4.1. [Proposition 3.1, [65]]

Let p > 2 be a prime and GR(p®, m) be the Galois ring of characteristic p° and dimension
m. Let Cpe be the multiplicative group of all complex (p°)™" roots of unity.

(i) The set mapping
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v : GR(p°,m) x GR(p®,m) — Cie
pleics) = ()Tre)
18 a cocycle.
(i) The matriz H = [©(cs, ¢j)]e;.c;eGRr(pe,m) 15 @ Butson Hadamard matriz of order p™.
(i4i) The rows of the exponent matriz of H (i.e., A = [T'r(cicj)le, c;earpem)) form a linear

code over Zye with the parameters [n, k,dr] = [pem,m,pe(mfl) (]’26+2(e_1)>]

Proof:
(i) Let a,b,c € GR(p®, m). Then

_ wT’r’(ab)‘

Tr((a+b)e) _  Tr(ac)+Tr(bc)

= W w .

)
)
) — wTr(bc)
)

_ wTr(a(b+c)) _ wTr(ab)-l—Tr(ac)

From these equations we have

gp(a, b)90<a + b, C) = (p(b, C)‘)O(C% b+ C)'

Thus ¢ is a cocycle.

(ii) H = [p(ci, ¢j)]e;c;eaRpe,m)- To prove that HH* = p®™1, consider the sum

S= 3 elena)ple e, (2.2)

xz€GR(p¢,m)

where ¢(z, ¢;) is the complex conjugate of ¢(z, ¢;). From the properties of the trace map

2mi Tr(z(ci—cj))
S = Z (exp ( p )) . (2.3)

xz€GR(p¢,m)

we have

When ¢; = ¢j, it is clear that S = p“". When ¢; # ¢;, from Theorem 2.3.3 and the

equation 2.1 we have

prnDE § <e:rp<2pﬂj>>p - 0. (2.4)



Thus HH* = p“I.

(iii) Consider the exponent matrix A associated with H.
A= [Tr(cic))e,e;eanem)-

Since Tr(c;cj) € Zye, we can consider the rows of A as codewords over Z,e. Now consider
the matrix

Tr(c), i=1,2,...,p"
Tr(Cc), i=1,2,...,p"™

Tr((™te), i=1,2,...,p"™

. mXpEm

where ¢; € GR(p®, m). Since (' are invertible in GR(p®, m), from Theorem 2.3.3, each row
of G4 contains each element of Z,. equally often =1 times. We can also show that
the rows of G4 are linearly independent. Writing all the linear combinations of rows of

(G 4, we obtain
A= [TT(CiCj)}Ci,CjGGR(pevm)‘

Therefore G4 is a generator matrix for the code A and hence A is a linear code over Z,.
with the dimension m. Let x € A be a non-zero codeword. Then x can be written as
r = (T1,2,...,Tpem), where z; € Dy for i = 1,2,...,p". From Theorem 2.3.3, each

element in Dy, should appear in z equally often, i.e., p?™ D+ times. Therefore the Lee

er _ka

weight of z is pe(m—1) < > The minimum Lee weight of the codewords in A is ob-

e(m—l) pZe_p2(efl)

tained when k£ = e — 1. Thus d;, = min (Lee(z)) = p 4

parameters of the code A are [n, k,dr] = [pem, m, pem=1) (1928+M)]. ]

and hence the

So far in this chapter we have used the trace map over the Galois ring GR(p®, m) to
construct cocyclic Butson Hadamard matrices of order p®" and cocyclic linear codes over
Zye. We now have enough basic information to study the ring R(n,m) = GR(p]',m) x

GR(ps?,m) and define the new map over R(n,m), the trace-like map.
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2.5 The direct product of Galois rings and the trace-
like map

In this section first we will study the structure of the ring R(n,m) = GR(pi',m) X
GR(ps?,m), where n = p$'p5?. Then by using some number theory results, we define the
trace-like map over the ring R(n,m) and study its fundamental properties noticing that
these are parallel to the properties of the trace maps over Galois fields and Galois rings.

Let p1 # pa > 2 be primes and e, ey be positive integers. If n = pi'p5?, it is well

m
e X Zp?) .

known that Z,, = Zp‘il X Zpgz and hence for any positive integer m, Z,"' = (Zp1

For more details on these results see for example [34]. Let fi(x) and fa(x) be basic monic
irreducible polynomials of degree m over Zpil and Zpgz respectively. As in Section 2.3 the
Galois rings of characteristics pi* and p5* and common dimension m are defined as the
quotient rings Z,« [2]/(f1(x)) and Ze[2]/(f2(x)) respectively. These rings are denoted
by GR(pS',m) and GR(ps?,m). If ¢; and (, are defined to be {; = = + (fi(z)) and ¢, =
z + (f2(z)), the two rings can then be expressed as GR(pS', m) = < 1,1, ¢Z, ..., ¢ >
and GR(p3?,m) = < 1,(s,¢2,..., ¢ >. This tells us that GR(pS*, m) = Ly [¢1] and
GR(py,m) = Z,:2[C]. Hence any element ¢; € GR(pi',m) can be expressed as an m-
tuple ¢; = (ao, a1, ..., am-1) over Z,« while c; € GR(p5*,m) as ¢ = (bo, b1, ..., bp-1)
over Ze:.

Now consider the direct product of the two Galois rings GR(p7*, m) and GR(p5?, m).
Let R(n,m) = GR(p{*,m) x GR(p5?,m). Any element ¢ € R(n,m) can be written as
¢ = (c1,¢2), where ¢; € GR(p*,m) and ¢o € GR(p5?,m) and further as
¢ = ((ag,a1,...,am-1),(bo,b1,...,by_1)). Since Z, = Zp‘il X Zpgz, ¢ can also be written
as an m-tuple ¢ = (do,dy,...,dp_1) over Z,, where d; = (a;,b;). Here a; € Zp‘il and
b; € Zp;2, where 1 =0,1,2,...,m — 1.

Let ¢,¢’ € R(n,m). It is easy to see that R(n,m) is a ring under the addition ¢+ ¢ =
((do+dy), (di+dy), ..., (dm_1+d, ) and the multiplication cc = (dody, drdy, . .., dm-1d,, ;).
Also [R(n,m)| = n™ = (pi'py*)™ = pi""py>" = |GR(pi", m)||GR(p5*, m)|.

To continue on, we need a couple of number theory results. The first one is well known.

Lemma 2.5.1. [Corollary 4.4, [34]]
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If p is a prime and a is any integer then a? = a(mod p).

The following result may also be a well known result, but ready reference seems hard
to find. Therefore we state it giving the complete proof in order to apply the proof to

some theorems that will appear later in this section.

Lemma 2.5.2. Let n = pi'ps*>. Then Z, = Lgr X Ly and given o € Ly there
exist a; € Zpil and oy € Zpgg such that a = (oyps® + aopl’) mod n. Thus Z, =

{(a17a2)|0{1 6 Zpil,OéQ E Zp;g}.

Proof:
Since the ged(p{', ps?) = 1 there exist x,y € Z such that zp' + yps?> = 1. Multiplying
both sides of this equation by « € Z,, we have

a = (azp]' + ayps?) mod n.

=a = (azrp]') mod n+ (ayps?) mod n.

Suppose that axp' = t; mod n. This implies that axp' = nr + t; which implies
1 1

pit|(nr + t1). Since pS'|nr and hence pi'|t;, we can write t; = p{*ap. Thus

arpiy’ = pypyT+pron
=ar = pPr+ o
= ar = 9 mod p3?
i.e., g € ZpSQ'
Similarly we can show that ay = oy mod pi'. ie., a; € Zp‘il. Therefore there

exist a; € Zy and ap € Zye such that o = (aiph® + aopi’) mod n. Thus Z, =
{(Oél,OéQ)|CY1 S Zp;?l,OéQ GZPZQ}' ]
We are now in a position to define a new map and to prove its properties.

Theorem 2.5.3 (Trace-like map). Let T'ry and Try be the trace maps over GR(p7*, m)
and GR(pS?, m) respectively (see Section 2.3). For any ¢ = (c1,¢2) € R(n,m), the map
T over R(n,m) defined by
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T : R(n,m) — Zy
T(c) = p3?Tri(c1) + pitTra(ca)
satisfies the following properties:
For c¢,d € R(n,m) and o € Zy,
(i) T(c+)=T(c)+T().
(i1) T(ac) = oT(c).
(111) T is surjective.
Proof:
(i) Let ¢, € R(n,m) = GR(p;',m) x GR(p5?,m). Then ¢ = (¢1,¢2) and ¢ = (¢}, ),
where ¢, ¢} € GR(p7*,m) and ¢, ¢y, € GR(p5?,m). Since ¢+ ¢ = ((¢1 + ¢}), (ca + ¢)) we

have
T(e+ ) = p3Tri(er + &) + pTra(ca + &).
= p3Tri(cr) + p*Tri(ch) + p7* Tra(ca) + pit Tra(ch)(From Theorem 1.4.5)
= (p2Tri(cr) + piTra(ca)) + (05 Tri(cy) + it Tra(ch))-
= T(c)+T().

(ii) Let o € Z,, and ¢ € R(n,m).

T(ac) = pTri(acr) + piTra(acs).
= pP(ac + P fi(e) + .. AP fi(e) + P (acs 4+ aP? folcd) + .. 4 0P folcy)).
Here f; and f; are the Frobenius automorphisms over GR(pj', m) and G R(p5?, m) respec-

tively. From Lemma 2.5.1 we know that if p is prime then for any integer a, a”? = a(mod p).

Therefore we have
T(ac) = pya(Tri(a)) +pita(Tr(c)).

= oT(c).

(iii) Since T'ry and T'ry are both surjective and not identically zero, there exist elements
c1 € GR(p7*,m) and ¢o € GR(p5?, m) such that Tri(c;) = 1 and Tra(cy) = 1. Then for
¢ = (c1,62) € R(n,m), T(c) = p{*Tra(ca) + ps2Tri(c1) = pt + ps?. For all a € Z,, we have
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proved in (ii) that T'(ac) = aT'(c) and since pi* + p5? is not a multiple of either p; or po,

T'(ac) = oT(c) should represent every element in Z,, and hence T is surjective. O

The main purpose of this chapter is to apply the trace-like map to construct cocylic
Butson Hadamard matrices of order n™ and consequently to construct linear codes over
Ly, for n = pi'ps?. So we need to study the distribution of the trace-like map T'(cx) over
Z,, as x ranges over R(n,m), where ¢ € R(n,m). The following theorem explains this

distribution in detail for invertible and non-invertible elements ¢ € R(n,m).

Theorem 2.5.4. For any c € R(n,m) as x ranges over R(n,m), T'(cx) takes each element

m

Sij = {pipétlt =0,1,2,...,— } (2.5)
P1p2

equally often, i.e., pipénm_l times, where 0 <1 < e and 0 < j < es.

Proof:
First of all we will prove that T'(cxz) € S;;. Since ¢,x € R(n,m), ¢ = (c1,¢2) and
xr = (x1,23), where ¢1, 21 € GR(pS',m) and co, 29 € GR(p5?, m). In the case of ¢ = 0 it is
clear that T'(cz) = 0.

If ¢ # 0 and both ¢; and ¢y are non-zero, then as they are elements of Galois rings,

their p-adic representations are given by

e1—1

¢ = ugi):Zp'fulk: 0<i1<e —1, uy; #0and
ea—1

C2 = uéj)zzpéu%: 0<7<e—1, U2j7é0

respectively. Here uy, € 77 and ugy, € 75, where 77 and 75 are the Teichmuller sets of the
Galois rings GR(p{*, m) and GR(p5?, m) respectively. From Theorem 2.3.3, as x ranges
over R(n,m), since T'(cz) = p$*Tri(c1x1) + p{*Tra(coxs), the trace maps Trq(cix1) and
Try(comy) will take values in the sets D; = {pit; | t; =0,1,2,...,pF* " — 1} and

D; = {phts | t, =0,1,2,...,p3" 1} respectively. Thus

T(ex) € {p$piti +pi'phtolts = 0,1,2,...,p0 " — 1,4, =10,1,2,...,p5* 7 — 1}
{p1p2 (P2t + P )t = 0,1,2, ..., p T =1ty =0,1,2,...,p377 —1}.

25



Since the calculations are done modulo 7,

{37t +p7 o)t = 0,1,2,...,p5 T = 1,1, =0,1,2,...,p3 7 — 1} C Z,.

From Lemma 2.5.2,

{3 7t +p7 o)ty = 0,1,2,. .., = 1,1, =0,1,2,...,p3 7 — 1} = Lyor-ipea-i-
Hence T'(cz) € {pipht|t =0,1,2...,p5' 'p3> ) —1} = S; ;.

If c #0and ¢; = 0 (or co = 0) then T(cx) = p*Tro(coxs) (respectively T'(cx) =
p5*Tri(c1z1)) and we are reduced to the Galois ring case. From Theorem 2.3.3,
Try(cors) € Dj (respectively Trq(ciz1) € D;). This implies that
T(cx) € {p{'pht|t = 0,1,2,...,p5* 7 — 1} = Sy,

(respectively T'(cz) {p2 pitlt=10,1,2,...,p5" } Sio)
Thus for all ¢,z € R(n,m), T(cx) € S; ;.
From Theorem 2.3.3, as x; ranges over GR(p{', m) (respectively as z, ranges over

GR(p3?,m)) Tri(cizy) takes elements in D; (respectively Tra(cozs) takes elements in

e1(m—1)+i ea(m— 1)+J)

D;) equally often i.e., p (respectively i.e., p, times. Hence as z ranges

over R(n,m), T(cz) takes elements in S; ; equally often pr M pealm=DHi pipinmt

times. O

Since the map T satisfies properties similar to those satisfied by the trace maps over
the Galois fields and Galois rings, we call it the trace-like map.

As in Theorem 2.3.3, Theorem 2.5.4 is also clear from the multiplicative Cayley table
of Z,,.

Example 2.5.5. Consider the ring R(6,2) = GF(2,2) x GF(3,2). Consider the irre-
ducible polynomials f(x) = x*> + x + 1 over Zy and g(x) = x*> + x + 2 over Zz. Let
GF(2,2) = Zolz]/(f(x)) and GF(3,2) = Zs[x]/(g9(x)). If G = (f(z)) + = then f(G1) =0
and hence GF(2,2) = Zy[C1]. Similarly if ¢ = (g(x)) + = then g({) = 0 and hence
GF(3,2) = Zs|(s).
Frobenius automorphisms f1 and fy over GF(2,2) and GF(3,2) are given by
fi:GF(2,2) — GF(2,2)
filer) =

and
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fo: GF(3,2) — GF(3,2)
faole2) =

respectively.

The trace maps Try and Try over GF(2,2) and GF(3,2) are given by

TTl : GF(Z, 2) — ZQ
Tri(c1) = c1 + fi(er)

and
TTQ : GF(3, 2) — Zg
Try(ca) = c2 + fa(c2)

respectively.

The following tables illustrate the values of trace maps.

Element c1 | Tri(ey)
00=0+4+0 |0 |0
10=14+0 |1 |0
01=0+¢G |G |1
=14+¢|¢ |1

Element ca | Tra(co)
00=0+0 0 10
10=1+4+0 1 ]2
01=0+¢C |G |2
12=1+26|¢|0
22=92+26 |G| 2

20=2+0 |
02=0+20 | &
21=2+G | ¢
=1+¢ |G

= O = =

Now define the trace-like map T over the ring R(6,2) as follows:
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T:R(6,2) — Zg

3TT’1 (Cl) + 2TT'2 (CQ),

T(c)

where ¢; € GF(2,2) and co € GF(3,2).

(0,0),1 = (1,2),2 =

Zo X Zs, elements of Zg can be represented by 0 =

o~

Since Zg

(0,1),3

(1,1).

The following table illustrates the elements of R(6,2) and values of the trace-like map

over R(6,2).

(1,0),4 = (0,2),5 =

oun
W.c\ N~ O % MmO 1 MmN | MmN o~ O D
~ o~ N N N ~~ N N N ~ N N N
—~ ~ ~ ~ ~ ~|][ = ~ ~ =~ —~ ~|/| = ~ —~ —~ —~ —
=) AN — o AN — o N — o N — o N — o N —
N N N N N N (=) = (=] (=) =] o \m — — — — —
N~— N~— N~— N~— N~— N~— N~— N~— N~— S~— N~— N~— ~— N~— N~— ~— N~— N~—
o - ©o A o S —=H O 9~ O @~ o —H O @ —H o —
"~ m i i s i i Al i i s i i \mm s i s s i
N~— N~— ~— N~— N~— N~— S~— N~— N~— S~— N~— N~— SN~— N~— N~— ~—" N~— N~—
Cl — — Y — Y |~ Y~ Y~ — — || — — — — ~— ~—
B | | A | I | L | L |
lloesccac|leasascecac|leaacaeaa
— — — i — i
© o~ o o~ o~ = P e R (= S~ O (=
N~— N~— ~— N~— N~— ~— N~— N~— N~— N~— N~— N~— N~— N~— N~— ~— N~— N~—
~~ ~ ~ ~ ~ ~| =~ =~ ~ ~ —~ — —~ o~ o~ o~ o~
N A AN AN AN o o o o o o — — = —
\mm i i s i i \mm i i s i i s i i s i i
N~— N~— S~— N~— N~— S~— N~— N~— S~— N~— S~— N~— N~— S~— N~— N~— SN~— N~—
Q @) — (o] [2p) <t ov] e — [\ ™ <t o] o — N ™ <t o]
— — — — — — [yp] el o™ [ae] el o™ i) o] L0 O o] L0
—
Q
/T\ @) o] <t [ap) (o] — <t N [ — ] L0 (o] — o 0O <t [ap)
~~ N N ~ o~ ~~ o~
~—~~ N N ~ ~ ~—~~ N N N —~ ~—~~ N N ~
S N — ) N — o a — o a — S [\ — S [\ —
o O o o o o — — = — — N AN AN AN N AN
D N s N N N | B N N i
Jglo 4 © 4 © Dl = © 4 9o D4l 4 o -4 o -
| © =] = = =] = = =] = = =] = = =] = = =] =
N I N N | B I e g e
C1A N~— N~— ~— N~— N~— N~— N~— N~— N~— N~— N~— N~— N— N~— N~— ~— N~— N~—
~

o~ o~ o~ o~ o~ o~

~— — ~—~ ~—~ ~—~ =
_~ Y~ Y~ Y~

P N e e

o~ o~ o~ o~ o~ o~

~— — Y~ ~—~ ~—~ =
~~ I~ N ~~

T D D D T T

o~ o~ o~ o~ o~ o~

~— — Y~ ~—~ ~—~ =
~~~ ~ ~ ~ ~~

D D T T T

We now use the basic properties of the trace-like map over R(n,m) to construct
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2.6 Cocyclic Butsons Hadamard matrices and linear

codes via the trace-like map

In this section we define a cocycle by using the trace-like map in order to construct cocyclic
Butson Hadamard matrices of order n™ and consequently to construct linear codes over
L.

The following lemma can be used as an alternate way to prove the part (i) of the next

theorem.

Lemma 2.6.1. [Proposition 2.4, [6]]
Let o and (8 be cocycles over G and H respectively. Then v = a x 3 defined by

a x f((a,c)(b,d)) = ala,b)f(c,d), a,b€ G and c,d € H
1$ a cocycle over G x H.

Theorem 2.6.2. Letw = exp (%) be the complex n'™ root of unity, where n = p{' p3?.
Let C,, be the set of all complex n'"* roots of unity. Then
(i) The set mapping

¢ : R(n,m) x R(n,m) — C,
pla,b) = W@

18 a cocycle.
(ii) The matriz H = [¢(a,b)]apecrnm) %5 a Butson Hadamard matriz of order n™.
(iii) The rows of the exponent matriz associated with H (i.e., A = [T(ab)aper(nm)) form

ea—1

a linear code over Z, with the parameters [n, k,dy] = [n™,m, (n — p{'ps*~")n™ 1]

, where
p1 <p2 and e; < e,

Proof:
(i) Let a,b,c € R(n,m). Then

p(a,b) = W',

ola+bc) = W@t — ,T(a)+Te)
p(b,c) = Wt

ola,b+c) = @b+ = T(@)+T(ac)
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From these equations we have

o(a,b)p(a+0b,c) = p(b,c)p(a,b+c).

Thus ¢ is a cocycle. This proof also follows from Lemma 2.6.1: If o and (3 are the cocycles

defined over GR(p7*, m) and GR(p5?, m) respectively as in Theorem 2.4.1.

that is
a: GR(py',m) x GR(p',m) — Cya
alay,ay) = wiprl(al@)
and
B GR(py’,m) x GR(py*,m) — Cpe2
Blbr, by) = wy 2.
Then

ax B: R(n,m)x R(n,m) — C,

o x B((ar, by), (ag, b)) = w0

(%?Th(awz)) <%?Trz(b1b2)>
= e\ P1 e\ P2

<;§1'p§21 (p§2TT1(a1a2)+pi1TT2(blb2))>
e\P1 Py

— e(%T\/j (P;QTm(awz)-i—pilTrg (b1b2)))

— wT(ab)’ a = (a17 bl) and b = (QQ, b2)

Therefore ¢ is a cocycle.

(ii) Let H = [¢(a,b)]qpecr(nm)- To prove that HH* =n™I, consider the sum

S= > pla,x)p(x,b), (2.6)

z€R(n,m)

where ¢(x,b) is the complex conjugate of ¢(x,b). From the properties of the trace-like

map that we studied in Theorem 2.5.3 we have

S= ) W'l (2.7)

zE€R(n,m)
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When a = b it is clear that S = n™.
When a # b, from Theorem 2.5.4 we have

n

Z w7 (@(a=b)) pllp]nm ! Z wpllpét, (2.8)
z€R(n,m) t=0

where 0 < i < ey and 0 < j < es. From equation (2.1) we have S = 0. Thus the matrix
H = [p(a,b)]ape R(n,m) 1S @ Butson Hadamard matrix of order n™. Since we used a cocycle
for this construction, H is a cocyclic Butson Hadamard matrix of order n™.

(ili) Let B = [Tri(c1ac20)le,, . conccrpstm) @0d D = [Tra(c1pc2)]e,, cpsecrpe2,m) Pe the
codes over Zpil and ZPSQ respectively that we studied in Theorem 2.4.1. Let Gp and Gp
be the generator matrices of the codes B and D respectively and consider the m x n™

matrix G4 defined by

Ga = p5? [p5?™ copies of G| + pi* [pi*™ copies of Gp] . (2.9)
ie.,
[ p5*"copies of {T'ri(cy;)} | [ pit"copies of {Tra(cat)}
Ga = p2 p5*" copies of. {Tr(Cren)} L pi™" copies Of. {Tra(Cacat)} where
p5*" copies of {Trl(q”_lcu)} | pi' ™" copies of {Tra(¢5"~ 1621;)} |

[=1,2, ...,pflm and t =1,2,...,p3*". Thus the k‘th row of G4 can be written as

= p3* [Tr1(CFen)] + pit [Tra(CSea)] (2.10)
where 0 < k < m — 1. That is,

T = (Th1, Tk, - -+ Thay - - - Thnm ) (2.11)

where x, = pS*Tr1((Fey) + pS' Tra(CSey) for some [ and t.

Now let ag,aq, ..., a1 € Z,. Suppose that agrg + a1x1 + ... + @p_1Tm_1 = 0 for

ag, A1y, Q1 € Lo,
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Then for all a =1,2,...,n™,

QpToq + A1 T1q + .o+ U1 Z(m—1)a = 0.
= a0 (P Tri(cu) + pi' Tra(car)) +
ar (P Tri(Cien) + Py Tra(Cacar)) +
co o (P Tr (G en) + PP Tra (G o)) = 0V Lt
= p3Tr1 (cu (oo + a1t + .- + a1 (7)) +
Py (Cgt (040+041C2—|—...+04m,1@"’1)) = 0V It
= p2Tri(cycy) + piTry(cucy) = 0 Y Lt (2.12)

Here cl1 =ap+a(1+...+ am,lC{"_l and 0/2 =ag+ale+...+ am,lc;“—l.

Equation (2.12) is true if and only if
Tri(cycy) = 0= Try(cycy) ¥ 1t

However c¢y; # 0 for all [ and cg; # 0 for at least one t. Therefore cl1 =0 and 0/2 =0. If
g =oap+a1l+ ..+ am 1" =0then o = 0forall k =0,1,...,m — 1, since ¢¥
are linearly independent in GR(p$*,m). Similarly if ¢, = ag + 1o+ ... + am_1 (5 =0
then ap = 0 for all k = 0,1,...,m — 1, since (4 are linearly independent in GR(p5?, m).
Therefore x are linearly independent n™-tuples over Z,. Taking all the linear com-
binations of rows of G4 we can generate the matrix A. If we consider the rows of A

as codewords over Z, then from Theorem 2.5.4 the Hamming weight of each non-zero

codeword is given by (n — pip})n™ ! where i = 0,1,2,...,e; and j = 0,1,2,..., e,.
If po > p; and e3 > e, the minimum Hamming weight is (n — p?pil_l)nm_l. Since
A is a linear code the minimum Hamming distance dg = (n — p2pS ™!, Thus
n, k,dy] = [nm, m, (n — pgzp?—l)nmfl}. O

The next example illustrates this result.

Example 2.6.3. In this example we illustrate the code constructed by using the trace-like
map over R(6,2) = GF(2,2) x GF(3,2). Let T be the trace-like map over R(6,2) and
Try and T'ry be the trace maps over GF(2,2) and GF(3,2) respectively.

Let
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B = [Tri(a1b1)]a, beare2) =

o o o O
O =R o= O
- O = O

and

0 011
0110

Gp

Gg is a generator matrixz of B.

Let

DO N O
=N O O
_ = NN O

D = [Try(azb2))as pocar(s,2) =

N NN NN =, OO = O

_ O = =

O O O O O o o o o
_ O = = N O NN O
[\

NN = O

O NN = O

NO NN RO R kO
—_

and

0220
0 20 2

_ N
_ =
o =
=
NGRS

Gp is a generator matrix of D.

Now consider the matriz

Ga =3[9 copies of Gg| + 2[4 copies of Gp].

That 1is,
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Taoking all the linear combinations of these two codewords over Zg we obtain:

10

0

0

10

0

0

10

[T'(ab)aper(s,2)- 1t is clear that the parameters of this

This is the code given by A

code are [36,2,18].

It is relatively

€2
2

€1
1

Thus far we have studied the trace-like map over R(n,m) forn = p

€k
k

D

straight forward to extend these results to the case n = p{'p5®..

as

Theorem 2.6.4. Let Tr; be the trace map over GR(pj',m), where i = 1,2,...

defined in section 2.3. The mapping defined over R(n,m) by

T:R(n,m)— Zy

- TTZ'(CZ')

€4
K3

n
1 Pi

k

i

)

Cc

(

T

satisfies the following properties.
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Forc,c¢ € R(n,m) and a € Zy,:
(i) T(c+c)=T(c)+T(c).
(i1) T(ac) = aT(c).
(113) T is surjective.
Proof is similar to that of Theorem 2.5.3.
As in Theorem 2.5.4, the next theorem describes the distribution of T'(cz).

Theorem 2.6.5. For ¢ € R(n,m), as x ranges over R(n,m), T'(cx) takes each element

m

)

{sz H o —1} (2.13)

equally often i.e., 1_[2‘:1]9;71””‘*1 times, where | = (l1,1la,...,1l;), 0 < l; < e fori =
1,2, ... k.

Proof is similar to that of Theorem 2.5.4.
We use these properties of the trace-like map T over R(n,m) to construct cocyclic
Butson Hadamard matrices of order n™ for any n and consequently to construct cocyclic

codes over Z,,. The next theorem describes this construction.

Theorem 2.6.6. Let w = exp (%F) be the complex n'" root of unity, where
n= Hizlpil. Let C,, be the set of all complex n'™ root of unity.
(i) The set mapping

¢ : R(n,m) x R(n,m) — C,

p(a,b) = wh

15 a cocycle.

(ii) The matriz H = [p(a,b)]apermm) s a Butson Hadamard matriz of order n™.

iii) The rows of the exponent matriz associated with H (i.e., A = [T(ab)laper(nm)) form
b (

ekl

a linear code over Z,, with the parameters [n,k,dy| = [nm,m, (n—pi'ps* ... pyg )nm_l}.

Proof is similar to that of Theorem 2.6.2. In this case the generator matrix G4 of the

code A is
k m
n n
Ga= E r Py copies of Gi] :
. — (E) [(E)
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where (G; is the generator matrix of the code A; = [Tri(cc )LC, GRS m)’
We have now constructed codes over Z, by using the trace-like map over R(n,m)
in the form of T'(ax). In the next section we calculate the Lee, Euclidean and Chinese

Euclidean weights of these codes.

2.7 The Lee, Euclidean and Chinese Euclidean weights

In this section we first calculate the Lee, Euclidean and Chinese Euclidean weights of the
codewords of A = [T'(ab)]aper(nm), Where n = pi'p3*. Let x be any row of the matrix A.
As in Theorem 2.5.4 x consists of elements from
. n
PPy

equally often p’ipgnm_l times, where 0 <7 <e; and 0 < j < es.

Case I: p; =2 and py > 2

For 0 <i<e; —1and 0 <j <ey— 1 the Lee weight of x is given by

n
Qp%Qi

m—1loi, j i j n
Wii(x) = n™ 12 | 2] 2p, Zt +3

t=0
n2 L
%% = "= =
n(@) = mn ( 4 ) 4
and for i =e; and 0 < j < ey, — 1 it is given by
2€?p% B
Wia(z) = n™ 129 [ 2] 2% | D ¢
t=0

NP — (20p))°)

VVLQ(m) = 4

In this case the Euclidean weight of x is given by following formulae:

For0<i<e;—land0<j5<ey—1

ul
2p3 21

Loy, j in G2 2 ny?
Wei(x) = w124 | 2| (29)) @ || +(3)
t=0
m— n i PO 7122i1ﬂ
Wgi(x) = n 1<E<n2—3n2p§+2(p122))+ 1 )
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Fori=e;and 0<j<ey—1

Weo(z) = n™7129p0 | 2| (27p3)? (t)?

Weo(z) = n™ ! (% <n2 — (261p%)2)) )

The Chinese Euclidean weight in this case is given by

n

21;7% L.
m—lei i 2mt2'p?
Wesle) = a2 [ 7 (HCOS( " ))
Wep(z) = 2n™

Case Ill: p1 #p2>2,0<i<e;—land 0 < j <ep—1.

In this case the Lee weight is given by

rir)
2
Wi(z) = n"™'pipy | 2 | pipd t
t=0
= (n? — (piph)?
WL(QZ') — ( 4(12))’
the Euclidean weight is given by
n__q
plpd
We(z) = n"'piph [ 2] (pipd)? (t)°
t=0

Wg(z) = n™! (1—7; (nQ—(pipé)Q»

and the Chinese Euclidean weight is given by

n 1
i p) -
o Aint J
Wep(r) = o™ 'pip) g (2 — 2cos (—W p1p2>>
n
t=0

Weg(z) = 2n™.
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We can naturally extend the weights for the code A = [T'(ab)]spcr(nm), Where n =
Hle p;'. Let x be any row of the matrix A. As in Theorem 2.6.5, x consists of elements

from

k
S, = {Hpﬁitt:0,1,2,...,+li—1}
=1 H 7

i=1D

equally often l_ﬂllpljnm*1 times, where [ = (I1,1y,...,lx), 0 <[; <e; fori=1,2,... k.

Case I: py =2and p;, > 2 fori=2,3,... k.

ForO0<l;<egy—1land 0<1[; <e;,1=2,3,...,k, the Lee weight of x is given by

n —
Ik Rl
2o P,

k k

) ) n

Wia(z) = a2 []pi | 2 [ 27 [ & > tf+3
=2 1=2

t=0
2 m+1
WLl(«T) - pml (n_> _ n

and for [y =e;and 0 < [; <e; —1,9=2,3,...,k, it is given by

n

l.
21118 ,p)
2

k k
Wiao(z) = n™ 12 Hpﬁ 2|29 Hpi Z t
=2 i=2

nm—l(nQ _ (261 Hf:z péi)Q)
1 .

WLQ(ZE) =

In this case the Fuclidean weight of x is given by following formulae.

For0<li<ei—land0<[;<e;,1=2,3,...,k

k k 2
2
Wei(w) = nm'2h Hpi 2 <2l1 Hpﬁ) (t)? + <g>
=2 i=2

k k 2 koo

_om—1 | 2 I li I li n*2n | pi’

Wgi(z) = n oln 3n2 Ilpi+2 2 ”pZ 4= =2
=2 =2
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and for [y =e;and 0<[; <e; —1,1=2,3,...,k

k k 2 2 =20
Wea(z) = nm 27 []of | 2 (281 Hpi) (t)?
1=2 1=2

k 2
[ n . _
Wea(z) = n™! D n? — (2 ' | |pi>
i=2

The Chinese Euclidean weight in this case is given by

n

l

k IR, ) l k I
_ . 22 [, pi
m 12[1 l.l 2_9 =2 17
Wegp(x) = n Z|2| D; E COS -

t=0

WCE(CL‘) = 2n™.

Case II: p; # py > 2.

For0<l; <e;—1landi=1,2,...,k the Lee weight is given by

-1

n
I

1y, v
k k —=t—
Wi(z) = " ' [Iei |2 []P0 | D) ¢
i=1 i=1 t=0
AL
i = (T k) )
WL<£L’) = 1 s
the Euclidean weight is given by
1
i & 2 H§:1;’il
We(x) = o™ [l |2 <Hp?> (t)?
i=1 i=1 t=0

. 2
me1 [ .
Wg(r) = n™! D n2—<Hp?>
i=1

and the Chinese Euclidean weight is given by

n__j
k Iy pii k l;
) 2at | | i
Wep(z) = n™t Hpéz Z (2 — 208 (—W Hicy s ))
n
i=1 =0

Weg(x) = 2n™.
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We now have enough information to classify the code that we have constructed by using

the trace-like map over R(n,m) in the case of n = 6 as a simplex code of type .

2.8 Cocyclic senary simplex codes of type «

In this section we point out the definition and basic properties of senary simplex codes
of type «a as studied by Gupta et al. [37]. Then we use the technique that we have

introduced in section 2.6 to form cocyclic senary simplex codes of type a.

Definition 2.8.1. [[37]] Let G%, be a m x 2™3™ matriz over Zg consisting of all possible

distinct columns. Inductively, G, is written as

00...0 11...1‘22...2‘33...3‘44...4‘55...5
Gm—l ‘ Gm—l ‘ Gm—l ‘ Gm—l ‘ Gm—l ‘ Gm—l
with G¢ = [012345]. The code S generated by G2, is called the senary simplex code of

G, =

type o.

The code S has the following Hamming, Lee, Euclidean and Chinese Euclidean weight
distributions.

Ag(0) =1, Ag@B-6m1) =2 -1, Ag@d-6™ Y =3"—-1, Ax(-6m71) =
(2™ —1)(3™ —1).
Ap(0)=1, Ap(8-6m 1) =3"—1, Ar(9-6™1) =3m(2m —1).
Ag(0) = 1, Ap(27-6™1Y) =2m — 1, Ap(l6-6™1) = 3™ -1, Ax(19-6m71) =
(2m —1)(3™ —1).
Acp(0) =1, Ag(2-6™)=3™.2"—1,

Here Ag(i), Ap(i), Ag(i), Acg(i) denotes the number of 6™-tuples of Hamming,
Lee, Euclidean and Chinese Euclidean weight ¢ in S7.

Se is an equidistance code with respect to Chinese Euclidean distance. For more
details of this code read [37].

In the case of p; = 3,p, = 2,e; = e5 = 1, the generator matrix G4 in section 2.6 is
permutation equivalent to G%,. Hence the code generated by G 4 is a senary simplex code
of type a and in particular this is a cocyclic senary simplex code of type a. See Example

2.6.3 for S¢. Types 3 and 7 codes of this type follow from G4 as described in [37].
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2.9 The Weighted-Trace map

Thus far in this chapter we have studied the trace-like map and its fundamental properties
parallel to the trace map over Galois rings and Galois fields. The ring R(n,m) was the
direct product of Galois rings and Galois fields of the same degree (say m). This is
a motivation to study the ring R(d,n) that can be constructed by taking the direct
product of Galois rings and Galois fields of different degrees (say my, mo, ..., my), where

e1mi

d = pj

eomsg

Y2

€Lk

... Dy and n = pi'ps?...p*. In this section we study the structure of

this ring and give the definition of the weighted-trace map T, that first appeared in [45].
We study the the fundamental properties of T, and notice that the weighted-trace map
is a generalisation of the trace-like map. We use these properties to construct cocyclic
Butson Hadamard matrices H,, of order d. However, unlike in Section 2.6, the exponent
matrix A, associated with H,, does not form a linear code over Z,. Experimental results
shows that the code A,, is non-linear over Z,,.

Let GR(p5*,m;) be the Galois ring of characteristic p;’ and degree m;, where i =
1,2,..., k. Let R(d,n) be the direct product of these rings. i.e., R(d,n) = GR(p{*,m1) X
GR(p5?,ma) ... x GR(pi*, my), where d = p{*™ pg*™? ... piF™ and n = pi'p5? ... piF. Any
element ¢ € R(d,n) can be written as ¢ = (¢1,¢a,...,¢), where ¢; € GR(p;', m;), for
i=1,2,... k. Since GR(p;*,m;) = Z;Z;ﬁ we can write ¢; as an m; - tuple over iji. ie.,
ci=(cl, 2, ..., ™M), where ¢ € Lysi,forj=1,2,...,m;. Let M = Zle m;. We can now
write the elements of R(d,n) as M-tuples ¢ = ((ci,c3,...,c1"), (ch, c3, ... cy2), ..., (ch, ca,

.., %)), where e pri, for j € {1,2,...,m;}.

Let ¢, ¢ € R(d,n) and define the addition and multiplication of ¢, ¢ as follows:

c+c =(ci+c,catcy, ... cntc) and cc = (i), Cacy, . . ., CiCh).-

It is easy to show that R(d,n) is a ring under these binary operations and also that

ko eim;

the number of elements of R(d,n), denoted by d is given by d = [[;_, p;"™.
ie,d= Hle |GR(p;',m;)|, where |GR(p;*, m;)| is the number of elements of GR(p;", m;).

Definition 2.9.1 (Weighted-trace map). Let Tr; be the trace map over the Galois

ring GR(p;', m;), where i = 1,2,... k. The weighted-trace map over the ring R(d,n) is

41



defined by

T, : R(d,n)—7Z,

k
Tw(z) = Z nTri(m).

e;
b;

As in Theorem 2.5.3 we can prove that the weighted-trace map satisfies the following

properties:

Theorem 2.9.2. Let T, be the weighted-trace map over the ring R(d,n), where d =

€11m1

Y4

€212 CLME

P2 p™ and o= pSpSE ... pt*. For ¢,c € R(d,n) and o € Z, the following
properties are satisfied by Ty, :

(i) Tolc+c) = Tylc) + Ty(c).

(11) Ty(ac) = aTy(c).

(111) T, is surjective.

The weighted-trace map T, also satisfies the following property which is very similar

to that of the trace-like map in Theorem 2.6.5.

Theorem 2.9.3. Let ¢ = (c1,¢2) € R(d,n) and T, be the weighted-trace map over
R(d,n). As x ranges over R(d,n), T,(cx) takes each element in S; = {[[F, pit|t =
0,1,2,..., # — 1} equally often i.e., Hle p?<mi_1)+l" times, where | = (l1,la, ..., lg),
i=1P;
0<; <e; fori=1,2,... k.
We can use T}, to construct Butson Hadamard matrices of order d and consequently

to construct non-linear codes over 7Z,, as follows:

27

Theorem 2.9.4. Let n = Hlepfi and w, = e = be the complex n'* root of unity. Let
C,, be the multiplicative group of all complex n'" roots of unity and T,, be the weighted-
trace map over the ring R(d,n). Then

(i) The set mapping defined by

¢ : R(d,n) x R(d,n) — C,
p(a,b) = wy""
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1S a cocycle.

(ii) Matriz Hy, = [¢(a,b)]aper(an) s a Butson Hadamard matriz of order d.

(iii) The exponent matriz of H,, i.e., Ay = [Tw(ab)|aperdn) forms a non-linear code
over Z, with the parameters (d, N,wy), where d = Hle p;"™ s the length of the code,
N = TIe, ps™ is the number of codewords and wy = d — pE™ ... pe™p&™ =1 s the

manimum Hamming weight provided that pi* < pg? < ... <p* and my < mg < ... < my.

Proof:
(i) and (ii) are the same as Theorem 2.6.2.
(iii) Since the number of elements in R(d,n) is d, it is clear that the length of the code

Ay is d = []5, p¥™ and the number of codewords in A,, is also N = [[_, p%™. From

Theorem 2.9.3 it is clear that the Hamming weight of each codeword in A, is given by
d— Hlep?(mi_l)ﬂi, where 0 < [; <'¢; fori =1,2,...,k. When pi* < p5> < ... < p*
and m; < mo < ... < my the minimum Hamming weight of codewords in A, is

wy = d — piF™ L pSTp ™M Thus A, is a (d,d,d — pg™ .. py ™ pf ™) code over

L, [l

The next example illustrates this result.

Example 2.9.5. Consider the ring R(12,6) = GF(2,2) x GF(3,1). The trace maps Try
and Trq over GF(2,2) and GF(3,1) are given by

Try: GF(2,2) — Zs
Tri(c)) =c + ¢
and
Try: GF(3,1) — Zs

TT'Q (Cg) = C9

respectively.

The following tables illustrate the values of trace maps.
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c1 | Tri(e)
0010

10
01
11

— = o

ey | Tra(co)
010
111
2 12

The weighted-trace map T,, over the ring R(12,6) is

Ty : R(12,6) — Zg
Tw(c) = 3Tri(c1) + 2Tra(ca),

where ¢1 € GF(2,2) and co € GF(3,1).
The elements of the ring R(12,6) and their weighted-trace values are given in the

following table.

—~
2}
~—

—_— e e e T DT
N = O NN = OO = OO NN = O

—_
_— = = = = =R, O O O o o o

NQNQQN%%%(QQ%(QQ@

N
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The code A, = [Tw(ax)]a,xeR(m,(a) is

000O0O0OO0OO0OO0OOTOG®O0O0
02402402480 24
0420420422042
0000O0O0333333
0240243513251
A — 0420423153135
000333333000
024351351024
042315315042
0003330080333
0243510243251
| 02431502431 5]

and its parameters (d, N,wpy) are (12,12,6)

Clearly A, is a non-linear codes since the sum of the 10** and 12" rows is not a
codeword in A,,.

In this section we used the weighted-trace map 7T, to construct cocyclic Butson
Hadamard matrices and non-linear codes over Z,. In the next chapter we will use T,

to construct mutually unbiased bases of odd integer dimension d = pi'p5*...p}*~.
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Chapter 3

Mutually Unbiased Bases (MUBs)

3.1 Introduction

Two orthonormal bases B and B’ of the vector space C? are called mutually unbiased if
and only if | < b,b > | = \/LE’ forallb € Band b € B, where C is the complex number set.
Recently researchers have focused their attention on construction of mutually unbiased
bases (MUBs) in different dimensions. In [49] A. Klappenecker and M. Rotteler used the
properties of trace maps over the Galois field GF(p, m) and the Galois ring GR(4,m) to
construct MUBs of odd and even prime power dimensions respectively.

Let N(d) denote the number of MUBs of C? Tt is well know that the number of
MUBs is at most d + 1 [7, 42, 81]. Sets attaining these bounds are extremely interesting
because they allow quantum state tomography with projective measurements consisting
of a minimal number of operators [47]. It is also known that N(d) = d + 1 if d is
a prime power dimension [7, 47, 81]. The exact value of N(d) is not known for non-
prime dimension d. However in [49] it has been proved that if d = p{'p5’...p;* then
N(d) > min{N(p$*), N(p5?), ..., N(pg¥)} and the case d = 6 is studied in [35]. In this
chapter we use the weighted-trace map 7T, that we studied in Section 2.9 to construct
min{N(pi*), N(p5?),..., N(p*)} + 1 MUBs of odd integer dimension d given by d =
pi'ps? ... pF. Lemma 3 in [49] gives a product construction of MUBs of odd integer
dimension d, but it is clear that this is an elimination search. Our construction is very

structured and points to possible future work in the area.
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In Section 3.2 we study the basic theory of MUBs and give some known construction
methods. Section 3.3 is devoted to the construction of MUBs of odd integer dimension d
by using the weighted-trace map T, and finally we give a couple of examples to illustrate

the construction.

3.2 Preliminaries and known results

Let C¢ be the complex vector space of dimension d. The inner product of z,y € C? is
denoted by < z,y > and is defined by < z,y >= Zle x;U;, where y; is the complex
conjugate of y;. The norm of  is defined by || z |=< z,2 >2. Two vectors z and y in
C? are said to be orthogonal to each other if < z,y >= 0. Let B be a basis of the vector
space C%. B is called an orthogonal basis if for all z,y € B, < x,y >= 0. An orthogonal

basis B is called an orthonormal basis if for all z € B, | z ||= 1.

Definition 3.2.1 (Mutually unbiased bases). Let B and B be orthonormal bases of
the vector space C?. These bases are called mutually unbiased if and only if

| <b,b' >| = forallbe Bandb € B

We recall the definitions of trace maps over Galois fields and Galois rings to describe
some known constructions of MUBs that use the trace map.
Let f be the Frobenius automorphism over the Galois field GF'(p,m) defined as
[ GF(p,m) — GF(p,m)
flx) =P

and T'r be the trace map defined as

Tr:GF(p,m) — Z,
Tr(e) = o 4 f(@) + f2x) + .+ 7 ().

The trace map T'r satisfies the properties given in Theorem 1.4.3. The following definition
of an additive character of the additive group GF(p, m) plays a major role in the next

few theorems.
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my/—1
Definition 3.2.2 (Additive character). Let w, = 62 e be the complex p™ root of

unity. The function x, defined by
xi(r) = wp"® Vo e GF(p,m) (3.1)
is an additive character of the additive group of GF(p,m).

For z,y € GF(p,m), from Theorem 1.4.3, we have Tr(x + y) = Tr(z) + Tr(y).
Therefore it is easy to see that x1(x+y) = x1(z)x1(y). All additive characters of GF(p, m)
can be expressed in terms of y;. For more details on additive characters please read
chapter 4 in [52].

Theorem 3.2.3. [Theorem 5.7, [52]]

Let b € GF(p,m). For all v € GF(p,m), the function x; defined by x»(x) = x1(bz) is an
additive character of GF(p,m) and every additive character of GF(p,m) can be obtained
in this way.

Definition 3.2.4 (Weil sums). Let x be a nontrivial additive character of GF(p,m)

and let f be a polynomial of degree n over GF(p,m). The sum

> x(f@) (3:2)

2z€GF (p,m)
is called the Weil sum.
Theorem 3.2.5. [Theorem 5.38, [52]]
Let f be a polynomial of degree n > 1 over GF(p,m) with ged(n,p™) =1 and let x be a
nontrivial additive character of GF(p,m). Then

> xU@)| < (=1 (3.3)

z€GF(p,m)

The following lemma is a particular result from Theorem 3.2.5 that is in [49].

Lemma 3.2.6. [Lemma 1, [49]]
Let GF(p,m) be a Galois field of characteristic p and x a nontrivial additive character of
GF(p,m). If f is a polynomial of degree 2 over GF(p,m) then

> x(f@)| = v (3-4)

z€GF(p,m)
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The following construction of MUBs of odd prime power dimensions is based on the

trace map over the Galois field GF(p, m).

Theorem 3.2.7. [Theorem 2, [{9]]
Let GF(p,m) be the Galois field of characteristic p and T'r be the trace map over GF(p, m).
For a € GF(p,m), let B, = {v.p|b € GF(p,m)} be the set of vectors given by
xV/=T
Vab = \/%*m <Wgr(ax2+bx)>xeGF(pym), where w, = 62 e is the complex p™ root of unity. The

standard basis of CP" and the sets B, form an extremal set of p™ +1 MUBs of CP".

Proof:
For a,c € GF(p,m) let B, and B, be the sets of vectors defined above. Let v, € B, and

Ue,q € B.. From the definition of the inner product of two vectors we have

E wTr(az2+bx)ng(Cm2+dI)

< Vgp; Ved > = D

2z€GF (p,m)
27 2 —27i 2
E : (6 » )Tr(aa: +bx) (6779 )Tr(cm +dx)
z€GF (p,m)
2mi 2 2mi 2
E (6 » )Tr(a:c +bx) (6 » )—Tr(cm +dz)
z€GF(p,m)
2mi 2 _ 2
E (6 p )Tr(a:z; +bz)—Tr(cx*+dz)
z€GF (p,m)

r((a—c)z?+(b—d)x
S yfrle-oetto-da)
2z€GF (p,m)

EIEI R ERET

Thus

1
| < Vo tea > | = |5 Y wprlemdr A (3.5)

z€GF (p,m)
Suppose that a = ¢, i.e., both vectors belong to the same basis. If b = d then
| < VapsVea > | =1and if b # d then from equation (2.1) in Chapter 2 and the properties

of the trace map given in Theorem 1.4.3 we have | < v4p,v.q > | = 0. Thus B, is an

p
Thus B, is mutually unbiased with the standard basis of CP”. On the other hand, if a # ¢

orthonormal basis of the vector space CP". The coefficients of the vector v,; are \/L—m

then from Lemma 3.2.6 we have | < vgp, 0.4 > | = \/%Tn. Thus the bases B, and B, are
mutually unbiased. It is also clear that there are p™ + 1 MUBs. O]
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Authors in [49] also use the trace map over the Galois ring GR(4, m) to construct MUBs

of even prime power dimensions as follows.

Theorem 3.2.8. [Theorem 3, [49]]

Let GR(4,m) be the Galois ring of characteristic 4, Tr be the trace map over GR(4, m)
and T be the Teichmuller set of GR(4,m). Fora € T, let B, = {vap | b € T} be the
set of vectors given by vep = \/%Tn (wfr((aJrQb)x))xeT, where wy = e s the complex 4"

root of unity. The standard basis of C*" and the sets B, form an extremal set of 2™ + 1

MUBs of C?".

The following lemma gives the lower bound for number of MUBs when the dimension

is a prime factorization.

Lemma 3.2.9. [Lemma 3, [49]]
Let d = pi'ps?...pS be a factorization of d into distinct primes p;. Then N(d) >
min{N(pi'), N(p5’), ..., N(pir)}-

Proof:
We denote the minimum by m = min;N(p;’). Choose m mutually unbiased bases
BY BY) .. B of P for all i in the range 1 <i < r. Then {B,il) X Bl?) X ... B,gr) :
k=1,2,...,m} is a set of m MUBs of C% O

In this section the trace map over the Galois field GF(p,m) and the Galois ring
GR(4,m) have been used to construct MUBs of odd and even prime power dimensions
respectively. This is a motivation to use the weighted-trace map T,, that we have studied

in Section 2.9 to construct MUBs of odd integer dimensions d = p{'p5*...p¢r.

3.3 MUBs via the weighted-trace map for odd inte-
ger dimensions

So far we have studied the use of trace maps over the Galois field GF(p, m) and the Galois

ring GR(4,m) to construct MUBs of odd and even prime power dimensions respectively.
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When d is not a prime power then the exact value of N(d), that is the number of MUBs of
dimension d, is not yet known. As mentioned in [49] the problem of determining N (d) is
similar to the combinatorial problem of determining the number of mutually orthogonal
Latin squares M (d) of size d x d. In [49] it is shown that for a given d = p{'p3*...p¢r,
a factorisation of d into distinct primes p;, N(d) > min{N(p{'), N(p3?),..., N(p5)}.
Numerical evidence seems to suggest that considerably fewer MUBs might be possible if
the dimension is not a prime power. In this section we construct sets of MUBs of odd
dimension d by using the weighted-trace map T,, that we studied in Section 2.9. For a
given d = q1¢s . . . ¢, where q; < ¢u < ... < q, are odd prime powers, we construct the set
of ¢ + 1 MUBs of dimension d.

Let us recall the ring that we studied in Section 2.9. Let n = pyp,...p, and d be an
odd integer such that d = p{'p5* ... 0% = qiqs . . . ¢, where ¢1 < g2 < ... < ¢,. Consider
the ring R(d,n) = GF(py,e1) x GF(pa,e3) X ... x GF(p,,e,), where for j = 1,2,...,r,
GF(p;,e;) is the Galois field of characteristic p;. If z,y € R(d,n) then z = (z1,22,...,2,)
and y = (y1,¥2,...,Yr), where z;,y; € GF(pj,e;) for j = 1,2,...,r. R(d,n) is a ring
under the addition and multiplication of x,y defined by

r+y = (r14+y,22+Yy2, ..., 2 +y,) and
ry = (x19y1,%2y2, ..., Ty, ) respectively.
Let Tr; be the trace map defined over the Galois field GF(p;,e;). The weighted-trace
map over the ring R(d,n) is defined by
Ty : R(d,n) — Z,
Tw(w) =2 ey 5o Tril;).
In Theorem 2.9.2 we have proved that the following basic properties are satisfied by the
weighted-trace map. Let z,y € R(d,n) and a € Z,,. Then
(i) Tw(z +y) = Tw(z) + Tuw(y)
(ii) Ty(ax) = aTy(x)
(iii) T, is surjective.
The main construction of this section is based on the weighted-trace map. Before we

state the main theorem, we state and prove the following lemma that is mentioned in [71].
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Lemma 3.3.1. Let R(d,n) be the ring defined above by using the direct product of Galois
fields and T, be the weighted-trace map over R(d,n). Let T'r; be the trace map over the

Ty —1 2rv/=1
Galois field GF(pj,e;). If w = e and wj=-e P then

Z wTw(:p) _ ﬁ Z u)?rj(mj). (36)

z€R(d,n) Jj=1x;€GF(pj.ej)

Proof:
Since z € R(d,n) we have © = (21, 29,...,2,), where x; € GF(pj,e;) for j =1,2,... 7.
By the definition of the weighted-trace map we have

Z whw(@) = Z w i=1 (55 T3 (1))

z€R(d,n) z€R(d,n)
Y I
z€R(d,n) j=1
Collecting all the like terms on the right hand side of the above equation we get

Z oTw(@) — ﬁ Z wfrj(xj).

z€R(d,n) J=1z;€GF(pj,ej)

We can now move into the major construction of this section which is the MUBs of
odd integer dimension d. We state the following theorem in order to explain this con-
struction by using the properties of the weighted-trace map over the ring R(d,n) and the

result in Lemma 3.3.1.

Theorem 3.3.2. Let d be an odd integer such that d = pi'ps*...p" = qiq2-..qr,
where ¢4 < o < ... < Gr, B = p1pa...pr and q = p;'. Let R(d,n) = GF(p1,e1) X
GF(p2,e2) X ... X GF(pr,e.). Let Tr; be the trace map over the Galois field GF (p;,e;)
forj =1,2,...,r and T, be the weighted-trace map over the ring R(d,n). In addition

2/ =T 2my/—1 . .
letw=e"n andw;=e€ * , forj=12...,r. Fora € R(d,n), consider the set of
vectors B, = {vap|b € R(d,n)}, where v,p = \/LE (wTw(“IQerx))xeR(d’n). Now choose a set

{B,), By@), ..., By} such that if a® = (agt), aét), e ,aﬁ“) then fort #k, 1 <tk < q
: (t) (k) - d
and for all 1 < j < r the components a;” # a;”. Then the standard basis of C* and the
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set {B,ay, By, - -, By } form a set of ¢ +1 MUBs of dimension d. Further there are

q1! x e X o X ... X o such sets of MUDBs.
q1 0 0
Proof:
Fora,b, o, B € R(d,n), let v, = - (wTw(“z2+bx)) and v, 3 = — (u)Tw(wuﬁ“/’)) .
g (d,n) bV 2€R(d,n) 0V 2€R(d,n)

By using the definition of inner product of two vectors and from the properties of the

weighted-trace map we have

1 —Q SCQ —0D)x
| < VapyVap>| = y Z Tw((a—a)z?+(b-p)z) |
zE€R(d,n)

We know that a, b, a, 5, € R(d,n) are r-tuples that can be written as a = (ay, as, . .., a,)
and similarly b, «, 5, x, where a; € GF(pj,e;), 1 < j < r. Now from Lemma 3.3.1 we

have
1 - Tri((aj—a;)x24+(bj—F)x;
| < Va,bs Va,B >| = EH Z u)j ri((a; aJ)x] (b5 —B;)z;) .
j=1 l‘jEGF(pj,ej)

Let us consider the following two cases:

Case 1: Suppose a = a, i.e., both vectors belong to the same basis. Then forall 1 < 7 <,

a; = «;. Hence

1 e (bs— B )z
| < VapyVap >| = EH Z ijJ((b] Bi)es) |

J=1z;€GF(pj.e;)

If b= (3 then b; = §3;, for all 1 < j <r. Hence

‘ < Va,bs Vo, > ‘ =

1 T
d H 4q;
j=1

= 1.

If b # (§ then b; # (; for at least one t, where 1 < ¢ < r, and from the properties of the

trace map over Galois fields, for these t we have

Z w?"t((bt—ﬁt)ﬂct) — 0.

2t €GF(pt,et)
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Thus

< Vab; Vo3 > | = E H Z wf 5 ((bj—Bj)z5) .0

j=1,j#t J;jEGF(pj,e]')
= 0.
From the definition of orthonormal basis, this proves that B, is an orthonormal basis of
the vector space C¢.
Case 2: Suppose a # «. Then a; # «; for at least one j, where 1 < j < r. From

Lemma 3.2.6, for these 7 we have

Trj((aj—az)z+(bj—B;)z;)
> ] = Vi

z;€GF(pj.e;)

If a; = ay for some t, where 1 <t < r, then for these ¢, we have

Tri((ar—ar)z2+(be— Bt )at) 0  when b; # (3,
thGGF(pt,et) Wy —
¢ when b = ;.

Without loss of generality we can assume a; = oy for just one t. Then

1 T T ( v 2+ b—ﬂ 1
g N - | _ C_Z H Z wj 5 ((a; Oég)w] (bj—Bj)x;) > (0 or qt)
j=1,j#t 2;€GF (pj,e;)
ie.,
< Va,by Vo, > | =0
or

1 '
<VapVap > | = o Il v xa

=15t
B 1
Ilc e VG

1
£ o

Therefore if a # « and for all j, a; # o, then

’ < VUg,by Va,3 > | =

Slis
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Thus for B, and B, to be mutually unbiased, it is necessary that ¢ and a do not have
any co-ordinates in common.

In addition to this the coefficients of the vector v, ; have absolute Value , hence B,
is mutually unbiased with the standard basis of C.

Finally, since the first component of a can be chosen in ¢; ways, the total number of
MUBs together with the standard basis cannot exceed ¢; + 1. Since the j* co-ordinate

ways, there are ¢! x o X o X ... X o

1 1 ¢ 5t

of a can be chosen in

such sets of MUBs.

The next couple of examples illustrate this construction.

Example 3.3.3. Let R(15,15) = GF(3,1) x GF(5,1). Let T,, : R(15,15) — Z15 defined
by Ty(x) = 5Tr1(x1) + 3Tre(xs) be the weighted-trace map over the ring R(15,15), where
Try and Try are trace maps over GF(3,1) and GF(5,1) respectively. We shall label the
elements of GF(3,1) and GF(5,1) as follows:

GF(3,1) = {0,1,a} = {0,1,2}.

GF(5,1)

={0,1,8,5% 8} = {0,1,2,3,4}.

The elements of R(15,15) can be written as follows.

0=(0,0) | 1=(0,1) | 2=(0,2) | 3=(0,3) | 4=(0,4)
5=(10) | 6=(1,1) | 1=(1.2) | 8=(1,3) | 9=(1.4)
10=(2,0) | 11=(2,1) | 12=(2,2) | 15=(2,3) | 14=(2.4)
Consider the basis B, = {Vau|b € R(15,15)}, where V,, = (W %(ax2+b$)> .
pAS s

Here wyis = e™ 5 is the complex 15" root of um'ty It can be calculated that if (a—a') € R*
Tw )22+ (b—b')
then S = | < Vap, Vo iy > | = |erR(15,2) Wis (a4 | =

invertible elements of R(15,15).

—, where R* 1s the set of

Followings are the such sets of MUDBs:
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{Bo, Bs; Bi2},{ Bo, Bs, Bi3}, { Bo, Bs, B1a}
{Bo, Br, Bi1},{Bo, Br, Biz}, { Bo, Br, Bia}
{Bo, Bs, B11},{Bo, Bs, Bi2}, { Bo, Bs, B14}
{Bo, By, B11},{Bo, By, Bia}, { Bo, Bg, Bi3}

{Bb B5; B12}7 {Bla B57 Bl3}7 {Bla B57 B14}
{Bh B7, BlO}» {Bla B77 B13}7 {Bla B77 Bl4}
{Bb B& 310}7 {Bh 387 B12}7 {Bla 387 B14}
{Bh BQ; B10}7 {BI; 397 312}7 {Bla Bg, Bl3}

{B2, Bs, Bi1},{ B2, Bs, Bi3}, { B2, Bs, Bia}
{327 BG) 810}7 {827 367 313}7 {B27 B67 Bl4}
{B27 B8; B10}7 {327 B& Bll}7 {B2; B87 B14}
{B27 BQ; BlO}» {327 397 Bll}y {B2; B97 Bl3}

{Bs, Bs, B11},{Bs, Bs, Bi2},{ B3, Bs, Bia}
{Bs, B, Bro}, { Bs, Bs, Bi2}, { Bs, Bs, B14}
{B3, Br, Bio}, { Bs, By, B}, { B3, Br, Bia}
{Bs, By, Bio},{ B3, Bo, B11 },{ B3, By, B12}

{B47 BS; Bll}» {B47 B57 BlQ}y {B4; B57 Bl3}
{Bu, Bs, Bio}, { Ba, Bs, Bi2},{ Ba, Bs, Bi3}
{B47 B’?; B10}7 {B4; B77 Bll}7 {B47 B77 Bl3}
{B47 BS; BlO}» {B47 BS) B11}7 {B4; BS; B12}'

It is clear that N(15) = 3 = min {3,5} and together with the standard basis of C'

we can select 4 MUBs of C¥°. There are 60 such sets of MUBs given by

5
q1! x & =3l x

q1 3

Followings are the vectors of the set of MUBs { By, Bg, B12}:
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lgo ==
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

Y

3 3 ,6 .6 ,6 ,9 ,9 9
11,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,

6 6 3 .3 3
L1,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,

L1,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,wl5,w15, 5

Y

13)

wis),

9 9 3 3 3 1212 112 6 )
1

wis)

12 12,9 ,9 90 , 6 6 ,6
11,1 w15’w157u}157w157w157w157w15’w157w157w157w157 5

Y

10
1,w15,w15,1 w15’w1571 w157w1571 w15,w15,1 W15>W15)

3 8 13,6 11 9 14, 4 12
17%57“157W157W157W157W157W157W15aW157W157W157W157W157

5)s

{

(1,

(1,

(1,

(

(

( wj
(1, wis, wig, Wi, Wi, Wis, Wiz, Wis, Wis, Wis, Wis, Wiz, Wis, Wiz, Wis),
(

(

(

(

(

(1,w

(1,

9 3 8 .13 76
1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15 )

Y

)
7 9 6 3 )

1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15

5
1 w15,w15,1 w15,w15,1 W157W1571 w15,w15,1 W157W15)

3 3.8 6 9 4
1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

6 7 3 13 8 ,.9
1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15 )

157“’157 Wis, Wi, W5, W5, Wis, Wis, Wi, Wi, Wi, Wis, Wis, Wl

Y

}.

12 7 2 9 4 14 6 1 3

9 4 ,14 .3 ,13 .8 12,7 ,2 6 )
15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)

136 -

5 5 .3 8 .8 12,2 ,2 ,12 92 2 3 8§ 8§
{(1,w15,w157w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)

6 ,11 ,11 ,3 ,8 .8 6 11 5
1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15, 1 uh5a°"15)

9 9 5
1 w15,w15,w15,w15,w15,w15,w15,w15, 1 w15,w15,w15,w15,w15),

2 9 14 14 .9 )
)

12 5
1 W157W157W157W157W1571 W157W157W15=W157W157W157W157W15

3 8 ,8 6
1 w15,w15,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

3 3 7 7
1 C‘115>1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

4 .9 ,9 4
1 W1571 W15’W15=W157W15=W157W1571 w1571 w15,w15,w15 )

7 4 .9
1 w15,1 w15’w157w15’1 W1571 w15,w15,w15,w15,w15,w15),

13

6 3 ,.13,3 6
(1, Wlsal wls?w15aw157w157w157w157w157w157w1571 W1571)
6 3 3
(1, W15>1 1 w15,1 Wlsawl5aw157W15aW157W15aW15>W15,W15 )

3 3 13 7 7 .3 .3 ,.13
L1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)
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6 6 3 3 13 6 6
]' 1 CdlSaC0157C015aCd15>¢0157C015,0015,0015,Cdl5,c015, 1 1 cul5 R

9 9 .4 9 9 12
(1,1 W15>W157W157W157W157W157W1571 1 W157W157W15=W15 )

12 4
L1 w15,w15,w15,w15,1 1 w15,w15,w15,w15,w15,w15,w15),

6 6 3 3 .13
L1 W1571 1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15

1312 -

10 , 6 9 4 4 9 A4 4 6
{1, w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)

10,9 10,3 ,.13 ,,13 ,,3 13 13
(1, w15,w15,w15,w15,w15,1 w15,wl5,w15,w15,w15,w15,w15,w15)

12 .7 .7 .6 707 w10
157W15=W157W15=W157W157W157W15aW157W157W157 157“15 )

157”157 1 w15,w15,w15,w15,w15,w15,w157w15,w15,w15,w15

Y

3 3 ,,13 3 13 10

5)
0 12 7 7 )
)

15,w15,w15,w15,w15,w15,w15,w15,1 w15,w15,w15,w15,w15 )
6 .6 9 .9 9 .9
L1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

9 9 3 3 ,8 3 ,3 8
L1 W15=W157W157W1571 1 w15,w15,w15,w15,w15,w15,w15)

2 6 .6
L1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,1 1 w15),

(1,w

(1,

(1,

(1,

(1,

(1,

(L, 1,05, 1, L, wis, wif, wi3, wis, wis, wis, wiz, wis, wis, wis),
(1,
(
(
(
(
(

3 3 ,8 3 .3
L1 W15=W157W157W157W157W15=W1571 1 W157W157W157W15>7

1.6 ,9 ,14 .9 .9 14 9 ,6 11 6 6
1 w15,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)

8§ 3 ,3 8 3
1 W1571 w15,w15,w15,1 w1571 w15,w15,w15,w15,w15,w15)

6 6

1 W1571 w15,w15,w15,w15,w15,w15,w15,w15,w15,1 w15, )

17“1571 1 w15,1 w15,w15,w15,w15,w15,w15,w15,w15,w15

9

1)
2 12 6 11 .6 12 )
)

8 3 .3 8
L wis, 1, wis, wis, wis, wis, wis, wis, 1, wis, 1, wis, wig, wis) }-
Followings are the vectors of the set of MUBs { By, Bg, B3}

By =
{(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

3 3 .3 6 ,6 6 ,9 9 ,9 12
171717W157W157W157W157W157W15=W157W15’W15=W157W157

Y

6 6 ,6 12 12 12,3 .3 3
1,1,1,w15,w15,w15,w15,w15,w15,w15,w15,w15,wl5,wl5, 5

9

12 12,9 ,9 90 , 6 6 ,6
L1,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,

Y

( 13)
( wis)
(1? 1? 17 wgl)svw%fw w?mwiﬁj w%5>w:1))57 w15>w15’ w157w15’ w15> ?5)’
(1, wis)

5
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10
1 w15,w15,1 w15,w15,1 w157w1571 w15,w15,1 W15>W15)

3 8 .13 ,6 9 14, 4 12
1 W157W157W157W157W157W157W157W15aW157W157W157W157W157

7

15)7
2 7 8 9 4

1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15, Wis)s

9 3 8 .13 76
1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15 )

)
7 9 6 3 )

(

(

(

(

(1, wis, wigs iz, Wig, Wig, Wis, Wig, Wis, Wis, Wiz, Wis, Wis, Wis, Wi3),
(1,

(1,

(1,

(1,w

(1,

5
157‘*’1571 u)15>7Wl571 W157W1571 w15,w15,1 W157W15)

3 13 8 , 6 1,9 ,4 .14 12
15,0015, W15, W15y W15, W15, W15, W15, W15, W5, W15, Wi, w15, w15),

6 7 3 13 8 ,.9
15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15 )

157%57 Wis, W15, W5, W5, Wis, Wis, Wi, Wi, Wiy, Wis, Wis, Wl

)

}.

12 7 2 9 4 14 6 1 3

9 4 ,14 .3 ,13 .8 12,7 ,2 6 )
15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)

B6:

5 5 .3 8 .8 12,2 ,2 ,12 2 2 3 8§ 8§
(1,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

6 3 8 ,8 6 5
1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15, 1 w15,w15)

9 9 5
1 w157w157w15’w157w15>w157w15>w157 1 w15’w15?w15’w157w15)’

12 2 9 14 14 9 )
)

5
1 W157W157W157W157W1571 W157W157W15=W157W157W157W157W15

5 6 ,11 ,11 ,3 .8 ,8 6
1 w15,w15,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

13 .3 7 7
1 C‘115>1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

6 3 ,13,3 6
1 W1571 w157w15aw157w157w157w157w157w157w1571 W1571)

{
(
(
(
(
(
(
(1L, wig, 1, wis, wis, wis, wis, wis, Wis, L wig, L wiz, wis, wiz),
(1,
(
(1,
(1,
(1,
(1,
(1,

w12 T 4,9
15, 1, 15aw15awl5a1 W1571 w15,w15,w15,w15,w15,w15),

6 3 ,.13,3
1 W15>1 1 W15>1 w157w157w157w15’w157w15’w15>w157w15 )

3 3 .13 12,12 ,.7 ,12 12 .7 .3 .3 13
L1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)

1,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,1 1 w15)

9 9 9 9 7
L1 w15,w15,w15,w15,w15,w15,w15,1 1 w15,w15,w15,w15)

9 9 9 9
L1 W157W15’W157W15’1 1 w15,w15,w15,w15,w15,w15,w15)

6 6 3 3 13,6 .6
L1 w15,1 1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15}.

Bl3 =

10,9 6 6 9 4
{(1, W157W15>W157W157W157W157W157W15,W157W157W157W157W157W15)
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7 7

7 10 , 6
15,w15,w15,w15,w15,w15,w15,w15, 1 w15,w15,w15,w15,w15)

0,3 ,13 ,13,9 4 ,4 3 13 , 13
157W1571 u)1570‘)1579‘11570‘)157Wl5aC‘)15>9‘1157“1157“"15#"15:”15)

3 9 4 4 10 10
15,w15,w15,w15,w15,w15,w15,w15,w15,w1513,w1513,1,w15,w15)

6 10 10 77 77
15,w15,w15,w15,w15,1,w15,w15,w15,w15,w15,w15,w15,w15)

9 9 14,6 ,6 ,11 6 ,6 ,11 .9 9 14
L1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

12 12 2 12,12 6
L1 W15=W15’W157W157W157W157W1571 1 W157W157W15=W15>7

3 03 ,8 9 ,9 14
L1 Wlsal 1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15),

(1,

(1,w

(1,

(1,

(1,

(1,

(1,

(1, 1, wis, wis, wis, wis, Wis, Wis, Wi5, Wis, Wis, Wis, 1, 1, wis),
(1, 1, w5, wis, wis, Wiy, L 1L wis, wif, wid, wis, wiz, wig, wis),
(

(

(

(

(

4.9 ,6 ,11 .6 ,6 .11 6 ,9 14 9
1 w15,1 w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15,w15)
1 W1571 w15,w15,w15,w15,w15,w15,1 w15,1 w15,w15,w15),

9 9

8 3
1 W1571 1 W1571 W15aw157W157W157W157W157W15awl5awl )

8 3 ,9 14,9 ,3 8
1 W1571 w15,w15,w15,w15,w15,w15,w15,w15,w15,1 w15,1),

1 w15,1 w15,w15,w15,1 W1571 w15,w15,w15,w15,w15,w15 }-

Example 3.3.4. Let R(45,15) = GF(5,1) x GF(3,2). Let T,, : R(45,15) — Z15 defined
by Tw(x) = 3Tr (1) + 5T'ro(x2) be the weighted-trace map over the ring R(45,15), where
Try and Try are trace maps over GF(5,1) and GF(3,2) respectively. We shall label the
elements of GF(5,1) and GF(3,2) as follows:

GF(5,1) ={0,1,a,a% a?} ={0,1,2,3,4}

GF(3,2) ={0,1,8,0% 3% 5% 3°, 3% 37} ={0,1,2,3,4,5,6,7,8}

The elements of R(45,15) can be written as follows:

0=(0,0) 1=(0,1) 2=(0,2) 3=(0,3) 4=(0,4) 5=(0,5) 6=(0,6) 7=(0,7) 8=(0,8)

9=(1,0) 10=(1,1) | 11=(1,2) | 12=(1,8) | 18=(1,4) | 14=(1,5) | 15=(1,6) | 16=(1,7) | 17=(1,8)
18=(2,0) | 19=(2,1) | 20=(2,2) | 21=(2,8) | 22=(2,4) | 23=(2,5) | 24=(2,6) | 25=(2,7) | 26=(2,8)
27=(3,0) | 28=(3,1) | 29=(3,2) | 30=(3,3) | 31=(3,4) | 32=(3,5) | 33=(3,6) | 34=(3,7) | 35=(3,8)
36=(4,0) | 37=(4,1) | 38=(4,2) | 39=(4,3) | 40=(4.4) | 41=(4,5) | 42=(4,6) | 43=(4.7) | 44=(4,8)

N. der the basis B, = {V,4|b € R(45,15)}, where V, :( Tw(““‘””’) .
ow consider the basis {Vias| ( )}, where V TEY1 o
Here wyis = 5 s the complex 15" root of unity. It can be calculated that if (a—a') € R*
Tw(a—a )z2 b—b x x -
then S = | < ‘/zz,bav;’,b' > | = |Zz€R(45,15) W15( ) H ) | = \/%, where R* is the set

of invertible elements of R(45,15) .
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For example { By, B1o, Bao, Bso, Bao}, { B, Bu1, Ba1, Bai, Bu},
{3273127BQQ,B32,B42};{B3,Blg,B23’Bg3,B43}, etc. are the sets Of MUBs Of C45. It is
clear that N(45) = 5 = min {5,3?} and together with the standard basis of C* we can

select 6 MUBs of C*. There are 15120 such sets of MUBs given by

9
o x| P =5«

q1 5

In this chapter we used trace maps over the Galois field GF(p, m) and the Galois ring
GR(4,m) and the weighted-trace map T,, over the ring R(d,n) = GF (p1, e1) X GF (pa, €3) X
. X GF(py,ex) in the form of Tr(az? + bx) and T, (ax? + bzx) to construct MUBs. In
the next chapter we will use the trace map over the Galois field GF'(p,2) in the form of

Tr(az?) to construct two-weight, self-orthogonal codes over Z,.
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Chapter 4

Two-Weight, Self-Orthogonal Codes

from Tr(ax?)

4.1 Introduction

In Chapter 2 the trace map was used in the form of T'r(az) to construct linear and non-
linear codes and in Chapter 3 in the form of Tr(az?*+ bx) to construct mutually unbiased
bases. The only difference between the use of the trace map in the constructions of codes
and mutually unbiased bases was that the argument was a different one, i.e., az and
ax® + bx. Extending the code construction to include such different arguments was a
challenging problem as the task of mapping the distribution of the trace values was not
an easy one. Authors in [19] study the use of the trace map over GF'(p,m) in the form of
Tr(am(z)+bx) to construct linear codes over Z,, where m(x) is a perfect nonlinear mapping
from GF(p,m) to itself. They have not studied the distribution of Tr(am(x) 4+ bx) and
therefore they are unable to determine the exact value of the minimum distance of the

2 is studied and the minimum

codes. However in Theorem 10 in [19], the case 7(z) = x
distance and all weights are determined without using the distribution of Tr(ax? + bx).
In our work we study the distribution of Tr(az?), A > 2 over GF(p, 2), which is a special
case of T'r(am(x) 4+ bx) and we construction 2-dimensional codes over Z,. These codes

satisfy the Griesmer bound which is always the best bound for low-dimensional codes. In

this chapter we study A = 2 case and Chapters 5 and 6 are devoted to study A > 2 cases.

62



In this chapter and the next couple of chapters we also construct cyclic codes with
the length p? — 1 and the dimension 2. In [8] the trace map over GF(p,m) is used in
the form of c(z) = (Tr(z), Tr(z0), Tr(x6%),...,Tr(z0" 1)) to construct irreducible cyclic
27

codes over Z,, where 6 = e *. The generating function given in Section 2 in [8] is used to
determine the parameters of the codes. In the case of m = 2 the length and the dimension
of the code are p? — 1 and 2 respectively, which are the same length and dimension of our
cyclic codes. In our work we use the distribution of Tr(az?) for A > 2 over GF(p,2) to
determine the parameters of the codes which is different to the work that has been done
in [8].

In Section 4.2 we give some preliminary information of two-weight codes and self-
orthogonal codes together with some known results. The distribution of Tr(ax?) over

GF(p,2) is studied in Section 4.3. In Section 4.4, we find that using the argument as

above we can construct two-weight, self-orthogonal codes over Z,,.

4.2 Preliminaries

In this section we include some preliminary results that will come in handy in latter
sections of this chapter.

Let p be a prime and Z;; be the vector space of all n-tuples over the finite field Z,,. It C
is a k-dimensional subspace of Z; then C'is called an [n, k] linear code over Z,. There are
two most common ways of representing a linear code. One is with a generator matrix and
the other one is with a parity check matrix. A generator matrix for C' is any n x k matrix
G whose rows form a basis for C'. There are many generator matrices for a code and for
any set of k linearly independent columns of a generator matrix G, the corresponding set
of co-ordinates forms an information set for C'. The remaining » = n — k co-ordinates are
termed a redundancy set and r is called the redundancy of C'. If the first k co-ordinates
form an information set, the code has a unique generator matrix of the form [/;|A]. Since
C'is a subspace of Zy, it is the kernel of some linear transformation. In particular there
is an (n — k) X n matrix H, called a parity check matrix for the code C. Now C' can be

defined by C' = {x € Z} | Hz" = 0}. It is clear that the rows of H are also linearly
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independent. It is well known that if the generator matrix of C'is G = [[i|Apx(n—r)| then
the parity check matrix of C'is H = [—A%’;l_k)x | In—k]. Thus C is contained in the kernel
of the linear transformation f : Z; — Zg*k defined by f(z) = Hz'. As H has rank
(n — k) this linear transformation has kernel of dimension &, which is also the dimension
of C. Kerf ={x e Z}|f(x) =0} and C = {x € Z}|Hz" = 0}. Thus C = Kerf.

The generator matrix G of an [n, k| code C' is simply a matrix whose rows are linearly
independent and span the code. The rows of the parity check matrix H are independent.
Hence H is the generator matrix of some code. This is called the dual or orthogonal code
of C and is denoted by C*+. Ct is an [n,n — k] code. Alternately the dual code is defined
by using the inner product of vectors. The inner product of z = (x1,z9,...2,), y =
(1,92, - - - yn) € Zy is defined by x -y = Y7 x;55. Then C+ can be defined by C+ =
{r €Zy|r-c=0 Vee C}.

Definition 4.2.1 (Self-orthogonal and self-dual codes). The code C' is called self-
orthogonal if C C C+ and if C = C* then C is called self-dual.

Since C'is an [n, k] linear code, C* is an [n,n — k] linear code. If C'is a self-dual code
then K =n — k. Thus k = § and n = 2k, i.e. if C is a self-dual code then the length of
the code C' is even and the dimension k is 3.

An important invariant of a code is the minimum distance between codewords.

Definition 4.2.2 (Hamming distance). The Hamming distance dg(z,y) between two

vectors x,y € Z,, 1s defined to be the number of co-ordinates in which x and y differ.

The minimum distance of a code C'is the smallest distance between distinct codewords,
and is simply denoted by d. The higher the minimum distance, the greater the number
of errors that can be corrected. The Hamming weight wgy(x) of a vector z € Ly, is the
number of non-zero co-ordinates in z. If z,y € Zy then dy(v,y) = wy(r —y). If C'is a
linear code the minimum distance d is the same as the minimum weight of the non-zero
codewords of C. As a result of this the minimum distance of a linear code is also known
as the minimum weight of the code. If the minimum distance d of an [n, k] code is known
then we denote the code C as an [n, k,d] code.

The following lemma is a part of Theorem 1.4.3 in [46].
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Lemma 4.2.3. [Theorem 1.4.3, [46]]
(1) If x € ZY then wy(x) = x - x (mod 2).
(ii) If x € Z% then wy(z) = x - x (mod 3).

Proof:
(i) Let ny be the number of 1’s in x € Z3. Then the Hamming weight of x is wy(x) = n4.
Also z -z =31 27 =ny. Thus wy(x) =2 -z (mod 2).
(ii) Let n; and ny be the number of 1s and 2s in # € Z%. Then the Hamming weight
of v iswy(x) =ni+ng. Alsox-x =" a7 =ni+ne2. Thus wy(z) = z-z (mod 3). O
Note that this result does not hold for z € Zj when p > 3. The reason is that
when z € Zy the wy(z) = f:_ll n;, where n; is the number of non-zero i’s in x and
xox o=y xr =ng +ne2% +n33%* 4+ ...+ ny,_1(p — 1)®. This does not imply that
wy(x) =z - z( mod p).

The following theorem can be used to check whether a given ternary code is self-

orthogonal.

Theorem 4.2.4. [Theorem 1.4.10, [46]]
Let C' be an [n,k,d] code over Zs. C' is self-orthogonal if and only if the weight of every

non-zero codeword 1s divisible by 3.

Proof:

Suppose that C' is a self-orthogonal code over Zs;. Then C C C* and therefore for all
c € C,cc=0. Since wy(c) = ny1+ng and from Lemma 4.2.3 we have wy (c) = c-¢ (mod 3).
Thus wg(c) = 0 (mod 3) and hence 3|wg(c).

Conversely suppose that the weight of every codeword is divisible by 3. For any
x,y € C' we need to prove that x -y = 0. We can view the codewords x and y as follows:
There are a co-ordinates where x is non-zero and y is zero.

There are b co-ordinates where y is non-zero and z is zero.
There are ¢ co-ordinates where both agree and are non-zero.
There are d co-ordinates where both disagree and are non-zero.

There are e co-ordinates where both are zero.

65



So wg(zr+y) = a+b+cand wy(x —y) = a+b+d Butx+y € C and
hence a + b+c¢c = a+b+d = 0 mod 3. In particular ¢ = d mod 3. Therefore
-y =c+2d=0mod 3. Thus C C C* and hence C is self-orthogonal. O]

This result cannot be applied to check the self-orthogonality of codes over Z, for p > 3.
Therefore we state the next theorem to overcome the problem of checking the self-

orthogonality of codes over Z, for p > 3.

Theorem 4.2.5. [Proposition 1, [76]]
Let p be an odd prime and C be a linear code over Z,. Then C' is self-orthogonal if and
only if c-c=0,Vecel.

Proof:
Suppose that C is self-orthogonal. i.e. C C C+ = {x € 7y :x-c=0,¥ceC} Then
c-c=0, Yece C. Conversely suppose that ¢-c¢ =0, Ve e C. For any ¢,¢ € C, since C
is linear, ¢ 4+ ¢ € C. Then
coc=c-c=(c+c) (c+c)=0.
=c-c+2-c+c-c=0.
=2-¢ =0.
Since p is odd we have ¢-¢ = 0. Thus C' C C*. Therefore C is a self-orthogonal code
over Z. [
For a detailed survey of self-orthogonal codes, reader may refer to [14, 21, 37, 38, 76]
and the references therein.
The weight enumerator of C' is the polynomial We(z,y) = Y i Aiz™ 'y’, where A;

is the number of codewords of weight .

Definition 4.2.6 (Two-weight code). A code is called a two-weight code if
{i]i # 0 and A; # 0} = 2.

More information of two-weight codes can be found in [10, 13, 17, 23, 29, 40] and the
references therein. We note that the codes found in this chapter could be classed as trace
codes, since they are found using a trace map. See [22, 36, 41, 69, 70, 73] for details on

trace codes.
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We now have some of the tools required to classify the codes constructed in this
chapter. In the next section we study the distribution of the trace map over GF(p,2),

using the argument az?. In Section 4.4 we construct our codes and study their properties.

4.3 The distribution of Tr(ax?) over GF(p, 2)

In this section we recall the definition of the trace map over the Galois field GF(p,m)
and state its fundamental properties. In particular we study the distribution of the trace
values when the argument is az? over GF(p,2).

Let p(x) be a primitive polynomial of degree m over Z,. The Galois field of character-
istic p is defined as the quotient field GF'(p, m) = Z,[z]/(p(x)). Let ¢ be a root of p(x) and
therefore GF(p,m) = Z,[¢]. Any element in GF(p,m) can be written as a polynomial of
¢ over Z, and further it is well known that GF(p,m) = {0,1,(,(?,...,¢P" 72}

Definition 4.3.1 (Trace map). Let GF(p,m) be the Galois field of characteristic p.

m—1

The trace map Tr : GF(p,m) — Z, is defined by Tr(z) =z + 2P + 27 + ... + 2P

The following theorem lists the fundamental properties of the trace map over the

Galois field GF(p,m).

Theorem 4.3.2. The trace map satisfies the following properties:

(i) Tr(z+vy) =Tr(z)+ Tr(y), ¥Yz,y € GF(p,m).

(it) Tr(az) = aTr(z), Va€ Z, € GF(p,m).

(iii) Tr(z?) =Tr(x), Vo e GF(p,m).

() Tr(a) =am, Va € Z,.

(v) Tr(x) =0 if and only if v = y? —y for some y € GF(p,m).

(vi) As x ranges over GF(p,m), Tr(x) takes each element in Z, equally often i.e., p™ *-

times.

Detailed proof of these properties can be found in [52, 53].
In order to study the distribution of the trace values when the argument is az? over

GF(p,2), we first need to identify the elements of GF'(p,2) which have trace zero.
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Theorem 4.3.3. Let Tr be the trace map over GF(p,2) defined by Tr(zx) = x + «P. Let
('€ GF(p,2)* = GF(p,2) \ {0}, where 0 <t < p? — 2.
(i) If Tr(¢t) = 0 then Tr(¢**+Y) =0, for all k =0,1,...,p— 2.
(ii) Tr(¢" = ) =0.
(iii) For 0 <t < EEL Tr(¢t) #0
Proof:
(i) From the definition of the trace map if Tr(¢*) = 0 then

¢+¢” = 0.
== ="

:>(Ct)2k — (Ctp)Qk

Therefore
TT(Ct(2k+1)) — Ct(2k+l) + Ctp(2k+l)

— gtCth + CthpCtp

— gtCthp + C2tkpgtp

= ()

~ (),
Thus if Tr(¢*) = 0 then Tr(¢*?*+) = 0. From part (vi) of Theorem 4.3.2 there are p — 1
elements in GF(p,2)* such that Tr(z) = 0. Hence if Tr(¢!) = 0 then Tr(¢!*+1)) = 0,

forall k=0,1,2,...,p— 2.

(ii) By using the definition of the trace map we have

) = F ()




Since ¢~ is the only element in GF(p,2)* such that ("' = 1, we have C< : ) = 1.
Therefore Tr(¢"2 ) = 0.
(iii) Let Tr(¢) = 0 for some ¢, 0 < t < ZEL. This implies that

¢t (P = 0.
= ('(1 4¢P =0,

= (' =0o0r (PV = 1.

Since ¢ is a primitive element of GF(p,2)*, ¢! # 0 for any t. Thus P~V = —1
and ¢P~Y2 = 1. Since ¢¥~! = 1 and therefore (p*> — 1)|(p — 1)2t, ie., 2(p — 1)t =
(p> —1)m, m € Z*. This implies that ¢t = (pH)m a contradiction to the assumption.
Therefore Tr(¢*) # 0, for any ¢, 0 < ¢t < 2 and the minimum value of ¢ such that
Tr(¢t)=0ist = 2t O

Corollary 4.3.4. For x € GF(p,2)*, Tr(z) = 0 if and only if © = C(i)(%“) =
CorVRCE here k= 0,1,2,...,p — 2.

The base field GF(p,1) = Z, is a subfield of the extended field GF(p,2). The next

lemma gives us those indices ¢ for which ¢* € GF(p,1)*.

Lemma 4.3.5. Let (' € GF(p,2)*, for somet, 0 <t < p*>—2. If (' € GF(p,1)* then
t=(p+ 1)k, where k =0,1,2,...,p—2.

Proof:

Let ¢* € GF(p,2)*, for some ¢, 0 < ¢t < p* — 2. Now GF(p,1) = Z, is a subfield of
GF(p,2). Hence if ¢* € GF(p,1)* = Z, \ {0} then Tr(ct¢™ ) = ¢Tr(¢") = 0, from
part (ii) of Theorem 4.3.2 and part (ii) of Theorem 4.3.3.

From Corollary 4.3.4, if x € GF(p,2)* such that Tr(z) = 0 then z = g( )@kt
¢ptD) kC(pH Hence ¢t¢% = (k¢ = (t = (P+DF since ("2 # 0. Therefore if
(t € GF(p,1)* then t = (p+ 1)k, where k = 0,1,2,...,p— 2., i.e., ¢* is an element of the
subfield when ¢ = (p + 1)k, where £ =0,1,2,...,p — 2. O

(p+1) (» + )
2

So far we have identified the elements (* € GF(p,2)* which have trace 0 or are in the base
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field GF(p,1)*. For a € GF(p,2), we are now in a position to study the distribution of
Tr(ax?), when x ranges over GF(p,2). A useful tool in this study is to list the elements of
GF(p,2)* in a two-dimensional array based on the powers of a chosen primitive element
C.

Let ¢ be a primitive element of GF(p,2). Then GF(p,2)* = {1,(,¢%,..., (72}
and ("1 = (0 = 1. Also (("F)@r-+(5F)

2p2 —3p+2p—3+p+1 2(p% 1)
2

= (T = (=1,
The elements in GF(p,2)* can now be listed by means of a (p — 1) x (p + 1) matrix:

C(%l)(%ﬂ)w], where £k = 0,1,2,...,p — 2 ranges over the rows of the matrix creating
p—1rows and d = 0,1,2,...,p ranges over the columns of the matrix creating p + 1

columns. This (p — 1) x (p + 1) matrix is given by

(25 (252 (25 +(24) (25

(250 (B (P51 (4 (25
GF(p,2)"= C(%)(%H) C(%ﬂ)@k“)*d C(PTH)(ZkJrl)Jr(pTH) C(%l)(2k+l)+p
I C(%)@pfa) C(%“)@pfswd R ((%l)upfswp

T (p-1)x(p+1)
This arrangement of the elements of GF(p,2)* enables us to better understand the
distribution of the values of the trace map. For ease of reading let ap, where k =

0,1,2,...,p — 2, be a listing of the non-zero elements of the base field GF(p, 1)*.

Lemma 4.3.6. The trace of elements of GF (p,2)* is distributed in the following manner:
(1) The trace of each element in the first column of the matriz representation of GF (p,2)*
1S Zero.

(i1) The trace of elements in every other column of the matriz representation of GF(p,2)*

takes every element in Z, \ {0} once only.

Proof:
(i) From Corollary 4.3.4, we know that Tr(z) = 0 if and only if z = ¢(*2)@+1) | where
k =0,1,2,...,p — 2. Therefore it is clear that the trace of the elements in the first
column of the matrix representation of GF'(p,2)* is zero, i.e., Tr (C(%)(%H)) =0,Vk=
0,1,2,...,p—2.

(i) The trace of elements in the d”* column (d # 0) of the matrix representation of
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GF(p,2)* is given by

p+1

Tr(¢(FF) DT (DR ),

From Lemma 4.3.5 we know that (®*V* ¢ GF(p,1)*, where k = 0,1,2,...,p — 2. By

using the notation a; = (PTV* we have

Tr(g(pTH)(Qk“)*d) = Tr(akaH?dH) (from Lemma 4.3.5).

From part (ii) of Theorem 4.3.2 we have

TT(C(%l)(%HHd) _ akTT(C%).
From Corollary 4.3.4 again we know that for x € GF(p,2)*, Tr(x) = 0 if and only
if x = C(%N%H), where k£ = 0,1,2...,p — 2 and therefore Tr((szdH) £ 0, for all
d=1,2...,p. In addition aj, represents every element in Z, \ {0} for k =0,1,2...,p—2.

Consequently the trace of the elements in the d* column of the matrix representation of

GF(p,2)* takes each element in Z, \ {0} exactly once. O

The next example illustrates this result.

Example 4.3.7. Consider the primitive polynomial p(z) = z* + x + 2 over Zs. The
elements in GF(5,2)* = {1,(,(?,...,(*} and their trace values are given in the following
table:
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Element x | x = a;( +ag | Tr(x) || Element z | © = a1( + ag | Tr(z)
1 0¢+1 2 ¢t2 0¢ + 4 3
¢ 140 4 13 AC+0 1
¢? 4C+3 2 ¢ 1¢+2 3
¢3 AC +2 0 ¢15 1¢+3 0
¢t 3¢ +2 1 ¢16 2 +3 4
& 4¢ + 4 4 ¢ 1I¢+1 1
¢6 0¢ + 2 4 c18 0C +3 1
(7 2 +0 3 19 3¢+ 0 2
¢® 3¢C+1 4 (20 20 +4 1
¢? 3¢+ 4 0 ¢ 20 +1 0
¢l 1¢+4 2 (22 AC+1 3
¢ 3¢ +3 3 ¢ 2 +2 2
The matrix representation of GF(5,2)* is then:
(¢ 7 ¢
9 10 11 12 13 14
GF(5,2)"= 515 216 217 218 219 zzo
SRS GRS G Tl I

and the corresponding trace matrix is:

Tr(GF(5,2)")=

N = W
N = W =
N = W

B~ W

1
2
4
3

o o o o

L 4 4x6
It is clear that the first column is an all zero column and all the other columns contain

each element in Zs \ {0} exactly once.

We can now examine the trace distribution for the specific case considered in this

chapter: Tr(ax?).
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Theorem 4.3.8. Let Tr be the trace map over GF(p,2). As x ranges over GF(p,2)*
and for a € GF(p,2)*, Tr(az?) takes each element in Z, \ {0} equally often either p + 1

times or p — 1 times.

Proof:
Let a € GF(p,2)* be an even (respectively odd) power of ¢ and consider the set
{Tr(az?®) | € GF(p,2)*}. This set can be written as two copies of the trace of the ele-

ments in the set {¢** | h=0,1,2..., ’%} (respectively {¢*"1 | h=0,1,2..., pgz_?’})

or its cyclic shifts.

In the matrix representation of GF(p,2)* that we have studied in Lemma 4.3.6, we
note that there are ’%1 columns with odd powers of ( and ’%1 columns with even powers
of . (See example 4.3.7). We will label these columns as odd and even respectively. We
call the matrix obtained by taking the trace of each element in the matrix representation
of GF(p,2)* as the trace matrix of GF(p,2)*. We consider the two cases, p = 1(mod 4)
and p = 3(mod 4) respectively.

Case I. p = 1(mod 4):

In this case ZH is odd. From Theorem 4.3.3 we know that TT(C<%1)(%+1)) = 0, for

all k = 0,1,2...,p — 2. Hence the first odd column (which is the first column of the

ptrl p=1
e2 1 2

matrix representation of GF(p,2)*) has trace zero. Therefore there ar
odd columns of the matrix representation of GF(p,2)* with non-zero trace. From Lemma
4.3.6, the trace of elements of each of these ’%1 odd columns contain each element in
Zy \ {0} exactly once. Thus the trace of all the odd powers of ¢ gives us each element in
Z, \ {0}, B times, and so the trace of all the even powers of ¢ gives us each element in
Z,\ {0}, 22 times.

Thus if a € GF(p,2)* is an odd power of ¢ then, as z ranges over GF(p,2)*, Tr(ax?)
takes each element in Z, \ {0} equally often p—1 times. If a« € GF(p,2)* is an even power
of ¢ then Tr(ax?) takes each element in Z, \ {0} equally often p + 1 times.

Case II. p = 3(mod 4):

Here 1%1 is even. As in case I, Tr(C<LJ2r1)(2k+1)) =0, forall kK =0,1,2...,p — 2 and

the first even column of the matrix representation of GF'(p,2)* has trace zero. Therefore

there are other ’%1 -1 = ;%1 even columns in the matrix representation of GF(p,2)*
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with non-zero trace. Hence the trace of all the even powers of ( gives us each element in
Z,\ {0}, -+ times. Consequently the trace of all the odd powers of ( gives each element
in Z, \ {0}, 22 times.

Hence when a € GF(p,2)* is an even power of ¢ then, as x ranges over GF(p,2)*,
Tr(az?) takes each element in Z, \ {0} equally often p — 1 times. If a € GF(p,2)* is an
odd power of ¢ then as x ranges over GF(p,2)*, Tr(az?) takes each element in Z, \ {0}
equally often p + 1 times. O

Examples 4.4.2 and 4.4.3 illustrate this result.
We now have enough information to apply the trace map over GF'(p,2) in the form of

Tr(ax?) to construct two-weight, self-orthogonal codes.

4.4 Construction of two-weight, self-orthogonal codes

So far we have studied the distribution of Tr(ax?®) by changing = over the Galois field
G(p,2). In this section we apply this result to construct cyclic, two-dimensional, two-
weight, self-orthogonal codes over Z,. For more details of two-weight codes, the reader is

referred to [17, 29, 40] and the references therein.

Theorem 4.4.1. Let GF(p,2) be the Galois field of characteristic p > 3 and Tr be the
trace map over GF(p,2). Consider the matriz Hy = [Tr(ax?)]s zecr(p2)-

(i) Hy is a linear code over Z, with the parameters [n,k,dg] = [p?,2, (p — 1)?], where dg
15 the minimum Hamming distance.

(ii) Hy is a two-weight code with Hamming weights p* — 1 and (p — 1)%.

(111) The code obtained by deleting the first column of Hs, denoted by H, is a

[p? — 1,2, (p — 1)%] code and the codewords of H; are the left-cyclic shifts of the first two

non-zero codewords of H.

(iv) For p > 3, Hy is a self-orthogonal code.

Proof:
(i) Let ¢ be a primitive element of GF(p,2) and ¢; be any element in GF(p,2). Consider

the matrix
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Tr(c?), i=1,2,...,p°

Gg,=
Tr((c?), i=1,2,...,p

2xp?

First we will show that the two rows of Gy, are linearly independent. Let z = (Tr(c?);i =
1,2,...,p%) and Y= (Tr(¢e?);i = 1,2,...,p%). For any ag,a; € Z, suppose that apz +
a1y = 0. ie, foralli =1,2,...,p* agTr(c}) +a,Tr((c}) = 0. From the properties of the
trace map, foralli = 1,2,...,p? Tr((ag+ai()c?) = 0. According to the distribution of the
values of trace, Tr((ag + a1¢)c?) = 0 implies that (ag + a1()c? =0, for all i = 1,2,. .., p*.
However ¢? # 0, for some i and hence ag + a;¢ = 0. Since 1 and ( represent linearly
independent 2-tuples over Z,, ap and a; should be 0. Therefore the two rows in Gy, are
linearly independent.

Next consider all linear combinations of the two rows in G'y,. This gives us
agTr(c?) + a;Tr(¢c?) = Tr((ag + ai()c?), i=1,2,...,p? which implies that the rows of
the matrix H, are generated by the rows in Gp,. Thus Gy, is a generator matrix of Ho,
the length n and the dimension k of the code Hy are p? and 2 respectively, and hence H,
is a linear code over Z,.

From Theorem 4.3.8 every non-zero row of H contains every non-zero element of 7Z,
equally often either p 4+ 1 times or p — 1 times. Since there are p — 1 non-zero elements in
Z,, the minimum Hamming weight of H, is (p — 1)®. Therefore Hy = [Tr(az?)]s secr(p2)
is a linear code over Z, with the parameters [n, k, dg] = [p?, 2, (p — 1)?.

(ii) Since every non-zero codeword of Hs contains each element in Z, \ {0} equally often
either p + 1 times or p — 1 times, the codewords have Hamming weight either p*> — 1 or
(p —1)? and hence H, is a two-weight code over Z,.

(iii) Let Hj be obtained by deleting the first column of Hy:

Tr(0) Tr(0) L Tr(0) Tr(0) Tr(0) . Tr(0)
(»%-3) ®%-3)
Tr(1) Tr(¢2) ... Tr(c? 2 ) Tr(1) Tr(¢2) ... Tr(¢c? 2 )
2 _ 2_
o) T . T T o) T . T TT
2 2.
Hi=|  Tr¢d  TrEhH .. T3 (:2 2 Tr(c?)  Tr(ch ... T3 (:2 =)
T Tec®) . T T Tr®) . T3
p2_2 2 2_, 5 (22 —3) 2_, 2 2_, Ca))
L Tr(CPTTE) Te(ePT) L Tr(EPTTEC T ) TR Ty TPt ) e

The first two non-initial rows generate this code and the next consecutive two rows

are the left-cyclic shift by one element of the first two non-initial rows, and so on. The
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parameters of Hj are [p*> — 1,2, (p — 1)?]. Indeed H} is a cyclic code.
(iv) Let S be the dot product of every non-zero codeword of Hy with itself. Again from
Theorem 4.3.8 it is clear that every non-zero codeword of Hj contains each element in

Zy \ {0} equally often either p 4 1 times or p — 1 times. Therefore either

p—1

S = (p+1)Zi2

=1

P
= g+ 1)(2p* —3p+1)

or
p—1

S = (p-1)) 7

=1
p
= - 1)(2p® —3p+1).

If p > 3 we have S = 0 mod p. From Theorem 4.2.5 we know that, for p > 3, a linear
code is self-orthogonal if and only if the dot product of every codeword of the code with

itself is zero. Therefore Hy is a self-orthogonal code over Z, for p > 3. O]

The following two examples illustrate Theorem 4.3.8 and 4.4.1.

Example 4.4.2. Consider the primitive polynomial p(x) = x* + x + 2 over Zs and let
¢ be a root of p(x). The elements of GF(3,2) = Zs[z]/(p(x)) = Zs[¢] can be written
as {0,1,(,C?,...,C"}. The following table provides the trace value of these elements and

their squares.

Element x | x = a;( +ag | Tr(z) | % | Tr(z?)
0 0C+0 0 00
1 0¢ +1 2 1|2
¢ 1¢+0 2 |0
& 2C+1 0 ¢tl1
¢3 2 +2 2 60
% 0¢ + 2 1 1|2
¢? 2C+0 1 210
¢6 1€ +2 0 ¢t
(7 1¢+1 1 60
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Taking a,x € GF(3,2) = {0,1,¢(,(%,...,("}, the 9 x 9 matriz A,

given by

0o 0 0 0 0 0 0 O
¢ ¢ ¢t @t
¢ ¢ et ¢ e
¢ ¢ttt
¢ ¢t ¢ ¢
¢ttt
¢ ¢ e
¢t e
¢ e e

L - 9x9

Ay=

o o o o o o o o o
I
w

and the matriz Hy = [Tr(az?)|,secr@se) is given by

0

_Nn o NN NN O
— N O O
S =
e N e B N R\ N e
—_

[
_ o =

=
|
o o o o o o o o o
—_

—
[ e N e B NG R N R e N )
NN = O = =D O O
N O NN = OO =

[ = N R e N NU R NG R N e B )

o
[\
D NN

L - 9x9

A generator matriz for Hy is

020102010
022112211

Gu,=
2x9

By deleting the first column of Hy we obtain
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000O0O0O0O0®O
20102010
22112211
0102010 2
Hy=2 112211 2
10201020
1122112 2
020102¢01
_1 2211 2 2 1-9><8

Hy is a linear code over Zs with the parameters [9,2,4]. The Hamming weight of each
non-zero codeword is either 4 or 8. Thus Hs is a two-weight code. The punctured code Hj,
obtained by deleting the first column of Hy is an [8,2,4] code over Zs and codewords of
Hj are the left-cyclic shifts of elements of the first two non-zero codewords of Hj. Indeed
H3 1s a cyclic code. The weight of each non-zero codeword is not divisible by 3 and from

Theorem 4.2.4, Hs is not a self-orthogonal code.

Example 4.4.3. Consider the primitive polynomial p(x) = x* + x + 2 over Zs and let
be a root of p(x). Thus (* = 4¢ + 3 and the elements of GF(5,2) = Zs|x]/(p(x)) = Zs[(]
can be written as {0,1,(,¢%, ..., ¢(®}. The following table provides the trace value of these

elements and their squares.
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Element z | v = ay( +ag | Tr(z) | 2* | Tr(z?)
0 0¢ 40 0 0 |0
| 0C +1 2 1|2
¢ 1€ 40 4 |2
% AC+3 2 ol
¢ AC+2 0 ¢ |4
¢t 3¢+ 2 1 ¢ |4
S AC+4 4 10| 9
¢t 0C +2 4 2|3
7 2 +0 3 ¢l
% 3¢+ 1 4 16| 4
¢ 3¢ 44 0 a1
(10 1€ +4 2 |1
ci 3¢+ 3 3 2|3
2 0¢ + 4 3 1|2
1 AC+0 1 2 |2
1 1€ +2 3 |
c1s 1¢+3 0 ¢ |4
c16 2 +3 4 |4
I 1¢+1 1 o |9
18 0C +3 1 23
19 340 2 Ik
2 2 + 4 1 16| 4
2 2 +1 0 ¢’ |1
2 A+ 1 3 |1
< 2 +2 2 2|3

By selecting a,x € GF(5,2) = {0,1,(, (%, ..., (%}, the matriz Ay = [(ax?)],pecrse) S
given by
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[ o 0 0
0 0 2
o ¢t B
0o ¢z ¢t
o ¢ b
0o ¢t ¢
0o ¢® (7
o ¢ ¢®
o ¢ ¢
0 CS ClO
0 <9 Cll
0 <10 4-12
0 Cll CIS
0 412 414
0 <13 C15
0 <14 glG
0 <15 C17
0 416 ng
0 417 4-19
0 C18 CZO
0 <19 421
0 <20 C22
0 421 <23
0 <-22 CO

Lo ¢ ¢

Cl()

CZQ

0

ClG

CIO

Cll

418

CIO

C22

and the matriz Hy = [Tr(az?)|, vecr,2) is given by
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<16

ClO

<18

CIO

§22

CQ
ClO

CI‘Z

<14

25x25



o O O O O O O O O O O O O O o o o o o o o o o o o<

= W W NN O

— e O W =
- O W O
e =)
_— NN = O
_= W W NN O e O
— Rk O W = W O
N = = e O W O

—

— [\ _ O

W W N O e W ks e = O
(NI

N U < BN SC H SO OB SC RN N T < S N o)
—_

— W W N O R W oA R~ O

Y S N e N - R S JC R SC R N S

(N} — — =~ o w
— =~ (@) w

=~ (@) w —
—_
= O W
— =R O W W W NN w2 ©
—_ N

= O W W W NN R W RN Y O
[ I e

e e == R & S R R S N~ N e R NV o)
e O W W W NN REW O N NN D W O
_ O W oW W NN O W, O NN N O
e e = R & S R & R N s N =N e e R NV )
_ N = =
— s O W R W W NN W RO N RN D O

NG T SO
[ I R
O NN NN NN WO =N

=~ = O N RN NN WO RN == R DWW WY W o
—_

N = ke O W R, W WY O R W R RO NN RN DWW O = O
[N e R O R I S - R\ R R . = e R \C R S AR (VR GL N e N =)

— w w [\ o IS w IS =~ = o [\ IS [\ [\ w o — [\ — —
O W H W W N DD W RN REND DWW =N
ke O W W W NN DD kW RN DY DWW O
SO W Rk W W NN o . N N N e R N} N S S el
— R O W R W WY O R W RO N RN W O

W ok R R O N R NN WO =N
O kW R A R O N R NN oW O

WO R W R R R, O N R DN W o

W ok R R, O N AR NN W O

O R W R R R O N R NN W O

W N O R W R R R O N R NN WO~ N
Y U SCHE N o B SO U R SO SO S e L S U N S CR o Bt

N W O =
DD WO =N
S NN NN W O
(@] — (\] =

[\) w (@] —

=D DWW O =N
S NN NN W O
>~

S RN

The rows of H can be generated by

Gu,=

0221442334113 221442334113
04043031012024043031012¢0 2

25%25

2x25

Therefore Hy is a linear code over Zs and its parameters are [25,2,16]. By deleting the
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first column of the matriz Hy we obtain:

2 21 4 4 2

4

— e O W W W NN W RO N

W O = NN =

e O, R SR N R e R O R . = e )

[ I e

[ N . s

4

— o= R O W R W W N O W

S N NN DWW OO =N

w

_ N = = RO W R, W W N O

B R O N R NN W O

S NN NN WD =N RO W W WY o

—_

4
4
3

w

_— e O W =W

S = W ke e RO N RN DWW RN

3

W N O = W ks e O N RN DWW RN RO W

(00000000000

34 11

0
4

—_

— W W N O R W R R RO RN N WD = NN

W W N D ke W R R HE O N RN D WD RN e

wWw =

0

2

=R O W R W W NN D e W R RO NN NN o

0

— ke O W R W W NN W R RO NN RN D W

—_

W W N O e W R e, O NN W O

N = =R O W =

—_

0

W W N O ke W s e O NN ey O

N~ = A O W

N W O

_ O W oW W NN O kW e e, o NN O

[ N . s N R e T

— = R O W W W NN DD W=, O

S N NN NN W OO =N

W W N O R W ok O

-~ O w

T NN

e e R N S S U N )

W = ke P, RN NN WD NN R R RO W W WY O e O

- O W =W W N O

—_

S = W e e RO N RN D WO NN

W N O ke W ke e O N RN D WD RN R e W W o

_ e O W O

=W W NN O ke W e e RN RN DWW OO RN

—_

_= W W NN O ke W e e RO RN WO =N

o W

_— O N e NN NN WD NN

B O W R W W N O R W

—_

W W N O =W e e RO N RN DWW

i N e R G

—_

= = RO W W WD R W R RO NN RN W O

—_

- 25x24

The punctured code H}, obtained by deleting the first column of Hy is a [24,2,16] code

over Zs and codewords of Hj are the left-cyclic shifts of elements of the first two non-zero

codewords of Hy. Indeed H} is a cyclic code.

The Hamming weight of each non-zero

codeword of Hy is either 16 or 24. Thus Hs is a two-weight code. From part (iv) of
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Theorem 4.4.1, Hy is a self-orthogonal code.

Throughout this chapter we have studied the distribution of the trace map over
GF(p,2) in the form of Tr(az?) and used it to construct two-dimensional, two-weight,
self-orthogonal codes over Z,. The next question is whether we can apply the trace map

over GF(p,2) in the form of Tr(az?) for any A > 2 integer. We devote the next two

chapters to study this case.
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Chapter 5

Two-Weight, Self-Orthogonal Codes

from Tr(ax”)

5.1 Introduction

In Chapter 4 we studied the distribution of the trace map over the Galois field GF'(p,2) in
the form of T'r(ax?) and constructed cyclic, two-weight, self-orthogonal codes over Z, with
the parameters [p?, 2, (p — 1)?]. This is a motivation to examine the use of the trace map
over the Galois field GF(p, 2) in the form of T'r(az?) for A > 2. Since Tr(z) = Tr(z?), we
consider the values of A in the range of 2 < A < p. In the case of A = 2 in Chapter 4 we
divided the elements of GF'(p,2)* equally into two subsets to study the distribution of the
trace values (see Theorem 4.3.8). Similarly, in this chapter, we will divide the elements of
GF(p,2)* equally into A subsets in order to study the distribution of trace values. Thus
Alp> — 1. ie., A|(p+ 1)(p — 1). Now since only 2 divides both (p + 1) and (p — 1), for
A > 2, we only consider the cases when A|(p+1) and A|(p—1). In this chapter we focus on
Al(p+1). Since (p—1) does not divide (p+1), the range of A now becomes 2 < A < p— 1.

In Section 5.2 we study the distribution of Tr(az?) for x and a in GF(p,2). Subse-
quently we apply this distribution to construct codes over Z, in Section 5.3 classifying

them as cyclic, two-weight, self-orthogonal codes with the parameters

p*,2,(p—(A=1)(p—1)].
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5.2 The distribution of Tr(ax")

In this section we study the distribution of Tr(az?) by changing x over the Galois field
GF(p,2) for a € GF(p,?2).

Let us recall from Chapter 4 the Galois field GF'(p,2) and properties of the trace map.
Let p(z) be a primitive polynomial of degree 2 over Z,. The Galois field of characteristic
p is defined as the quotient field GF(p,2) = Z,[z]/(p(x)). Let ¢ be a root of p(z) and
therefore GF(p,2) = Z,[¢]. Thus any element in GF'(p, 2) can be written as a polynomial
of degree 1 in ¢ over Z, and further GF(p,2) = {0,1,¢,¢2,...,¢”" "2}, The trace map
Tr: GF(p,2) — Z, is defined by Tr(z) = x + 2P. From Corollary 4.3.4 we know that
for x € GF(p,2)*, Tr(z) = 0 if and only if z = CPTH(%“), where £ =0,1,2...,p—2. In
this section, for a € GF(p,2), we study the distribution of Tr(az*) by changing x over
GF(p,2).

The first step towards understanding the distribution of Tr(az?) requires us to identify
the position of the trace zero elements in A* = [(IZ’)\]QJGGF(;D,Q)*. To do this, we first
divide the elements of GF'(p,2)* into equivalence classes modulo A. Since the elements of
GF(p,2)* can also be expressed as powers of ¢ the primitive element, the best way is to

define the disjoint sets (7), as follows:

Definition 5.2.1. (i), = {¢(**+ |h=0,1,2,..., 2= — 1}, fori=0,1,2,..., A — 1.

Y
Thus the (i), are the equivalence classes modulo A and they partition GF(p,2)* into
disjoint sets., i.e.,
A-1
GF(p.2)" = [ () (5.1)
i=0

The following lemma examines the pattern of elements in each row of the matrix

AT = [ax)\]a,xEGF(p,Q)* as a power of (.

Lemma 5.2.2. Let 2 < X\ < p — 1 be an integer such that M(p + 1). Let A* =
[axM o pecrp2)- and ¢ be a primitive element of GF(p,2). Let (i), = {¢M | h =
0,1,2,...,1%—1}, where i =0,1,2,...,A—1. Then

(i) The first X\ rows of A* are given by A copies of (i)x, where i =0,1,2,... A — 1.
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(ii)) The next X\ rows of A* are given by A copies of one cyclic shift of (i), where
i=0,1,2,...,x— 1.
(111) In this manner the last X rows of A* are given by \ copies of ’% — 1 cyclic shifts of

(1)x, where i =0,1,2,..., A — 1.

Proof:

Consider the matrix A* = [a2]40carpa)s, Where a,z € GF(p,2)* = {1,¢(,¢?,..., ("2}
Let a = (%, for a fixed tg, 0 <ty < p? —2and z = (¢, for all 0 < ¢ < p* — 2. Then
any row in A* can be written as {az}, = {¢TM0 < t < p? — 2}. Since (i), =
(M | h=0,1,2,..., 2L — 1}, where i = 0,1,2,..., A — 1, it is clear that |(i),]| = 2
and [{az*};,| = p? — 1. Now A* = [¢**M] where ¢ changes from 0 to p? — 2 giving p* — 1
columns and ¢, changes from 0 to p? — 2 giving p? — 1 rows.

(i) Let tg =0 and 0 < ¢t < p?> — 2. Then {az’}o = {¢M[t =0,1,2,...,p* — 2}. This is the
first row of the matrix A*. Now look at the set (i), = {¢(** | h=0,1,2,..., p2;1 — 1},
wherei = 0,1,2,...,A—1. Let i = 0 and then (0), = {¢* | h = 0,1,2,...,@—1}. It is
clear that (0)) C {az?}o. The last element in the set (0)y is C’\(LA_I*U = (P*~2=1 This is

2
pe—1
Tiprl)

th Y
the (’% - 1) element in the set {az?}o. The next element in {ax*}g is ¢ (

¢P"~1 = 1. That means after the (1% - >th element in the set {az’}o, the elements of
the set (0), will start to repeat. Since there are p*> —1 elements in {az*}¢ we need A copies
of (0), to form the entire set {az?}o. i.e., the first row of the matrix A*. We can continue
the same process for tg = 1,2,..., A — 1. In each case, the value of i is i =1,2,... A — 1.

This completes the creation of the first A\ rows of the matrix A*.

(ii) Now consider ¢y = X\. Then a = ¢* and the set

{CLZL’A})\ = {CA—H\t = C(t+1))\|t = Oa 17 27 cee 7p2 - 2}
- {CA7 §2>\7 s 7<(p2_1)>\}'
Also consider a one cyclic shift of each element in (0), to the left and label this as L1 (0),.

Then

2 _
Lo = (=12 1)0)

= {¢M ¢, 1)
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th A=t
It is clear that L (0)y C {az?}, and (% - 1) element in the set {az*}, is ¢ ( o > =

(P! = 1. This is the last element in the set Ly(0)y and the next element in {az*},
will be ¢*. Thus the elements of the set L;(0), will start to repeat in {az’},. Since
|L1(0)5] = ’% we need \ copies of L;(0), to form the entire set {az*},. i.e., the (A+1)%"
row of the matrix A*. We can continue this process for to = A+1,A+2,..., A+ A—1. In
each case, the value of i is i =1,2,..., A — 1 and relevant set can be denoted by L (7).
This completes the creation of the second A rows of the matrix A*.

(iii) Now consider to = 2X\,2\ + 1,...,2XA 4+ XA — 1. In each of these cases, the value of i
is1=0,1,2,..., A — 1 and the relevant set should be labeled by Ls(i),. This means we
need to get two left-cyclic shifts of each element of (7). A copies of each of these Ly(7)y
sets form the set {ax?},, = {¢*@*i|t =0,1,2,...,p? — 2}. By continuing this process
until it makes (1% — 1) left-cyclic shifts of elements in (i), for all i =0,1,2,..., A — 1,

we can form all the rows of the matrix A*. O

The following example illustrates this result.

Example 5.2.3. Let p =5 and A\ = 3. Then \|(p+1) and the matriz A = [a2®]q zecr(s.2)-

18
r 1 <3 CG CQ <12 (15 (18 C21 1 g.} CG <9 <12 <15 C18 4—21 1 CS L <21 b

C C4 4-7 ClO <13 CIG CIQ C22 C 4-4 C7 le) CIS (16 C19 <-22 C C4 L C22
§2 45 CB (11 <14 (17 <20 <23 §2 CS CS Cll (14 <17 <2(J <23 CQ CS L (23
C3 CG 49 C12 415 C18 (21 1 4-3 CG CQ 412 415 (18 C21 1 43 L 421 1
C4 C7 CIO C13 415 CIQ <22 C C4 C7 ClO CIS 416 <19 C22 C C4 L 422 C
€5 CS gll C14 <17 <20 423 CZ 4-5 g& Cll 414 <17 CQO C23 4-2 €5 L <23 C?
CG CQ 4-12 415 CIS C21 1 CS CG 4-9 412 4-15 ng <21 1 CS . C21 1 C3
C7 410 CIS ClG CIQ <22 ( <4 <7 CIU CIS Cl(j CIQ <22 C §4 . C22 C <4
CS 4-11 C14 <17 <20 C23 <2 CB CS Cll <14 417 C20 <23 C2 CS o C23 <2 C5
CQ 412 C15 C18 C21 1 CB CG <9 C12 C15 CIS C21 1 CS L CZI 1 CS CG
ClO 4-13 416 C19 C22 C 4-4 47 4-10 €13 C16 ClQ C22 C 44 L 422 C (4 C7
A§: Cll <14 Cl7 C2O 423 C2 <5 CS Cll Cl4 C17 420 C23 <2 C5 L 423 C2 45 CS
C12 415 ClS C21 1 Cd <() 4—9 412 ClS CIS <21 1 (d . (21 1 Cd CG (9
CIS 4-16 4-19 C22 c C4 <7 CIO 4-13 4-16 C19 422 C <4 C22 C C4 <7 CIO
<14 <17 CQO C23 <2 <5 <8 Cll <14 <17 620 <23 CQ <5 <23 CQ CS CS Cll
415 4-18 421 (3 CG 4-9 412 4-15 CIS C21 1 CS 421 1 43 C6 CQ C12
CIG <19 C22 C <4 C7 CIO C13 CIG C19 C22 C C4 L C22 C C4 C7 CIO C13
C17 4—20 €23 C2 <5 (8 Cll C14 4—17 €2U C23 <2 (5 L C23 4-2 gS CS (11 <14
CIS <21 1 CS <6 CQ 412 CIS <18 4-21 1 CS . 421 1 C3 4-6 CQ 4-12 §15
CIQ <22 C (4 C7 (10 <13 CIG <19 <22 ( C4 . <22 C §4 <7 (10 <13 (16
CZO <23 42 C5 CS Cll <14 <17 <20 423 C2 <5 . (23 C2 <5 CS Cll 414 417
<21 1 C3 CG <9 Cl2 <15 <18 <21 1 C3 L C21 1 CS CS CQ C12 C15 418
C22 C 44 C7 ClO CIS <16 C19 4-22 C C4 L C22 C 44 4-7 glU C13 416 Clg
I C23 CQ 4—5 CS Cll C14 417 CZO <23 C2 C5 L C23 42 CS CS Cll Cl4 4—17 C2O

- 24x24
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Elements in each row of Ay = [ax®], zecr(s2)+ can be written by using 3 copies of

(i)3 = {¢** | h=0,1,2,..., 2B “where i = 0,1,2.

i.e.,

(0)s = {¢¥ | h=0,1,2,... 26t 7},
(1)s = {¢3H | h=0,1,2,... 2=G0 — 7}
(2)s = {¢*2 | h=0,1,2,..., =8 — 7},

1.€.,
(0)3 — {17 CS’ <67 <9’ C127 C157 <18’ CQl}-
(1)3 = {C’ C4a g77 Clou Clgv §167 Clga <22}'
(2)3 = {62’ <57 C8> Clla C14a C177 <207 623}'

and 7 left-cyclic shifts of 3 copies of each of these three sets.

The main purpose of this section is studying the distribution of {Tr(az?) | = €
GF(p,2)*} for a € GF(p,2)*. From Lemma 5.2.2 it is clear that for a fixed a € GF(p,2)*
the set {az* | x € GF(p,2)*} is equal to A copies of (i), = {¢*M | h=0,1,2,..., I‘%—1}
or cyclic shifts of A copies of (i), where i = 0,1,2,..., A — 1. Therefore it is enough to
study the trace values of elements in each set (i), for i = 0,1,2..., A — 1. First we will

find out the elements that have trace 0 and how they are distributed in the set (7).

Lemma 5.2.4. Let \ be a positive integer. If Uy = {ax | Tr(az?) = 0;a,2 € GF(p,2)*}
then Uy = {¢557 @+ | |k =0,1,2,...,p— 2}

Proof:
Since a,x € GF(p,2)*, a and x can be written as a = (" and z = (**, for some ¢, and ¢y,
where 0 < to,t; < p? — 2. Now for any positive integer A we have az* = (ot 1 = (t ¢
GF(p,2)*, for some 0 < t < p? — 2. Therefore Uy = {¢* | Tr(¢*) = 0}. From Corollary
4.3.4 we know that for x € GF(p,2)*, Tr(xz) = 0 if and only if z = C(%Hx%ﬂ), where
k=0,1,2,...,p — 2. In other words, Tr(¢*) = 0 if and only if ¢t = (’%1) (2k 4+ 1), where
k=0,1,2,...,p—2. Thus U, = {¢"5" @D |k =0,1,2,...,p— 2} 0
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Note that when we represent the elements in the set W, as powers of (, the elements
are independent from A. Therefore from now on we use ¥ to represent the set W,.

The following lemma describes the distribution of the elements of W in the set (7).

Lemma 5.2.5. Let p > 3 be a prime and A be an integer such that 2 < A\ < p—1 and
Mp+1). Leti=0,1,2...,7—1 and (i), = {@hﬂ‘ | h=0,1,2,... B } Let
U= (O [ k= 0,12, (p— 1) - 1),
(i) If A = B2 then W C (0),.
(11) If A\ = 7%1 and its prime factorisation is A = A\*A5? ... A+ then for all j =1,2,... u,
W C (0)r and ¥ C (0),;.
(iii) For ¢ > 1, if X = 2q then ¥ C (q)a,-

Proof:

. . 2_
i) Consider the se A= =0,1,2,..., = —1}. = 22~ then we have
(i) Consider the set (0) {@h | h=0,1,2 - 1} If A = & then we h

p2—1_1 _ p2_<(p;1)+1)

A (p+1)

22 —p—3
(p+1)
(p+1)(2p—3)
(p+1)
= (2p—3)

= 2(p—1)—1.

Hence for A = Z£1 the set (0), is (0)@2& = {th |h=0,1,2,....,2(p—1) — 1}.
It is clear that (p—1)—1 < 2(p—1)—1 and the highest power of ¢ in ¥ is Z-1(2(p—1)—1).

Thus it is clear that all the elements in ¥ are in the set (O)% . Therefore for A = ’%1 we

have U C (0),.

(ii) Let A = ZX! and its prime factorisation be A = A{'A$?...A%. For each )\;, where

3 =12 ... u, we write

(0), = {CMh |h=0,1,2,..., 7’2/\—;1 — } Since ;|\, there exists a; € Z* such that

A = Oéj)\j.

1
iz% = Oéj)\j.
1
=\ = P :
20./j



J 20¢j

p+1
Therefore (0),, = (0)%1 = {C<2ag‘)h | h = 0,1,2,...,’% — 1} and

pl 1 =2a;p — (14 20;) =20(p—1) — 1.

20¢j
pt1
Hence (0),, = (0)%1 = C< ) |h=0,1,2,...,(205p — (1 +2c)) p. It is also clear

J

that, for all a; € Z*, (p — 1) — 1 < 2a;(p — 1) — 1 and therefore all the elements in the
set W are entirely in the set (0),, = (0)%71 = §<%>h |h=0,1,2,...,2a;(p— 1) — 1}.
Thus for all j = 1,2,...,u, ¥ C (0)5,. By using a similar argument, we can also prove
that, for all j = 1,2,...,u, ¥ C (O))\;j.

(iii) For ¢ > 1, let A = 2¢ and consider the set (g)2, given by

2_
(@ = (¢)2g = {¢2qh+q = (1D [ =0,1,2,..., 5 — 1}.
Since A|(p 4+ 1), there exists u € Z* such that

p+1 = A
=p+1 = 2qu.
1

2

Therefore (¢)y = (¢)pr1 = {((p;ul)(%“) | h=0,1,2,..., ’% — 1} and

©w

St = L= pp = (L4 ) = plp — 1) =
Hence (¢)) = (q)pTH = {((i) R =0,1,2,.. ., u(p—1) — 1}. It is also clear that
p+1 <Eland (p—1)—1<pu(p—1)—1. Thus ¥ C (q)s. O

In Lemma 5.2.5 we have identified some values of A such that ¥ C (i), where ¢ =
0,1,2,...,A—1. We noticed that if A = 22! then ¥ C (0), and if A = 252 = A{'AS2 ... A2

then, for all j = 1,2,...,u, ¥ C (0),, and ¥ C (0) We can also show that, for

A
j=1,2,...,u, if 0 is a product of any combination of )\; and /\jjthen U C (0)p. We also
noticed that, for ¢ > 1, if A = 2¢ then ¥ C (¢),. We now have to answer two more ques-
tions that arise from Lemma 5.2.5. Are there any other values of A such that ¥ C (q)x
and in the case of A = 2¢, what are the relevant prime numbers such that A\|(p +1)? In

order to answer these two questions we need to do a careful investigation of the indices

of elements in the two sets ¥ and (q), respectively.
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From Lemma 5.2.4 we know that ¥ = {Cw(zk“)]k =0,1,2,...,p — 2}. Consider

the set (i), = {¢*M*h =0,1,2,..., pQ/\_l — 1}. If U is entirely in (¢), for ¢ > 1 then, for

all k =0,1,2,...,p— 2, there exists ay € Z* such that

(p+1) p*—1

2

(2k+1) = Xlag+q, where 0 < o < — 1. (5.2)

From (5.2), if ¢ # 0 then we have

2p+2)k+ (p—2¢+1) =2

Since ay, € Z* and A|(p + 1) both (2p + 2) and (p — 2¢ + 1) should be divisible by 2.

ie., % = [ and ’% = v, where 3,7 € Z*. This implies that p = A3 — 1 and

p =2\ y+2q—1.

= AN0—1=2\y+2¢— 1.

= 0=2y+ 27‘1.

Since 3 € Z" and ¢ < X\ we have A = 2¢. Conversely if A = 2¢ then it is obvious that

g # 0. Thus there are no other values of A (except when A = 2¢q) such that ¥ C (g),.
The relevant primes for A = 2q are given by p = 2A\y + 2¢ — 1 = 4¢qv + 2q — 1. This

implies p = (2¢ — 1) mod (4¢) or p = (A — 1) mod (2X). Since 2 < A < p — 1, we have

p—1

Example 5.2.6. Let ¢ = 2 then A = 4 and p = 3(mod 8). This gives us p = 11,19, 43,
etc. For all these primes, the set ¥ = {ax* | Tr(az*) = 0, a,z € GF(p,2)*} =
(RO | £ =0,1,2,...,p— 2} C (24 = {<4h+2 | h=0,1,2,.. . B2 — 1}.

Let ¢ = 3 then A = 6 and p = 5(mod 12). This gives p = 17,29,41, etc. For all
these primes, the set U = {ax% | Tr(ax®) =0, a,2 € GF(p,2)*} = {CLgl)(%H) | k=
0,1,2,...,p—2} C (3)g = {§6h+3 | h:o,1,2,...,’%—1}.

Let us consider the elements of GF(11,2)* that are in (i)y, where i = 0,1,2,3, to
illustrate the case ¢ = 2 and A\ = 4 such that ¥ C (2), .

(0)4 = {1,%,¢8,C12, (16, (20 (24 (28 (32 (36 (40 (44 (48 (52 (56 Y.

(1)a = {C,C5,¢9, C13,¢IT,¢21, (25 (29, (33, ¢37 ¢4, ¢15, ¢, (53 (57 . ).

(2)a = {2 (€%), 1%, ¢ (€1%), €72, €%, (¢0), ¢4, €%, (€2), €70, €, (¢°1), ¢,
(3)a = {C3,C7, C11, C15, C19 (28, ¢2T (31, ¢35 (39 (43 ¢AT (51 (%5 ¢ ).

91



From Theorem 4.5.3 we know that Tr(¢"= @) =0, for all k =0,1,2,...,p—2. In
this example Tr((5%*+V) =0, for all k=0,1,2,...,9. Thus

U= {¢*""Ik=0,1,2,...,9}
{¢*O2E = 0,1,2,...,9}

= {("2|h=0Bk+1),k=0,1,2,...,9} C (2)4.
The elements of U are in parenthesis in (2)4.

Let us now recall the matrix representation of elements of GF(p,2)* that we studied

in Lemma 4.3.6.

s
-

() () () e
(1) L ) (e L)

GEEDT= (mhyeren (B erore (B )ee(BR) (P ek
(e (BN e g, e e

T (1) x(p+1)
where d = 0,1,2,...,pand £k =0,1,2,...,p — 2. Here we will label each column by
using the first element of that column.
In the next three lemmas, we study, for different values of A, the position of the

elements of the set (i) = {¢(M™|h =0,1,2,..., Z% — 1} in the columns of the matrix

*

representation of GF(p,2)*.

Lemma 5.2.7. Let p > 3 be a prime and 2 < A < p — 1 such that N|(p + 1). Let
i =0,1,2,...,\ — 1 and for each i, the set (i), = {¢*F|h = 0,1,2,...,1% -1} If

A= ’%1 then for a fived i, the elements in the set (i)x are completely listed in the columns

ptl_ 1.

indexed by C%J”\l“ in the matriz representation of GF(p,2)*, wherel = 0,1,..., 2

Proof:
If A =2t then (i), = (2)% = {¢"5h i = 0,1,2,...,2p — 3}. The set of elements of

PEL LN+

the column indexed by ( in the matrix representation of GF(p,2)* (denoted by

(1)) is given by (1) = {¢("2) @D L = 0,1,2, ... p—2}, where [ = 0,1, ..

p+1
2

+1
L= —1
Since A = we have [ = 0,1 and hence

pt1

(1=0)={¢(5)C+DH L =01,2,...,p— 2}
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and
(1=1) = {¢")@+2+|L = 0,1,2, ..., p — 2} respectively.
We need to prove that (i)p+1 =({l=0U(l=1).
Let z € (z)% Then 2 = (2% for some h = 0,1,2,...,2p — 3. If h is odd then
€ (1=0) and if & is even then x € (I = 1). Therefore

(D)o C (L=0)U(I=1). (5.3)

Next let any element z € (I =0)U (I = 1). If z € (I = 0) then & = ((*F)E+Di for some
k=0,1,2,....,p—2. Wealsohave 0 < k <p—-—2=1<2k+1 < 2p— 3. Therefore
z € (i)ps.

If 2 € (I =1) then z = ("2)@H+ for some k = 0,1,2,...,p — 2. It is clear that
x € (i) since these values of k correspond to the even h for 0 < h < 2p — 3, except
possibly for k = p — 2. When k = p — 2, x = ((53)@k+2+i = (55 @-2+ = i which is

corresponds to h = 0. Thus
(=0)U(l=1)C (i)ps:. (5.4)

Now from equations (5.3) and (5.4) we have (Z)Lﬂ =(=0)U(l=1). ie., in the case
of A = p+1 , the elements in the set (i), are completely listed in the columns indexed by

C%Hl“ in the matrix representation of GF(p,2)*, where [ =0,1,... 22 —1=0,1. O

The next example illustrates this result.

Example 5.2.8. Let p =5 and A = 3. Then N(p + 1) and the set (i)3 = {¢3" | h =
0,1,2,..., 5_1 — 1}, where i =0,1,2.

i.e.,

03 ={¢*"|h=0,1,2,.... % —1=7}.
(1)3={§3h+1|h:o,1,2,...,527—1_1:7}_

(2)3 = {2 |h=0,1,2,..., 5 —1 =7}

i.€.,

(0)3 — {17 C37 CG’ €97 C127 <157 C187 (21}'
(1)3 = {C7C4a C77C10a C137€167C197C22}'
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(2)s = {¢%,¢°,¢5, ¢M, ¢, O, ¢, ¢}
The elements in the set (i)3 are from the columns indexed by (3T and (5% in the matriz
representation of GF(5,2)*, where i = 0,1,2. For example the elements of (0)3 are in the

columns indexed by ¢ and (°.

RS S G
C9 ClO CH C12 C13 §14
C15 Clﬁ Cl? C18 C19 C20
C21 C22 CQB C24 =1 <25 — C 26 _ <2 |

GF(5,2) =

L 4x6

5 the elements in the set (i), are com-

In Lemma 5.2.7 we noticed that when A\

+Al+1

pletely listed in columns indexed by ( = of the matrix representation of GF'(p,2)*,

p+1

where [ = 0,1. Let us next look at the case A = %5~ with a prime factorisation

ATPAS? . A% The next lemma describes, for j = 1,2,.. ., u, the placement of the elements

of the sets (i), and (i),; in the columns of the matrix representation of GF(p,2)*.

X7
Lemma 5.2.9. Let p > 3 be a prime and 2 < A < p — 1 such that N\|(p + 1). Let

i =0,1,2,...,A — 1 and for each i the set (i)y = {¢**|h = 0,1,2,...,’% —1}. If

_ ptl ; ; e ts ; _p+l _ 1TV &j
A = 5= and its prime factorisation is A = 5= = Hj:1 A;' then

(i) for a fived i = 0,1,2,...,); — 1, the elements of the set (i)x, are completely listed

*

wm the columns indezxed by C%l“‘jl” in the matriz representation of GF(p,2)*, where

1
[=0,1,..., 5 —1.

(ii) for a fizred i = 0,1,2,... ,)\jj — 1, the elements of the set (i)

+1 4 2\% 0
CPT+)‘]'] I+

e are completely listed
J

in the columns indezxed by in the matriz representation of GF(p,2)*, where

1=0,1,... 2 —1.
)\jJ

Proof:
(i) If A = 2EL = AP A2 ... A% then Aj|2EL, for all j = 1,2,...,u. ie., there exist a; € Z*
such that \; = %. Now for a fixed i = 0,1,2,...,A; — 1, the set (i), = {¢¥"'|h =
0,1,2,..., 732’/\_;1 — 1} can be written as (i), = {¢Y"*|h =0,1,2,...,(p—1)2a; — 1}. The
values of h in (i), can be re-arranged as follows:
(i)x, = {¢V"h = aj,05+1,...,(p—1)2a; —1,0,1,2,...,; — 1}. In addition to this,

these values of h in (i), can be written in matrix form as follows:
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aj cxj+1 aj+2 OLJ‘+C¥J‘71 aj +aj oaj+2aj71

Saj Saj+1 3aj+2 SajJrajfl Saj+aj Saj+2ajfl
he Saj 5aj+1 Saj+2 5aj+aj—1 5&j+&] 5aj+2aj—l
(2p — 3)a 2p—=3)a; +1 (2p—3)a; +2 ... (2p—3)aj+a; =1 (2p—3)a; +aj; o (2p=3)a; +2a; -1

The following results hold:
N((2p—3)a; +a; —1) = N((p—1)2a; — 1) mod (p* —1).
Ai((2p — 3)a; + @) = 0 mod (p* — 1).
Ai((2p = 3)ay + 2a; — 1) = Aj(a; — 1) mod (p? — 1).

+)\ I+ 3

The set of elements in the column indexed by C in the matrix representation

of GF(p,2)* is denoted by (1) and given by (1) = {¢("2)@+DINIH L — 0,12, ... p—2]},
where [ = 0,1,2,.. p“ — 1. By using the substitution A\; = I%; we can re-write the
elements of (1) as (1) = {CA a4 kH)H+ k= 0,1,2,...,p—2}, wherel = 0,1,2, ..., 2a;—1.
It is clear that the number of elements of (i)y, is (p—1)2«; and for [ = 0,1,2,...,2a; — 1,
the sum of the number of elements in the sets () is also (p — 1)2a;.

Now consider the set (I = 0) = {¢M(@Ck+)+iE = 01,2, ... ,p—2}. It is clear that
these elements are in the set (i), and the corresponding values of % in (i), are in the
first column of the matrix h above.

Next consider the set (I = 1) = {¢M(@EHDFD+H L = 0,1,2,...,p—2}. It is clear that
these elements are in the set (i), and the corresponding values of % in (i), are in the
second column of the matrix h above.

Similarly we can show that the elements in the set (I = 2a;—1) = {¢Ai(@@k+1)+2a;-1)+i)
k=0,1,2,...,p—2} are in the set (i), and the corresponding values of h in (i), are in
the last column of the matrix h above.

Thus it is clear that

201
@y = UO
1=0
i.e., in the case of p+1 = A'AZ A, for a fixed i = 0,1,2,...,\; — 1, the elements of

(i), are completely listed in the columns indexed by ¢ BR N of the matrix representa-
tion of GF(p,2)*, where [ =0,1,2,.. 1%11 _

(i) If A = 2L = A{'AS2 ... A% then Ajﬂ’%l, for all j = 1,2,...,u. ie., there exists
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B; € Z* such that )\jj = ]%jl. The rest of the proof is very similar to the proof of part

(i) 0

Note 5.2.10. In Lemma 5.2.9, for j = 1,2,... u, we identified the elements in the sets
(i)x, and (z))\jj from the columns in the matriz representation of GF(p,2)*. Similarly,
for3=1,2,...,u, if 0 is a product of any combination of \; and A;j we can identify the
elements in the set (i)g from the columns in the matriz representation of GF(p,2)*. In
EEL 61+

this case the elements of (i)g are completely listed in the columns indexed by mn

; : * _ +1
the matriz representation of GF(p,2)*, where [ =0,1,2,..., 7= —

Example 5.2.11. Let p = 11 and A = 222 = 6 =2 x 3. Then 6|/(p + 1), 2|(p + 1) and
3(p+1). The set (i)s = {¢* | h=0,1,2,..., =B yhere i = 0,1, 2.

i.€.,

(0)3={¢*|h=0,1,2,..., 7 — 1 =39}.

(1)3 = {1 |h=0,1,2,..., 171 —1 =30}

(2); = {2 |h=0,1,2,..., 71 —1 =30},

i.e.,

(0)3 — {17 C37 C6a C97 C127 515’ §187 C217 C24a C277 C307 4“337 C36a €39, C427 C457 <’487 §517 C547 . }

(1)3 — {C> C4a C77 ClO’ C137 QIG’ C19’ C22a C257 C28> C31’ C34’ <377 C40’ C43’ C467 C49> C527 C55’ . }

(2)3 {C27 <57 C87 Cllv C147 C177 <207 C237 C267 <297 C327 C35> C387 <41’ 4*447 C477 <507 C537 §56> . }

The elements of (i)s are completely listed in the columns indexzed by (SF3+% in the
matriz representation of GF(11,2)*, where | = 0,1,2,3 and i = 0,1,2. For example

elements of (0)3 are in the columns indexed by ¢8, ¢°, ¢('? and ¢*°.

96



CG <7 CS <9 ClO Cll <12 C13 C14 <15 C16 <17
G G S G & G G & N G
CBO <31 C32 <33 C34 C35 C36 CS? <38 ng C40 C41
¢ QB et
¢t 0O
C66 §67 C68 C69 C?O C71 C72 C73 <74 <’75 C76 C77
C78 C79 CSO CSI <82 C83 C84 C85 <86 C87 <88 CSQ
CQO <91 C92 C93 <94 <95 <96 C97 C98 <99 ClOO gl[)l
<’102 C103 C104 C105 ClOG C107 €108 <’109 CHO Clll C112 §113
g g g g g1 ¢ ¢t ¢

L - 10x12

GF(11,2) =

Thus far we have identified the positioning of the elements of (i), in the matrix rep-
resentation of GF(p,2)* for A = ’%1, for the prime power factors of A = 1%1 and for the
product of any combination of these factors. In the next lemma we will study the case

A=2qforl <g< ’%1 such that p = (2¢ — 1)mod(4q).

Lemma 5.2.12. Let p > 3 be a prime such that, for 1 < q < %=, p = (2q — 1)(mod 4q)
and2 < A < p—l such that X|(p+1). Leti=0,1,2,...,A—1 and the set (i), = {¢**|h =

0,1,2,...,5=—1}. Forl<g<? ,zf)\—thhenforaﬁxedz—O,l2...2q—1
the elements of the set (i)q, are completely listed in the columns indexed by ("= 5+ 2l4q+i
in the matriz representation of GF(p,2)*, where l =0,1,2,..., %11 —

Proof:
Since A\ = 2¢ and A|(p + 1) we have 2¢|(p + 1) and hence there exists v € Z* such that
p+1 = 7. Since p = (2¢ — 1)(mod 4q) there exists p € Z* such that == 2q p=29-1) — , This
1mphes that Iil — 421_3 = % (%) — = is a positive integer. That is 5= is a posmve integer
and hence 7 is an odd positive integer.

Now by using the substitution p; L — ~ we can re-write the set (i), as

p’-1

_ 1}
{¢C"Hh = 0,1,2,... y(p— 1) — 1},

(i) = {C"h=0,1,2,...,

Let ({) be the set of elements in the column labeled by ¢“2 T20+4+ of the matrix rep-

resentation of GF'(p,2)*, where [ =0,1,2,.. p“ — 1. Again by using the substitution
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%}1 = v we can write the elements of the set (I) as

(1) = {C%(2k+1)+2ql+q+i|k —0,1,2,....p— 2}
{Cq7(2k+1)+2ql+q+i|k — O, 1’ 27 e p— 2}7
where [ =0,1,2,...,v— 1.
For [ =0,1,2,...,7 — 1, it is clear that the number of elements of (i),, and the sum

of the number of elements of (1) are equal to y(p — 1).
Re-writing the set (i)a,:

(7;)24 = {<2qh+i‘h = 07 17 27 e 77(]7 - 1) - 1}

. +1 y4+1 1 1
= qhrip =TT T ) T g A(p—1),0,1,2,..., L)
2 ' 2 2 2
= {Czqh+|h: 5 5 g ,...,v(p—1),0,1,2,...,7}.

As in Lemma 5.2.9, the values of h of (i)y, can be written in matrix form as follows:

y+1 y+3 y+5 yt+v—2 Y+ 3v—1
2 2 2 2 2 cee 2
3v+1 3v+3 3745 3y+y-—2 3y+~ 5y—1
2 2 2 e 2 2 2
5y+1 5v+3 5v+5 S5y+vy—2 5+ Ty—1
h= 2 2 2 T 2 2 Tt 2
(2p—3)vy+1 (2p—3)~v+3 (2p—3)v+5 (2p—38)vy+~v—2 (2p—=3)v+v (2p—3)v+2~v—1
5 5 5 o 5 5 S 5

The following results hold:

2q (=2 ) = 9g(3(p — 1) — 1) mod (p? ~ 1),
2q —(2”_2)%”) =0 mod (p* —1).
2q (—(2”_3)?27_1) =2¢ (%}) mod (p* —1).

Now consider the sets (1) = {¢(0V@r+DF2+ati|p =, 1,2, ... p—2},forl =0,1,2,...,v—1.

b R}

(0) = {¢n@Htatip —0.1,2,... p—2}

- {Cq(wl)ﬂ'7 CaBHDFE ca(BytD)+ ’ Cq((2pf3)7+1)+i}'

P

It is clear that the entire set (0) is in (7)9, and the corresponding values of h in (i), are

in the first column of the matrix h above.

(1) = {¢n@si2eratiy —0,1,2,...,p -2}

{gq(wi’))Jri7 gq(3v+3)+i’ C‘Z(5W+3)+i : CQ((QP—3)V+3)+Z'}'

PRI

98



It is clear that this entire set is in (i)y, and the corresponding h values in (i)q, are in the
second column of the matrix h above.

Continuing in this manner we have

(7 - 1) = {Cq’y<2k+1)+2q(7_1)+q+i|k = 07 ]-a 27 Y 2 2}

— {Cq(i*'w—l)ﬂ'7 Cq(5'y—1)+i7 Cq(7v—1)+i7 ) Cq((2p—3)7+27—1)+i}

ey

and it is also clear that the entire set (y — 1) is in (¢)y, and the corresponding values of
h in (i)y, are in the last column of the matrix h above.

Thus it is clear that

i.e., in the case of A = 2¢, for a fixed i = 0,1,2,...,2¢ — 1, the elements in the set (i)q,
are completely listed in ¢“F T20+9+i columns of the matrix representation of GF (p,2)*,
where 1 =0,1,2,..., 22 —1. O

72q

The following example illustrates this result.

Example 5.2.13. Let g = 2 and p = 11. It is clear that 11 = (2x2—1)mod(4 x 2). (i.e.,
11 =3(mod 8)). Let \=2q=4. Then N\|(p+1). (i.e. 4|12 ). The set (i), = {¢*" | h =
0,1,2,...,%}, where i =0,1,2,3.

i.€.,

(0)4={¢* | h=0,1,2,..., =1 1 =29}.

(g ={¢** | h=0,1,2,..., =L 1 =29}

4
(2)a={¢"? [h=012,... 1 —1=20}
(B)a={¢"* [h=012... 1 -1=20}
i.€.,

0)4 — {17 C47 <87 <127 <167 C207 <247 C287 C?)Z7 C367 <407 <44’ C487 C527 <567 . }

Da={¢, ¢ ¢%, 1, ¢T3, €%, ¢, €32, ¢, ¢ ¢, 09, ¢, ¢
Ja={¢%¢% ¢, CML 1%, 072, %0, €70, O3 €8, ¢, 01O, 0L ¢, 08

3)4 — {g?)’ <77 Cll7 <157 <-197 4‘23’ C277 <31’ 435’ C397 <437 C477 CSl7 C557 <59, o }
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The elements of (i)4 are completely listed in the columns indexed by (64T = (8+4l+i

in the matrixz representation of GF(11,2)*, wherel = 0,1,2 andi = 0,1,2,3. For example

the elements of (0)4 are in the columns indezed by ¢¥, ('? and (1°.

¢ ¢ ¢ gt gttt
G S G & N G & € € €
CSO <31 CSQ <33 <34 C35 C36 C37 <38 CSQ <40 <41
¢ oq® Mottt
C54 §55 C56 €57 C58 C59 C60 CGI <62 C63 C64 C65
C66 <67 C68 <69 C?O Cﬂ <72 C73 <74 C75 <76 <77
C78 C?Q CSO C81 <82 <83 <84 C85 CSG <87 C88 <89
CQO §91 CQZ C93 C94 C% C% C97 €98 C99 ClOO glOl
6102 <103 C104 C105 C106 C107 C108 C109 <110 CHI C112 <113
¢t gt e gt g ¢ ¢ ¢ ¢ ¢

- - 10x12

GF(11,2)" =

By completing the proof of the previous few lemmas and giving suitable examples,
we have studied a nice relationship between the elements in the columns of the matrix
representation of GF(p,2)* and the elements of (i), = {¢(MT|h =0,1,2,..., ’% — 1},
for various values of \. We are now in a position to study the distribution of Tr(az?) for

various values of A, where 2 < A < p — 1 such that A|(p + 1).

Theorem 5.2.14. Let p > 3 be a prime and 2 < X\ < p — 1 such that \|(p +1). Let Tr
be the trace map over GF(p,2) and a € GF(p,2)*.

(i) If X = BL then as x ranges over GF(p,2)*, Tr(az™) takes each element in Z, \ {0}
equally often either p — (X — 1) times or p+ 1 times.

(i) If X\ = L = XTI .. X% then

(a) for each \j, j =1,2,...,u, as x ranges over GF(p,2)*, Tr(az™) takes each element
in Z, \ {0} equally often either p — (X\; — 1) times or p + 1 times.

(b) for each X\;, j =1,2,...,u, as x ranges over GF(p,2)*, Tr(ax’\fe'j) takes each element
in Zy \ {0} equally often either p — (X7 — 1) times or p+ 1 times.

(iii) For 1 < q < B2, if p = (2 — 1)mod(4q) and X = 2q then as x ranges over GF(p,2)*,
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Tr(az?) takes each element in Z, \ {0} equally often either p — (2q — 1) times or p + 1

times.

Proof:
From Lemma 5.2.2 we know that for a fixed a € GF(p,2)* and for all z € GF(p,2)* the
set {ax?} is given by A copies of (i), = {¢(MT|h =0,1,2,..., 7% — 1} or X copies of
cyclic shifts of (i), where 2 < A < p — 1 such that A\|(p+1) and i =0,1,2,..., A — 1.

(i) If A = 2 then from part (i) of Lemma 5.2.7 we know that the elements in the

"3 A columns of the matrix representation of GF(p,2)*, where

set (7), are from the ¢
[ =0,1. From Lemma 4.3.6 we know that the trace of each element of the first column
of the matrix representation of GF(p,2)* (i.e., the column indexed by ¢ %H) is 0 and each
of the other columns take each element in Z, \ {0} exactly once. Therefore the trace of
the elements in (7)) contains each element in Z, \ {0} equally often either 1 time (when
i = 0) or 2 times (when i # 0). Since {ax} contains X copies of (i), the trace of elements
of {az*} takes each element in Z, \ {0} equally often either A times or 2) times. Since

A = ZEL as o ranges over GF(p,2)*, Tr(az?) takes each element in Z, \ {0} equally often
either 221 times (i.e., p— (A —1)) or (p+ 1) times.

(i) (a) If A = 2EL = A{*A$2 ... A% then from part (i) of Lemma 5.2.9 we know that the
elements of (i), are from ¢ B2 N columns of the matrix representation of GF(p,2)*,
where j =1,2,...,uand [ =0,1,2,..., ’%1 — 1. Again from Lemma 4.3.6 we know that
the trace of the elements in the first column of the matrix representation of GF(p,2)*

(i.e., the column ¢ pTH) is 0 and all the other columns take each element in Z, \ {0} exactly

once. Therefore the trace of the elements of (i),; contains each element in Z,\ {0} equally

p+1 p+1

% times. Since {az} contains A; copies of (i),,, the trace

often either — 1 times or
of elements of {ax*} takes each element in Z, \ {0} equally often either \; (’i]l - )
times or \; (T) times. Thus as x ranges over GF(p,2)*, Tr(az’i) takes each element
in Z, \ {0} equally often either (p — (A\; — 1)) times (when ¢ = 0) or (p + 1) times (when
i 0).

(b) Similarly, from part (ii) of Lemma 5.2.9, we can prove that as x ranges over GF(p, 2)*,
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Tr(aa: i ) takes each element in Z, \ {0} equally often either (p — (A}’ — 1)) times (when

i=0)or (p+1) times (when i # 0).

(iif) For 1 < ¢ < Z*

5 if p = (2¢ — 1)mod(4q) and A = 2¢ then from Lemma 5.2.12

we know that for i = 0,1,2,...,2¢ — 1, the elements of (i), are completely from the
CPTH“qu” columns of the matrix representation of GF(p,2)*, wherei =0,1,2,...,2¢—1
and [ =0,1,2,..., pfll 1. Again from Lemma 4.3.6 we know that the trace of the ele-
ments of the first column of the matrix representation of GF'(p,2)* (i.e., the column ¢ %)
is 0 and all the other columns take each element in Z, \ {0} exactly once. Therefore
the trace of the elements of (i)y, contains each element in Z, \ {0} equally often either
’%ql — 1 times or Til times. Since {ax??} contains 2¢q copies of (i), the trace of ele-
ments of {az??} takes each element in Z, \ {0} equally often either 2q (p“ - 1) times
(when i = ¢) or 2¢ ( ) times (when 7 # ¢). Thus as x ranges over GF(p,2)*, Tr(ax®?)

takes each element in Z, \ {0} equally often either (p—(2¢—1)) times or (p+1) times. O

So far we have studied, for different values of ), the distribution of Tr(az?). We will

apply this in the next section to construct two-weight, self-orthogonal codes over Z,,.

5.3 Code construction from Tr(ax")

From Theorem 5.2.14 we studied, for various values of A\, as x ranges over GF(p,2), the
distribution of Tr(ax?), for a € GF(p,2).We are now in a position to use this in the
next theorem to construct two-dimensional, two-weight, self-orthogonal codes over Z, for

p > 3.

Theorem 5.3.1. Let p > 3 be a prime and 2 < A\ < p — 1 such that X\|(p + 1).

(i) If X = EEL then the rows of the matriz Hy = [T'r(az™)]azecr(p2) form a two-dimensional,
two-weight, self-orthogonal code over Z, with the parameters [p*,2, (p — (A —1))(p —1)].
(i) If A\ = B2 = XTI .. X% then

(a) the rows of the matriz Hy, = [Tr(az™)]azecrpe) form a two-dimensional, two-

weight, self-orthogonal code over 7, with the parameters [p*,2,(p — (\; — 1))(p — 1)],

102



where 7 =1,2,...,u.

(b) the rows of the matriz H,e; = [Tr(aa:Afj)]WeGF(pg) form a two-dimensional, two-
J

weight, self-orthogonal code over Z, with the parameters [p®,2,(p — (A —1))(p — 1)] ,
where j =1,2,...,u.

(iii) For 1 < q < &1, if p = (2¢ — 1)(moddq) and X\ = 2q then the rows of the matriz
Hy = [Tr(az*)|azecrpz) form a two-dimensional, two-weight, self-orthogonal code over

Z, with the parameters [p*,2,(p — (2¢ — 1))(p — 1)].

Proof:
Let
Tr(c)), i=1,2,....,p°

Gy = A 2
Tr(¢c), i=1,2,...,p

2x p?

Firstly the two rows of the matrix G, are linearly independent. Let any ag,a; € Z, and
suppose that, for all i = 1,2,...,p% agTr(c}) + a;Tr(¢c}) = 0. From the properties of
the trace map of Theorem 4.3.2, for all i = 1,2,...,p% we have Tr((ag + a:()c}) = 0.
According to the distribution of the trace values over Z, this implies that (ag+a;¢)c} = 0,
foralli =1,2,...,p% However, ¢} # 0 for at least one 1 < i < p? and hence ag+a;¢ = 0.
Since 1 and ( represent linearly independent 2-tuples over Z,, ap and a; should be 0.
Therefore two rows in Gy, are linearly independent.

Now consider all the linear combinations of two rows of Gy,. Fori=1,2,..., p* these
linear combinations are given by agTr(c}) + a;Tr(¢c}) = Tr((ap + ai¢)c?). This implies
that the rows of the matrix H) can be generated by the rows of Gp,. Thus Gy, is a
generator matrix of H) and therefore the length n and the dimension k of the code H),

are p* and 2 respectively. Therefore H) is a two-dimensional linear code over Z,.

(i) From part (i) of Theorem 5.2.14, when A = Zf every non-zero row of the matrix
Hy = [Tr(az))ssecr(pe2) has every element in Z, \ {0} equally often either p — (A — 1)
times or p + 1 times. Since there are p — 1 elements in Z, \ {0}, the Hamming weights
of the codewords of Hy are (p — (A — 1))(p — 1) and p*> — 1. Therefore H, is a two-
weight code. The minimum Hamming weight of Hy is (p — (A — 1))(p — 1). Therefore

Hy = [Tr(azM)|azecrpe) is a [p%,2, (p — (B2 — 1)) (p — 1)] code over Z,.
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(ii) (a) From part (i) (a) of Theorem 5.2.14, when A = B = A{IAS2 ... A%

u

every
non-zero row of Hy, = [Tr(az)]qzecr(p2) has every element in Z, \ {0} equally often
either p — (A\; — 1) times or (p + 1) times. Since there are (p — 1) elements in Z, \ {0},
the Hamming weights of codewords of H), are (p — (A\; — 1))(p — 1) and p* — 1. There-
fore Hy; is a two-weight code. The minimum Hamming weight of codewords of H), is
(p—(Aj—1))(p—1). Therefore Hy, = [Tr(az™)]apecrpe is a [p*,2, (p— (N —1))(p—1)]
code over Z, , where j =1,2,... u.

(b) Similarly from part (ii) (b) of Theorem 5.2.14 we can show that He; = [Tr(ax’\;j Nazecrp.2)
is a two-weight code with the parameters [p* 2, (p — (A7 — 1))(p - 1)] over Z,, where
i=1,2,...

(iii) From part (iii) of Theorem 5.2.14, for 1 < ¢ < Z1, if p = (2¢ — 1)mod(4¢) and
A = 2¢ then every non-zero row of Hy = [Tr(az)],zecr(p2) has every element in Z,,\ {0}
equally often either p — (2¢ — 1) times or (p+ 1) times. Since there are (p — 1) elements in
Z, \ {0}, the Hamming weights of codewords of Hy are (p — (2¢—1))(p—1) and (p* —1).
Therefore H), is a two-weight code. The minimum Hamming weight of codewords of H) is
(p— (2¢ —1))(p —1). Therefore Hy = [Tr(az))azecrpe) s a [p*.2,(p— (2¢—1))(p — 1)]
code over Z,.

Finally the dot product of each codeword of the above codes with itself is either

p—1
S = (p+1)) &
=1

p
= g+ 1)(2p* —3p+1)

or

S = -0y

(p—(A—=1)(2p° —3p+1).

[k

Since p > 3 we have S = 0 mod p. From Theorem 4.2.5 we know that a linear code over

Ly, for p > 2, is self-orthogonal if and only if the dot product of each codeword with itself
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is zero. Therefore all the above codes are self-orthogonal codes over Z, for p > 3. n

Corollary 5.3.2. Let H} be the code that can be obtained by deleting the first column of
the matriz Hy of Theorem 5.3.1. Hj is a [p* — 1,2,(p — (A — 1))(p — 1)] code and the
codewords of H5 are the left-cyclic shifts of the first X\ non-initial rows of Hy.

Proof:
Let A} = [a2gcq F(p2)<- From Lemma 5.2.2 we know that the first A rows of A} are given
by A copies of (i)y, where (i), = {¢M* | h=0,1,2,..., #—1} andi=0,1,2,...,A—1.
The next A rows of A} are given by A copies of one cyclic shift of (i), and in this man-
ner the last A\ rows of A} are given by A copies of 7# — 1 cyclic shifts of (i),. Thus
the codewords of H} that can be obtained by deleting the first column of the matrix
Hy = [Tr(az*)|azecrpe) are the left-cyclic shifts of the first A non-initial rows of Hj.
From Theorem 5.3.1 the parameters of H} are [p> —1,2,(p— (A—1))(p — 1)]. Indeed H;

is a cyclic code. O

The following example illustrates the case A = 7%1 of Theorem 5.3.1.

Example 5.3.3. Let p =5 and A\ = 3. Then M(p+ 1) and 2 < A < p—1. Consider
the primitive polynomial p(x) = x* + x + 2 over Zs and let ¢ be a root of p(x). Then
(? = 4C + 3 and the elements of GF(5,2) = Zs[z]/(p(x)) = Zs[(] can be written as
{0,1,¢,¢2,...,¢B}. The following table provides us the trace values of these elements

and the trace values of their third powers.
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By taking a,z € GF(5,2) = {0,1,(,¢%,...,(®}, the matriz As

given by

Element z | v = ay( +ag | Tr(z) | 2* | Tr(z?)
0 0¢ 40 0 0 |0
| 0C + 1 2 1|2
¢ 1¢+0 4 ¢ |0
% AC+3 2 ¢ |4
¢ AC+2 0 e 1o
¢t 3¢+ 2 1 2|3
S AC + 4 4 <Ak
c6 0C +2 4 B
7 2 +0 3 ¢ |
¢ 3C+1 4 1 |2
9 3¢ + 4 0 3o
10 1€ +4 2 ¢ |4
ci 3¢+ 3 3 @ 1o
12 0C +4 3 a2 3
c13 AC+0 1 5|
1 1€ +2 3 ¢’ |1
¢t 1¢+3 0 ¢lo
(16 2 +3 4 1|2
< 1¢+1 1 1o
18 0C+3 1 6 |4
19 340 2 ¢ |0
2 2 + 4 1 a2 3
2 2 +1 0 5|
22 A+ 1 3 CE |1
2 2 +2 2 2| o
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[0 o 0
o 1 8
o ¢ ¢
0 42 45
0 CS CG
0 <4 <7
0 C5 CS
0 CG CQ
0 <7 410
0 CS Cll
0 49 C12
0 4-10 4-13
0 Cll <14
0 412 415
0 <13 C16
0 414 C17
0 <15 CIS
0 416 §19
0 4-17 4-20
0 C18 CZI
0 419 422
0 <20 CZS
0 421
0 ¢ ¢

Lo ¢ ¢

The matriz Hy = [Tr(az*)]qzecrse) is given by

Cl()

<16

CIO

Cll

<19

0
C18
C19

421
C22

CIO

CIO

Cl()‘
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Cl()

CZQ

416

o

<23

4‘19

0
4-18
<19

<21

422

ClO

Cll

o

§‘22

<10

<13

25x25
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The rows of Hs can be generated by

0204030102040301020403¢010
0413214234 132142341321423

Gu,=
2x25

By deleting the first column of the matriz Hy we obtain:
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25x24

Therefore Hs is a linear code over Zs and its parameters are [25,2,12]. The punctured

code Hj, obtained by deleting the first column of Hs is a [24,2,12] cyclic code over Zs.

Indeed Hj is a cyclic code. The Hamming weight of each non-zero codeword of Hs is either

12 or 24. Thus Hj is a two-weight code. From Theorem 5.3.1, H3 is a self-orthogonal

code.
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Throughout this chapter, for various values of A > 2 such that A|(p + 1), we have
studied the use of the properties of the trace map over GF(p,2) in the form of Tr(ax?)
and used them to construct two-dimensional, two-weight, cyclic, self-orthogonal codes
over Z,. The next question is whether we can apply the trace map over GF(p,2) in

similar manner for A|(p — 1). We devote the next chapter to study this case.
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Chapter 6

Two-Weight and Constant-Weight
Codes from Tr(ax”)

6.1 Introduction

In Chapters 4 and 5 we have individually studied the use of the trace map over the Galois
field GF(p,2) in the from of Tr(ax?) and Tr(az?) respectively. In Chapter 5 we have
considered the case A|(p + 1) and constructed two-weight, self-orthogonal codes over Z,
by using the trace map in the form of T7(axz?). The main reason to consider the case
Al(p+1) was that the number of invertible elements of the Galois field GF(p, 2), i.e., p*—1,
needed to be divisible by A. Since p*> — 1 = (p—1)(p + 1), we need to also study the case
when A|(p — 1). Experimental results have provided us, when A > 2 - even and \|(p — 1),
with the code H) = [TT’(CL[L‘A)]Q@EGF(I)’Q) a two-weight code over Z, with the parameters
[p?,2, (p—1)?]. These parameters are the same as that of the code Hy = [Tr(ax?)]4 zecr(p2)
that we have constructed in Chapter 4. Experimental results have also provided us, when
A > 2-0dd and A|(p — 1), with the code Hy = [Tr(az?)]qzecrp2), a constant-weight code
over Z, with the parameters [p?, 2, p(p — 1)] and these parameters are the same as that
of the code H = [T'r(ax)|azcar(p2) that we have constructed in [65]. The equality of
parameters with already constructed codes and the experimental results motivate us to
study the case A|(p — 1).

In Section 6.2 we study the case A > 2-even such that A|(p — 1) for both p = 1(mod 4)
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and p = 3(mod 4). We will prove that the code Hy = [Tr(az*)]azecr(p2) is a two-weight
code over Z, with the parameters [p?, 2, (p — 1)?]. Section 6.4 is devoted to the study of
the case A > 2-odd such that A|(p — 1) for both p = 1( mod 4) and p = 3(mod 4). In this
case we will prove that the code Hy = [Tr(ax)‘)]a,IGGF(p,g) is a constant-weight code over

Z, with the parameters [p?, 2, p(p — 1)].

6.2 Two-weight codes from Tr(ax?) when )\ > 2-even

The codes that we constructed in Chapters 4 and 5 are totally dependent on the properties
of the trace map over the Galois field GF(p,2). In this section we recall Theorem 4.3.3
that was used to identify the elements of the Galois field that have trace zero. We know
that these elements are ¥ = {Cw(zk“)ﬂf =0,1,2,...,p — 2}, where ( is a primitive
element of GF(p,2). As usual first we need to study, for a € GF(p,2), the distribution of
Tr(az?) by changing x over GF(p,2). From Theorem 4.3.8 of Chapter 4, Tr(az?) takes
each element in Z, \ {0} equally often either p+ 1 times or p — 1 times and from Theorem
5.2.14 of Chapter 5, for different values of A, Tr(az?) takes each element in Z, \ {0}
equally often either p — (A — 1) times or p + 1 times.

The next couple of lemmas study the distribution of elements of ¥ = {¢ 3" Ck+D|f =
0,1,2,...,p— 2} in each row of A = [az|,ecr(p2)-- Firstly we consider the case A > 2-
even and A|(p — 1) for p = 3(mod 4). We can readily check that the minimum value of

such a prime p is 19.

Lemma 6.2.1. Let p > 19 be a prime such that p = 3(mod 4) (i.e.,2 -even) and
A > 2-even such that N|(p — 1). Let (i), = {¢*Fi|h =0,1,2,... I’T — 1}, where i =
0,1,2,..., A—1. Let U = {¢ @D |k = 0,1,2,...,p—2} and (s) = {¢(ECHIHN)|j =
0,1,2,..., 2(p L) — 1}, where 0 < s < 3 — 1. Then

(i) For alls:0,1,2,...,§—1, (s) C V.

(ii) U =J(s).

(ii1) For each s, there exists an even i such that (s) C (i)x.

Proof:
From Lemma 5.2.4 the set U gives the trace zero elements of GF(p,2)*.
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(i) Let any a € (s). Then a = ¢ “37 @5+ Since \ > 2 is even we have 25 + 1 + Aj is
odd and therefore 2s + 1+ Aj can be written as 2k; + 1 for ky = s+ %j. Thus a € ¥ and
hence (s) C W.

(ii) Now let a € ¥. Then o = g‘(pgl)(%“). Since A > 2-even => 3 is an integer. Since 0 <
k < p—2, by division algorithm we can write k = %j—l—s for some j =0,1,2,..., @ —1
and s =0,1,2,...,5 — 1. Therefore « € (s) and since (s) are disjoint sets it is clear that

= J(s).
(p+1)

(ii) Let o € (s). Then a = ¢*2~ 2143 To prove that ¢ +1+X) ¢ (4), for all

j, we need to prove that 2£(2s + 1+ Aj) = i(mod A). That is we need to prove that
7%1(23 + 1+ A\j) is in the same equivalence class mod A for all j. In another words we
need to prove that (1%1) (2s+ 1)+ (’%1) Aj is in the same equivalence class mod A for
all j. Since (ZH) A\j = 0(mod A), we have (25) (254 1) is in the same equivalence class
mod A for all j. Therefore 221 (2s + 1 4+ Aj) is in the same equivalence class mod A for
all j. ie., in the equivalence class of Zt(2s + 1) when j = 0. Therefore (s) C (i), for
i = (Z1) (2s+ 1) mod A. Since A and (Z:) are even it is clear that i is even. O

2

Consider the following example to illustrate this result.

Example 6.2.2. Let p = 19 and A = 6. Then 22 = 10-cven and \|(p — 1). The
sets U = {¢(VOCHDIE = 0,1,2,...,17}, (i)s = {¢®"|h = 0,1,2,...,59} and (s) =
{¢10@sH1+67) |5 = 0,1,2,3,4,5}, where i = 0,1,2,...,5 and s = 0,1,2. Now look at the
full set (s) for each s.

(0) = {¢10,¢70, (130 (190 (250 (310}

(1) = {30, 90, (150 (210 (270 (330}

(2) = {50, ¢110, (170 (280 (290 (350),

It 1s clear that all the elements of W are in the above three sets.

Similarly consider the complete set of ()¢ fori=0,1,2,3,4,5 given below.

0 6 = {1 CG <12 C18 C24 <30 C36 C42 C48 <54 CGO C66 <72 <78 CS4 C90 C96 C102 CIOS <114 }

2)6 = {CZ CS <14 €20 C% <32 <38 €44 C50 <56 <62 C68 CM CSO g86 C92 498 ClO4 <110 <116 .

(0)

(1)6 = {C? <77 C137 C197 C257 C317 <—377 C437 C497 C557 <617 C677 C737 C797 C857 C917 <977 <1037 C1097 C1157 . '}'
(2)

(3)6 = {Cgﬂ C87 C15’ C217 §277 C337 C39’ <457 6517 C57? C637 C697 6757 CSI’ C877 C937 C997 C1057 C1117 61177 A
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(5)6 — {C57 Cll’ <17’ C237 <297 <35’ C41> CM; C537 <59’ C657 C?lj <77’ C837 C897 <957 ClOl7 <1077 C1137 <1197 o

It is clear that the elements of the sets (0), (1) and (2) are completely listed in the sets
(4)6, (0)g and (2)g respectively. i.e., for each 0 < s < 2 there exists an even i, 0 <i <5
such that (s) C (i)x. For ezample, when s =0, (E1) (2s + 1) = 2 = 10 = 4(mod \).
i.e., (0) C (4)s.

We are now in a position to study the distribution of elements of ¥ = {( (B3 (2k+1) |k =
0,1,2,...,p — 2} in each row of A\ = [ar*],secrp2)- Let a = (" and x = (', where
0 < to,t; < p? — 1. Then elements of any given row of A can be written as {(?0T1|t; =
0,1,2,...,p* — 1}. Since ) is even, the powers of ( in any given row of A are either odd

or even. Therefore we label the rows of A as odd and even rows respectively.

Lemma 6.2.3. Let p > 19 be a prime such that p = 3(m0d 4) (i.e.,l-even). Let X > 2-
even and N (p—1). Let (i) = {¢**|h =0,1,2,..., T L_ 1), wherei =0,1,2,...,A—1,
v = {C(%)(Qk“”k =0,1,2,...,p— 2} and A, = [ax)\]a’zeGF(pg)*. Then every even row
of Ay has 2(p — 1) elements from the set ¥ and no elements of U occur in the odd rows

OfA)\.

Proof:
From Lemma 6.2.1 we know that the elements of ¥ are equally distributed over
(0)x, (2)x, (4)x, -, (A — 2)) giving ( ) elements per set. All the other sets (i), have
no elements from the set ¥. From Lemma 5.2.2 we know that each row of A, contains
A-copies of (i), or A-copies of a cyclic shift of (i), for some i =0,1,2,...,A—1. Therefore
each even row of A, contains 2(p — 1) elements from the set ¥ and the odd rows of A,
have no elements from W. O
Thus far we have studied the distribution of elements of ¥ over the rows of A, =
laz*4zecGrp2)+- In the next theorem we will apply this property to construct two-

dimensional, two-weight codes over Z,,.

Theorem 6.2.4. Let p > 19 be a prime such that p = 3(mod 4)(i.e., Et'-even). Let
A > 2-even and A|(p — 1). Let Tr be the trace map over the Galois field GF(p,2). The
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code Hy = [Tr(ax’\)]a,zegp(pg) is a two-dimensional, two-weight code over Z, with the

parameters [p?,2, (p — 1)%].

Proof:
Counsider the matrix
Tr(c)), i=1,2,...,p°

Gy = A : 2 ’
Tr(¢c), i=1,2,...,p

2xp2

where ¢} € GF(p,2) and ( is a primitive element of GF(p,?2).

For any ag,a; € Z,, suppose that agTr(c}) + aTr(¢c}) = 0, for all i = 1,2,...,p%
From the properties of the trace map, = Tr((ap + a1¢)c}) = 0, for all i = 1,2,...,p>
From the distribution of the trace values over Z,, this implies that (ag + a,¢)c} = 0, for
all i = 1,2,...,p? Since ¢} # 0, for at least one i, i = 1,2,...,p% we have ag + a;{ = 0.
Since 1 and (¢ represent linearly independent 2-tuples over Z,, ap and a; should be 0.
Therefore the rows of Gy, are linearly independent.

Now consider all the linear combinations of rows of Gy, . i.e., for all i = 1,2,...,p?
we have agTr(c}) + aTr(¢c}) = Tr((ag + a;¢)c}). This implies that the rows of H can
be generated by the rows of Gg,. Thus Gy, is a generator matrix of Hy and therefore
the length n and the dimension k of the code Hy are p? and 2 respectively. Thus H, is a
two-dimensional code.

From Lemma 6.2.3 every even row of Ay = [G’I)\]a,xEGF(pQ)* contains 2(p — 1) elements
from W and there are no elements from ¥ in the odd rows of A,. From Theorem 4.3.3
the trace of elements of U is zero. Therefore when we take trace of the matrix A, there
will be 2(p — 1) zeros in the even rows and no zeros in the odd rows. Hence in H,, the
even rows will contain 2(p — 1) + 1 zeros and the odd rows 1 zero. Thus the Hamming
weight of non-zero codewords of H, is either p> —2(p—1) —1=p?> —2p+1 = (p — 1)?
or p> — 1. Thus H, is a two-weight code over Z, and the minimum Hamming distance is

(p — 1)%. Therefore the parameters of Hy are [p* 2, (p — 1)?]. O

Thus far we have studied the case A > 2-even and A|(p — 1) when p = 3(mod 4)

(i.e.,}%l—even), constructing two-dimensional, two-weight codes over Z, with the parame-

ptl_

ters [p*,2, (p—1)?]. Next we will do a parallel construction when p = 1(mod 4). (i.e.,23
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odd). In this case we can readily check that the minimum value of such a prime p is

13.

Lemma 6.2.5. Let p > 13 be a prime such that p = 1(mod 4) (i.e., BE-odd) and
A > 2-even such that N(p — 1). Let (i)y = {¢MH|h = 0,1,2,...,1% — 1}, where
i=0,1,2,... A= 1. Let W = {¢"2)D |k = 0,1,2,...,p—2} and for 0 < s <2 —1,
let (5) = {¢"% Gt = 0,1,2,..., 220 1}, Then

(i) For alls=0,1,2,...,5 — 1, (s) C 0.

(i) © = ().

(i1i) For each s, there exists an odd i such that (s) C (i)x.

Proof of this lemma is very similar to that of Lemma 6.2.1. [

To illustrate this result, consider the following example.

Example 6.2.6. Let p = 13. Then ZX' = 7-odd and p — 1 = 12. Let A\ = 6. Then
M(p —1) and the sets ¥ = {("*+V|k =0,1,2,...,11}, (i)s = {¢*"*|h =0,1,2,...,27}
and (s) = {¢7C+1467)|5 = 0,1,2,3}, where i = 0,1,2,3,4,5 and s = 0,1,2. Now consider
the complete set (s) for each s. i.e.,
(0) = {¢7,¢19, ¢, (1Y,
(1) = {2, (63, (105 147y,
(2) = {¢%, (77, ¢19, (161},
It is clear that all the elements of ¥ are in the above three sets.
Similarly, fori=0,1,2,3,4,5, consider the complete set (i)g. i.e.,
0)s = {1, ¢, ¢12, 18, (24 (30 (36 (42 (48 (54 (60 (66 (T2 (T8 (84 (90 (96 (102 (108 (14 Y
)6 = {C,C7, 13,19, 25, ¢31, ¢3T, ¢, 19, (55 (61, (67 (T3 (79, ¢85 ¢91 (97 (103 (109 (115},
2)g = {C2, (8, (14, ¢20, (26, (32, (3 (14, (50 (56 (62 (68 (TA (8O (86 (92 (98 (104 (110 (G 1
)6 = {C3,C5, 15, ¢21, (27, (33, (39, (15, (L, (BT (B3, (69 (T ¢B1 (87 (93 (99 (105 (11 (1T
A)g = {C4,C10, (16, (22 (28 (B4 (40 (16 (52 (58 (64 (TO (T6 (82 (88 (04 (100 (106 (112 (18 Y
B)g = {C5, C11, C17, C28,C29, ¢35, ¢M, 4T, (B3, (9 (65 (TL (7T ¢ (89, (95 (101 (107 (113 (119 Y
It is clear that the elements of the sets (0), (1) and (2) are completely listed in the sets

(
(
(
(
(
(

(1), (3)6 and ()¢ respectively.
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We now look at the distribution of the elements of ¥ = {C(%)(%H)\k =0,1,2,...,p—
2} over the rows of the matrix Ay = [a2*], zecr(p2), for this case. We state the next lemma

without giving the proof as it is similar to that of Lemma 6.2.3.

Lemma 6.2.7. Let p > 13 be a prime such that p = 1(mod 4) (i.e., Lt'-odd). Let
A > 2-even such that A|(p —1). Let ¥ = {¢"z @Dk = 0,1,2,...,p — 2} and A, =
[axM o pecrp2)-» where GF(p,2)* = {1,(,(%, ... ,C”°"2}. Then every odd row of Ay has

2(p — 1) elements from the set ¥ and no elements of U occur in the even rows of Aj.

Now we know that the distribution of the elements of ¥ over the rows of A,. In the
next theorem this property will be used to construct two-dimensional, two-weight codes
over Z,. Again the proof of this theorem is very similar to that of Theorem 6.2.4 and is

omitted.

Theorem 6.2.8. Let p > 13 be a prime and Z'-odd. Let A > 2-even and A|(p — 1). Let
Tr be the trace map over the Galois field GF(p,2). The code Hy = [TT(GZ’A)]Q@EGF(I,’Q) 18

a two-weight code over Z, and its parameters are [p?,2, (p — 1)?].

Thus far we have constructed codes over Z, by using the trace map over the Galois
filed GF(p,2) in the form of Tr(ax?) for even A > 2 such that A|(p — 1). In the next

section we compare this code with the code that we constructed in Chapter 4.

6.3 Comparison of Hy, with Hs

In Section 6.2 we constructed the code Hy over Z, by using the trace map over GF(p, 2)
in the form of Tr(az*) when X\ > 2-even. This code was classified as a two-weight code
with the parameters [p?, 2, (p — 1)?] which are exactly the same as that of the code Ho
constructed in Chapter 4 using the trace map over GF(p,2) in the form of Tr(az?).
The curiosity now is whether these two codes are equivalent to each other. In Chapter
4 we proved that the code Hy = [Tr(az?)]szecr(pe) is self-orthogonal, for p > 3 and
experimental results show that the code H), = [Tr(az)]srecrpz2) constructed in this

section is not self-orthogonal. Therefore we can conclude that the codes constructed in
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this section are not equivalent to those of in Chapter 4 even though they have the same
parameters.

Consider the following examples.

Example 6.3.1. Let p = 13 and A = 6. Then A|(p — 1). Now consider the primitive
polynomial p(x) = x? + x + 3 over Zi3 and let ¢ be a root of p(x). Then the elements of
GF(13,2) = Zs[z]/(p(z)) = Z13[C] can be written as {0,1,¢,¢%,..., ¢}, The following

matriz gives us the code He = [Tr(az®)), recrsz)-

0o o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0o 2 9 5 2 10 1 6 3 7 1 3 2 8 9 11 4 8 1 3 12 7 10 6 12 10
o 12 0 12 4 9 7 7 5 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7
0o 10 8 4 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12
0o 5 5 11 0 11 8 5 1 1 100 0 0 12 1 8 8 2 0 2 5 8 12 12 3 0
0o 1 5 7 3 8 0 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9

0o 2 11 10 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11
o 9 5 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 12 10 11
0o 0 12 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11
0o 8 4 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 7 12 11
0 5 11 0 11 8 5 1 1 10 O 0 12 1 8 8 2 0 2 5 8 12 12 3 0 3
0o 5 7 3 8 0 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 1
0o 11 10 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6
0 5 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 12 10 11 5
0o 12 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5
0 4 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 7 12 11 7
o 1 0 11 8 5 1 1 100 0 0 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1
o 7 3 8 0 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 1 11
0 10 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0
0o 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 5 4
0 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5

0o 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 7 12 11 7

0o o0 11 8 5 1 1 10 0 0 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1 12
0o 3 8 0 7 8 1 4 11 12 2 4 12 8 6 100 5 3 6 5 12 9 1 11 9
o 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 6
0 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 12 10 11 5 2
o 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5 12
0o 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 7 9 10
0o 11 8 5 1 1 100 0 0 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1 12 5
0o 8 0 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 1 11 9 1
o 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0 6 2
0o 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 5 4 2 9
0o 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5 12 0
0 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 7 9 10 8
0o 8 5 1 1 10 0 0 12 1 8 8 2 2 5 8 12 12 3 0 3 1 12 5 5
o 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 1 11 9 1 5
0o o0 9 3 10 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0 6 2 11

Let HE be the matriz obtained by deleting the first column of the matriz Hg. It is clear
that each row of Hf can be formed by using 6 copies of the first 28 elements of each row.

Clearly the matriz Hg can be generated by using all linear combinations of the 2™¢ and 3"
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rows of Hg. Further Hg is a two-weight code over Zys with the parameters [169,2,144] and

the punctured code Hf is a [168,2,144] code and its codewords are left-cyclic shifts of each

¢ 15 a cyclic code. Hg is not a self-orthogonal

of the first 6 non-zero codewords. Indeed

code.

= [Tr(ax®)]apear(sg) with the code

Now we will compare the code Hg

Hy = [Tr(az?)]azecrase) given in the next example.

2+ x+3 over

Znsl]/(p())

¢y The following matriz gives us the code Hoy

Example 6.3.2. Let p = 13 and consider the primitive polynomial p(z)

ZlS[C]

Then the elements of GF(13,2)

Zy3 and let ¢ be a root of p(x).

can be written as {0,1,¢, ¢, ..

[Tr(a$2)]a,xEGF(l3,2) .
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Let H3 be the matriz obtained by deleting the first column of the matriz Hy. It is clear
that each row of H; can be formed by using 2 copies of the first 84 elements of each row.
It is also clear that the matriz Hy can be generated by using all linear combinations of the
2" and 3" rows of Hy. Further Hy is a two-weight code over Zis with the parameters
[169,2,144] and the punctured code H} is a [168,2,144] code and its codewords are left-
cyclic shifts of each of the first 2 non-zero codewords. Indeed H3 is a cyclic code. Hy is

a self-orthogonal code, and consequently Hg and Hy are not equivalent codes.

Thus far we have considered the case Tr(az?) for even A > 2 such that A\|(p — 1). In

the next section we study the case odd A > 2 such that A|(p — 1).

6.4 Constant-weight codes from Tr(ax') when )\ > 2-
odd

In Section 6.2 we studied the codes constructed by using the trace map over the Galois field
GF(p,2) in the form of Tr(az?), for A > 2-even such that \|(p—1) when p = 1(mod 4) and
p = 3(mod 4). Similarly in this section we consider the case A > 2-odd such that A|(p—1)
when p = 1(mod 4) and p = 3(mod 4). As usual, first we will study the distribution of
trace zero elements which are in ¥ = {C%(%“)]k =0,1,2,...,p — 2} over the rows of

A= [G.T)\]a7x€GF(p72)*. Then we will apply this result to construct codes over Z, and we

will prove that these codes are constant weight codes with the parameters [p?, 2, p(p —1)].

Lemma 6.4.1. Let p > 7 be prime and A\ > 2-odd such that N(p — 1). Let (i), =
{Mlh = 0,1,2,..., 222 =1}, where i = 0,1,2,..., A — 1. Let O = {¢"> @]k =
0,1,2,...,p—2} and for 0 < s < A—11let (s) = {¢"+ @H1+29)|j = 0,1,2,..., 2 —1}.
Then
(i) For all s =0,1,2,...,A—1, (s) C .
(i) © = (J(s).
(i1) For each s, there exists an i such that (s) C (i)

Proof:

Proof of part (i) and (ii) are very similar to that of Lemma 6.2.1
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(iii) Let a € (s). Then a = C(pH) (2s+142X)) - To prove that C

j, we need to prove that 21 (2s + 1 + 2)j) = i(mod \). That is we need to prove that

H2s+142)) ¢ (4), for all

7%1(23 + 1+ 2)\j) is in the same equivalence class mod A for all j. In another words we
need to prove that (Til) (2s+1)+ (Iil) 27 is in the same equivalence class mod A\ for

all j. Since (2£1) 2)j = 0(mod \), we have (Z£1) (25+1) is in the same equivalence class

mod A for all j. Therefore 1%1(28 + 14 Aj) is in the same equivalence class mod A for

all j. ie., in the equivalence class of Zt(2s + 1) when j = 0. Therefore (s) C (i), for
() (25 + 1) mod A. O

i

The next example illustrates this result.

Example 6.4.2. Let p = 11. Then 1%1 = 6-even and p — 1 = 10. Let X = 5. Then
MN(p — 1) and the sets ¥ = {¢5CF+D |k =0,1,2,...,9}, (i)s = {¢*"*|h =0,1,2,...,23}
and (s) = {¢6Zs+1H109) |5 = 0,1}, wherei =0,1,2,3,4 and s = 0,1,2,3,4. For each s, the

complete set (s) is given below.

(0) = {¢%, ¢}

(1) ={¢"*.¢"}
(2) = {¢*, ¢}
(3) ={¢*. ¢}
(4) ={¢™, ¢}

It is clear that all the elements of W are in the above five sets.
Similarly consider, for each i, the complete set (i)s.
(0)5 = {1,¢5, 10, ¢15, (20, (25 (30 (35 (40 (45 (B0 (55 (60 (63 (T0 (T5 (80 (85 (90 (95 1
(D)5 = {¢, ¢0, M, 10, 21, €20, ¢, 070, ¢, €0, €21, €98, ¢, €0, T 70, ¢, 96, ¢ 00,
(2)5 = {C2, 7, C12, (17, C22, ¢2T, (B2, (3T, ¢42, (4T (52, (BT (62, (7 (T2 (7T (82 (8T ¢92 (97 1,
(3)5 = {C3,C5, 13, ¢18, (28, (28, (33, (38, (43, (18, (53, (B8, (63, ¢O8, (T3, (T8, (83, (B8, (98 (%, .},
(4)s = {¢* 7 M ¢, 4 ¢, L ¢, ¢ O, O 00, ¢ O T, 079, O, OO0, 00, 0, )
When s =0, (2£1) (25 + 1) = 6 = 1(mod 5). Therefore (0) C (1)s.
When s =1, (Z51) (25 + 1) = 18 = 3(mod 5). Therefore (1) C (3)s.
Similarly (2) C (0)5,(3) C (2)5 and (4) C (4)5
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We are now in a position to study the distribution of the trace zero elements ¥ =

{CpTH(2k+1)|k =0,1,2,...,p — 2} over the rows of A\ = (a2, recr(p2)-

Lemma 6.4.3. Let p > 7 be prime and X > 2-odd such that N|(p — 1). Let ¥ =
{CPTH(%H)U{ =0,1,2,...,p—2} and Ay = a2z o zecrp2)- Then each row of Ay contains

(p—1) elements from V.

Proof:
From Lemma 6.4.1 we know that, for all =0,1,2,... A—1, the elements of ¥ are equally

G} ) elements per set. From Lemma 5.2.2 we also know that

distributed over (), giving
each row of A, contains /\—coples of (i)x or A-copies of a cyclic shift of (i), for some
i=0,1,2,..., A — 1. Therefore each row of the matrix A, contain (p — 1) elements from

the set W. n

Having studied the distribution of the elements of ¥ over the rows of A,, we now use

this property to construct two-dimensional, constant-weight codes over Z,,.

Theorem 6.4.4. Let p > 7 be a prime such that p = 3(mod 4) (i.e., 2t -even) and
A > 2-odd such that \|(p — 1). Let Tr be the trace map over the Galois field GF(p,2).

The code Hy = [TT(GI’A)]Q@GGF(I,’Q) is a constant-weight code over Z, with the parameters

[p*,2, p(p — 1)].

Proof:

Counsider that matrix

Tr(c)), i=1,2,...,p°

Gu,= N
Tr(lc), i=1,2,...,p°

2xp?
Very similar to the proof of Theorem 6.2.4 we can show that the two rows of G, are
linearly independent and hence G, is a generator matrix of Hy. Therefore the length
n and the dimension k of the code Hy are p? and 2 respectively. Thus H, is a two-
dimensional code.

From Lemma 6.4.3 we know that each row of the matrix Ay = [a:ch]a@eGF(p’z)* con-

tains (p — 1) elements which are from the set ¥ = {Cp+l G|k = 0,1,2,...,p — 2}
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From Theorem 4.3.3 we know that the trace of each of these elements is zero. Therefore
there are (p — 1) + 1 = p zeros in each row of the matrix H, and the Hamming weight
of each codeword is p* — p = p(p — 1). Thus H, is a constant-weight code over Z,, the
minimum Hamming distance between the codewords is p(p — 1), and the parameters of

Hy are [p*,2,p(p — 1)]. O

Thus far in this section we have constructed codes over Z, by using the trace map over
the Galois filed GF(p, 2) in the form of Tr(ax?) for odd A > 2 such that A\|(p —1). In the

next section we compare this code with the code constructed in [65].

6.5 Comparison of H, with H

In the previous section we constructed the code Hy over Z, by using the trace map over
GF(p,2) in the form of Tr(az*) when A\ > 2-odd. We classified this code as a constant-
weight code with the parameters [p?,2,p(p — 1)]. In [65], the trace map over the Galois
field GF(p, m) was used in the form of T'r(ax) to construct constant-weight codes with the
parameters [p™, m,p™ ' (p—1)]. In the case of m = 2, the code H = [Tr(ax)]srecr(p2) has
the parameters [p?, 2, p(p—1)] which are exactly the same as that of the codes constructed
in the previous section. g-ary linear constant weight codes can be considered as simplex
codes since every pair of distinct codewords are the same distance apart [53]. Therefore
H and H) are simplex codes. Further every non-zero codeword of H = [Tr(ax)]azearp.2)
contain each element of Z, equally often p times and the dot product of every non-zero

codeword of H is given by

p—1

S = p2i2

=1
2
p
= E(2p? —3p+1).

Since p > 3 we have S = 0 mod p. From Theorem 4.2.5 a linear code over Z,, for
p > 2, is self-orthogonal if and only if the dot product of each codeword with itself is
zero. Therefore the above code H = [Tr(ax)|azccr(p2) is a self-orthogonal code over Z,.

As in Section 6.3 again the curiosity is whether these two codes are equivalent to each

123



other. Experimental results show that the code Hy = [T?"(axk)]a,xegp(m) constructed in
this section is not a self-orthogonal code. The reason is that the non-zero elements of
Z, are not equally distributed over the rows of H, unlike in H (see examples 6.5.1 and
6.5.2). Therefore the code constructed in this section is not equivalent to those in [65]
even though they have the same parameters.

Consider the following examples.

Example 6.5.1. Let p = 7 and A = 3. Then A(p — 1). Now consider the primitive
polynomial p(x) = x* + x + 3 over Z; and let ¢ be a root of p(x). Then (* = 6 + 4 and
the elements of GF(7,2) = Z;[x]/(p(x)) = Zz[(] can be written as {0,1,(, (3, ..., ¢}

The following matriz gives us the code Hs = [Tr(ax®)]azecr(r2)-
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0

10

0

Hz=

It is

Let H be the matriz obtained by deleting the first column of the matriz Hs.

clear that each row of H3 can be formed by using 3 copies of the first 16 elements of each

row. It is also clear that the matrix Hs can be generated by using all linear combinations

of the 2" and 3" rows of Hj.

Further Hs is a constant-weight code over Z; with the

5 is a [48,2,42] code and its codewords are

parameters [49,2,42] and the punctured code

18

*
3

Indeed

*
3 .

the left-cyclic shifts of elements of each of the first 3 non-zero rows of
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a cyclic code.

We now compare the code Hy = [T'r(az?)|, zecr(7,2) with the code H = [Tr(az)|apecr(r.2)

given in the next example.

Example 6.5.2. Let p = 7 and consider the primitive polynomial p(x) = x? + x + 3
over Zy and let ¢ be a root of p(x). Then (* = 6¢ + 4 and the elements of GF(7,2) =
Zr|z])/(p(x)) = Z7[C] can be written as {0,1,(,C?,..., ¢} The following matriz gives us

the code H = [Tr(ax)|azecr,2)-
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- 49x49

0

10

10

10

The matriz H can be generated by using all linear combinations of the 2"* and 3"

rows of H. Further H is a constant-weight code over Z; with the parameters [49,2,42].

Let H* be the code obtained by deleting the first column of H. The punctured code H* is

a [48,2,42] constant-weight, cyclic code over Zr.
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Chapter 7

Conclusion

Throughout the thesis the major tool was the use of the trace maps Tr over the Galois
field GF(p, m) and Galois ring GR(p{*, m), the trace-like map T over the ring R(n,m) =
GR(p7,m) x GR(p5?,m) x ... x GR(p;*, m) and more generally the weighted-trace map
T,y over the ring R(d,n) = GR(p}*,m1) x GR(p5*,ms) x ... x GR(p¥, my) to construct
Cocyclic Butson Hadamard matrices, linear and non-linear codes. In Chapter 3 the
weighted-trace map T, over the ring R(d,n) = GF(p1,e1) X GF(pa, ez) X ... x GF (py, ex)
was used to construct mutually unbiased bases of odd integer dimension d. However we
did not study the use of the weighted-trace map T, over the ring R(d,n) = GR(p{*, my) X
GR(pS?,ma) X ... xGR(p*, my). This is a possible venue for research in mutually unbiased
bases. In Chapters 4, 5 and 6 the trace map over the Galois field GF(p, 2) was used in the
form of Tr(az?®) and Tr(az?) to construct two-weight and constant-weight codes over Z,.
We noticed that these were two-dimensional codes. We may get higher dimensional two-
weight and constant-weight codes if we use the trace map in the similar manner over the
Galois field GF (p, m). If we can finalise this research it may give further direction to carry
out research by using the trace map over the Galois ring G R(p®, m) and more generally the

weighted-trace map over the ring R(d, n) = GR(pS*, m1) x GR(p3?, ma) X.. . x GR(p*, mg).
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