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Summary

In this thesis we study the application of the trace map over Galois fields and Galois

rings in the construction of non-binary linear and non-linear codes and mutually unbiased

bases. In Chapter 1 there are some preliminary results that will be used throughout the

thesis.

Properties of the trace map over the Galois fields and Galois rings were used very

successfully in this author’s masters thesis [57](published in [58] and [65]) in the con-

struction of cocyclic Hadamard, complex Hadamard and Butson Hadamard matrices

and consequently to construct linear codes over Z2, Z4, Z2e and Zpe . These results

provide motivation to extend this work to construct codes over Zn for any positive

integer n. The prime factorisation of n, i.e., n = pe1
1 pe2

2 . . . pek
k and the isomorphism

Zn
∼= Zp

e1
1
×Zp

e2
2
× . . .×Zp

ek
k

paved the way to focus our attention on the ring R(n,m) =

GR(pe1
1 ,m) × GR(pe2

2 ,m) × . . . × GR(pek
k ,m), where m is a positive integer. In Chapter

2 we define a new map over the ring R(n,m) = GR(pe1
1 ,m)×GR(pe2

2 ,m) by

T : R(n,m) → Zn

T (c) = pe2
2 Tr1(c1) + pe1

1 Tr2(c2),

where Tr1 and Tr2 are the trace maps over the Galois rings GR(pe1
1 ,m) and GR(pe2

2 ,m)

respectively. We study the fundamental properties of T and notice that these are very sim-

ilar to that of the trace maps over Galois fields and Galois rings. As such this map is named

the trace-like map over R(n,m), and is used to construct cocyclic Butson Hadamard ma-

trices H of order nm. Then the exponent matrix A of H is a linear code over Zn with the

parameters [n, k, dH ] =
[
nm,m, (n− pe1

1 pe2−1
2 )nm−1

]
. This construction is extended by us-

ing the trace-like map over the ring R(n,m) = GR(pe1
1 ,m)×GR(pe2

2 ,m)×. . .×GR(pek
k ,m).

In the case of n = 6 we notice that the code A is a senary simplex code of type α that

has been studied in [37].

A further generalisation of the trace-like map has been used in [45] and this map is

called the weighted-trace map. We study the properties of the weighted-trace map over
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the ring R(d, n) = GR(pe1
1 ,m1)×GR(pe2

2 ,m2) . . .×GR(pek
k , mk), defined by

Tw : R(d, n) → Zn

Tw(x) =
k∑

i=1

n

pei
i

Tri(xi),

where d = pe1m1
1 pe2m2

2 . . . pekmk
k and n = pe1

1 pe2
2 . . . pek

k . Tw is used to construct cocyclic

Butson Hadamard matrices Hw of order d. However the exponent matrix Aw of Hw does

not form a linear code over Zn. It gives a non-linear code over Zn with the parameters

(d,N, wH), where d =
∏k

i=1 peimi
i is the length of the code, N =

∏k
i=1 peimi

i is the number of

codewords and wH = d−pekmk
k . . . pe2m2

2 pe1m1−1
1 is the minimum Hamming weight provided

that pe1
1 < pe2

2 < . . . < pek
k and m1 < m2 < . . . < mk.

The trace map over the Galois field GF (p,m) (respectively the Galois ring GR(4,m))

has also been used in [49] in the form of Tr(ax2 + bx) (respectively Tr((a + 2b)x)) to

construct mutually unbiased bases of odd (respectively even) prime power dimensions.

This work is a motivation to use the weighted-trace map in a similar manner to construct

mutually unbiased bases. In Chapter 3 we use the weighted-trace map Tw over the ring

R(d, n) = GF (p1, e1) × GF (p2, e2) × . . . × GF (pk, ek) in the form of Tw(ax2 + bx) to

construct mutually unbiased bases of odd integer dimension d = pe1
1 pe2

2 . . . pek
k .

Since the trace map over the Galois field GF (p,m) has been used in the form of

Tr(ax2 + bx) to construct mutually unbiased bases, it is an interesting question to check

whether the trace map can be used in similar manner to construct codes over Zp. In

Chapter 4, for a ∈ GF (p, 2) we study the distribution of Tr(ax2) by changing x over

GF (p, 2) and use this distribution to construct two-weight, self-orthogonal codes over Zp

with the parameters [n, k, dH ] = [p2, 2, (p− 1)2].

In Chapter 5 we use the trace map over GF (p, 2) in the form of Tr(axλ), when

λ|(p + 1), and construct two-weight, self-orthogonal codes over Zp with the parameters

[n, k, dH ] = [p2, 2, (p− (λ− 1))(p− 1)]. In Chapter 6 the next case λ|(p− 1) is considered

and we construct two-weight codes with the parameters [n, k, dH ] = [p2, 2, (p − 1)2] and

constant-weight codes with the parameters [n, k, dH ] = [p2, 2, p(p− 1)] for λ > 2-even and

λ > 2-odd respectively.

Finally we conclude the thesis with some further research possibilities.
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Chapter 1

Preliminaries

1.1 Introduction

Coding theory is an interesting subject to mathematicians as well as engineers because

of its beautiful mathematical structures and applications to communications. Starting

with group theory, together with field theory and ring theory, coding theory provides a

framework for the construction of error-correcting codes, and encoding and decoding of

these codes. In this chapter we include necessary information that will be used throughout

the thesis.

Fundamental properties together with the distribution of the trace map values over

the Galois field GF (p,m) and Galois ring GR(pe,m) have been used to construct cocyclic

Butson Hadamard matrices of order pm and pem and consequently to construct linear

codes over Zp and Zpe respectively in the master’s thesis [57] of this author. These results

have appeared in [58] and [65].

A challenging open problem was the extension of this construction for any integer n.

By taking the advantage of n = pe1
1 pe2

2 . . . pek
k we tackle the problem by defining a new

map, called the trace-like map, T over the ring R(n,m) = GR(pe1
1 ,m) × GR(pe2

2 ,m) ×
. . . × GR(pek

k ,m) in Chapter 2. For a, x ∈ R(n, m) we study the distribution of T (ax)

and then use this property to construct cocyclic Butson Hadamard matrices of order

nm and then some linear codes over Zn. A further generalisation of T is studied and

this map is called the weighted-trace map and denoted by Tw. In this case the ring

3



that we consider is R(d, n) = GR(pe1
1 ,m1) × GR(pe2

2 ,m2) × . . . × GR(pek
k ,mk), where

d = pe1m1
1 pe2m2

2 . . . pekmk
k and n = pe1

1 pe2
2 . . . pek

k . The weighted-trace map Tw is used in

Chapter 3 in the form of Tw(ax2 + bx) to construct mutually unbiased bases of odd

integer dimension d = pe1m1
1 pe2m2

2 . . . pekmk
k .

Once the argument ax is changed to ax2 or axλ for elements in GF (p,m), studying the

distribution of the trace values is a difficult task. In this thesis we study the case GF (p, 2),

for p > 2, and the distribution of Tr(ax2) and Tr(axλ), where λ|(p2 − 1). In Chapter 4

we use the distribution of Tr(ax2) to construct two-weight, self-orthogonal codes over Zp

with the parameters [p2, 2, (p − 1)2]. For λ > 2 such that λ|(p + 1), the distribution of

Tr(axλ) is used in Chapter 5 to construct two-weight, self-orthogonal codes over Zp with

the parameters [p2, 2, (p − (λ − 1))(p − 1)]. The distribution of Tr(axλ) for even λ > 2

such that λ|(p − 1) is used in Chapter 6 and we are able to construct two-weight codes

over Zp with the parameters [p2, 2, (p − 1)2] which are similar to those in Chapter 4 but

not self-orthogonal. In the case of odd λ > 2 such that λ|(p−1), the codes constructed by

using the distribution of Tr(axλ) are constant-weight codes over Zp with the parameter

[p2, 2, p(p− 1)].

In Section 1.2 we state some basic results of error-correcting codes. Some basic defini-

tions and results of cocycles and Hadamard matrices are given in Section 1.3. We devote

Section 1.4 to the study of the fundamental properties of the trace maps over the Ga-

lois field GF (p, m) and Galois ring GR(pe,m). Finally in Section 1.5 we briefly describe

mutually unbiased bases.

1.2 Error-correcting codes

In this section we will study definitions and some basic results related to error-correcting

codes.

Let B be a basis for the vector space V . The number of vectors in the basis B denoted

by |B| = k is called the dimension of V . If F is a field then Fn is an n-dimensional vector

space over F. Let Zn
p be a vector space of dimension n over Zp = {0, 1, 2, . . . , p−1}, where

p is a prime. Any subset C of N vectors of Zn
p is called a code and its vectors are called
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codewords. If C is a k-dimensional subspace of Zn
p then C is called an [n, k] linear code.

The number of co-ordinates n of each codeword is called the length of the code and k is

called the dimension of the code.

Definition 1.2.1 (Hamming weight). Let x ∈ Zn
p . The number of non-zero components

in x is called the Hamming weight of x and it is denoted by WH(x).

Definition 1.2.2 (Hamming distance). Let x, y ∈ Zn
p . The Hamming distance dH(x, y)

between x and y is the number of co-ordinates in which they differ.

It is clear that dH(x, y) = WH(x− y). The minimum Hamming distance, dH of a code

C is the minimum of the Hamming distances of all distinct pairs of its codewords. The

minimum Hamming distance of a linear code is the minimum Hamming weight of all non-

zero codewords. A code with minimum Hamming distance dH can correct up to bdH−1
2
c

errors, where bac denotes the smallest integer not greater than a. Three other useful

weights (distances) in coding theory are the Lee, Euclidean and Chinese Euclidean weights

(distances) respectively. The Lee weight of a ∈ Zp is given by WL(a) = min{a, p − a}.
The Euclidean weight of a ∈ Zp is given by WE(a) = (WL(a))2. The Chinese Euclidean

weight of a ∈ Zp is given by WCE(a) =
{

2− 2 cos
(

2πa
p

)}
. The Lee (Euclidean, Chinese

Euclidean) weight of a vector x ∈ Zn
p is the sum of the Lee (Euclidean, Chinese Euclidean)

weights of its components. The Lee, Euclidean and Chinese Euclidean distance between

x, y ∈ Zn
p are given by dL(x, y) = WL(x − y), dE(x, y) = WE(x − y) and dCE(x, y) =

WCE(x − y) respectively. The minimum Lee, Euclidean and Chinese Euclidean distance

of a code C are defined by dL = min{dL(x, y)|x, y ∈ C, x 6= y}, dE = min{dE(x, y)|x, y ∈
C, x 6= y} and dCE = min{dCE(x, y)|x, y ∈ C, x 6= y} respectively.

The standard inner product of x, y ∈ Zn
p is defined by x · y =

∑n
i=1 xiyi. The subset

C⊥ = {x ∈ Zn
p |x · y = 0,∀ y ∈ C} is called the dual code of C.

Definition 1.2.3 (Self-orthogonal and self-dual codes). A linear code C is called

self-orthogonal if C ⊆ C⊥ and if C = C⊥ then it is called self-dual.

If C is an [n, k] linear code over Zp then C⊥ is an [n, n − k] linear code. It is well

known that linear self-dual codes over finite fields must have even length n and hence the
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dimension k = n
2
. However this is not true for codes over finite rings. In [62] self-dual

codes of odd lengths over Z4 are constructed. More details on self-orthogonal and self-dual

codes can be found in [3, 4, 5, 24, 38, 39, 59, 62, 63, 64, 72, 76] and the references therein.

Definition 1.2.4 (Hamming weight distribution). Let AH(i) be the number of code-

words of Hamming weight i of the code C. The list of numbers {AH(0), AH(1), . . . , AH(n)}
is called the Hamming weight distribution of C.

Similar definitions are given for the Lee, Euclidean and Chinese Euclidean weight

distribution. The polynomial

HamC(x, y) =
n∑

i=0

AH(i)xn−iyi

is called the Hamming weight enumerator of C. This is the same as the polynomial

HamC(x, y) =
∑
c∈C

xn−WH(c)yWH(c).

If C is an [n, k] linear code over Zp with dual code C⊥ then the MacWilliams Identity is

given by HamC⊥(x, y) = 1
|C|HamC(x + (p − 1)y, x − y), where |C| = pk. The complete

weight enumerator (cwe) for a code C over Zp is defined as

cweC(x0, x1, . . . , xm) =
∑
c∈C

x
w0(c)
0 x

w1(c)
1 . . . xwm(c)

m ,

where m = p− 1, c = (c1, c2, . . . , cn) ∈ C, wj(c) = |{k : ck = j}|.

Definition 1.2.5 (Constant-weight code). If every non-zero codeword of a code has

the same weight then the code is called a constant-weight code.

The weight of a constant-weight code may be Hamming, Lee or Euclidean weight. It

is known that constant Hamming weight codes exist for all dimensions over finite fields.

They almost never exist over Zn that are not fields. Constant Lee or Euclidean weight

codes exist for any module over Z2t . See [80] for more details. Binary constant-weight

codes constitute an important class of error-correcting codes. A table of binary constant-

weight codes of length n ≤ 28 is given in [15] while that for 29 ≤ n ≤ 63 is given in [68].

Ternary codes with constant Hamming weight have been studied in [56] which gives a table

with bounds for the maximum cardinality A3(n, d, w). More details of constant-weight

codes can also be found in [33, 53], etc. and the references therein.
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Definition 1.2.6 (Simplex codes). A linear code is called simplex if every pair of

distinct codewords are the same distance apart.

It is clear that linear constant-weight codes are linear simplex codes and vice versa

since every pair of distinct codewords are the same distance apart [53].

Definition 1.2.7 (Equivalent codes). Two codes C1 and C2 are said to be equivalent

if one can be turned into the other by permuting the co-ordinate position of each codeword

and by permuting the code symbols in each position of each codeword.

Codes that differ only by a permutation are said to be permutation equivalent. Per-

mutation equivalent codes have the same complete weight enumerators, but equivalent

codes may have distinct complete weight enumerators. In the case of binary codes, two

codes are equivalent, if they are permutation equivalent. Also codes with the same com-

plete weight enumerators need not be equivalent. Reader may refer to [53, 75] for further

details on weight distributions of codes.

Definition 1.2.8 (Cyclic code). The linear code C of length n over Zp is called a cyclic

code if for each c = (c0, c1, . . . , cn−2, cn−1) ∈ C, the codeword obtained by the cyclic shift

of co-ordinates (i.e., c = (cn−1, c0, c1, . . . , cn−2) ) is also a codeword of C.

Since C is invariant under this single right cyclic shift, by iteration it is invariant under

any number of right cyclic shifts. Since a single left-cyclic shift is the same as n− 1 right

cyclic shifts, C is also invariant under a single left-cyclic shift. Hence C is invariant under

all left-cyclic shifts. Therefore the linear code C is cyclic when it is invariant under all

cyclic shifts.

When studying cyclic codes over Zp, it is convenient to represents the codewords in

polynomial form c(x) = c0 + c1x + . . . + cn−2x
n−2 + cn−1x

n−1 ∈ Zp[x] of degree at most

n−1. With this convention, the shifted codeword c corresponds to the polynomial c(x) =

cn−1+c0x+. . .+cn−2x
n−1. Thus c(x) = xc(x) if xn = 1. That is c(x) = xc(x)(mod xn−1).

For a detailed survey of cyclic codes see chapter 4 of [46].

Now we will move off from error-correcting codes to cocycles and Hadamard matrices

as this is the other focus of this thesis.
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1.3 Cocycles and Hadamard matrices

In this section first we will study the definitions of cocycle and Hadamard matrices and

then include some known results.

Definition 1.3.1 (Cocycle). Let G be a finite group and C be a finite abelian group.

The set mapping ϕ : G×G → C which satisfies

ϕ(a, b)ϕ(ab, c) = ϕ(b, c)ϕ(a, bc), ∀ a, b, c ∈ G is called a cocycle over G.

For instance if G = Zn
2 and C = {±1} then ϕ(u, v) = (−1)u·v, for all u, v ∈ G, is

a cocycle. A cocycle is normalised if ϕ(1, 1) = 1. A cocycle is naturally displayed as a

cocyclic matrix, i.e., a square matrix whose rows and columns are indexed by the elements

of G under some fixed ordering, and whose entry in position (a, b) is ϕ(a, b).

Definition 1.3.2 (Hadamard matrix). A Hadamard matrix of order n is a square

matrix H = [hij] with entries hij = ±1, 1 ≤ i, j ≤ n, whose row vectors are pairwise

orthogonal. In other words HHT = nI, where HT is the transpose of H and I is the

identity matrix of order n.

A Hadamard matrix must have order 1, 2 or a multiple of 4. The Hadamard conjecture

proposes that a Hadamard matrix exists for every n ≡ 0 (mod 4).

Definition 1.3.3 (Generalised Hadamard matrix, [30]). Let G be a group of finite

order, H = [hij] be a square matrix of order n, whose entries are elements of G. Then H

is said to be a Generalised Hadamard matrix GH(n,G) over G if

(i) whenever i 6= j, the sequence {hixh
−1
jx } with 1 ≤ x ≤ n contains every element of G

equally often,

(ii) HT has property (i).

A GH(n,G) is normalised if the first row and first column consist entirely of the

identity element of G. In the case of G = {±1} and n ≡ 0(mod 4), the generalised

Hadamard matrix GH(n,G) is a Hadamard matrix.

The next type of matrix is sometimes referred to as a generalised Hadamard matrix

[78] and sometimes as a complex Hadamard matrix [25, 27]. However in this thesis we

will refer to this as a Butson Hadamard matrix.
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Definition 1.3.4 (Butson Hadamard matrix, [16]). Let Cp be the multiplicative

group of all complex pth roots of unity. That is Cp = {1, x, x2, . . . , xp−1}, where x =

exp(2π
√−1/p). A square matrix H = [hij] of order n with elements from Cp is a Butson

Hadamard matrix if and only if HH∗ = nI, where H∗ denotes the conjugate transpose of

H and I denotes the identity matrix of order n.

A Butson Hadamard matrix is normally denoted by BH(n, r). Note that r is not

necessarily a prime number. When r = 2 and n = 1, 2 or a multiple of 4, BH(n, r) is

a Hadamard matrix. A generalised Hadamard matrix defined over the finite group Cr is

a Butson Hadamard matrix. The following theorem gives us a nice relationship between

generalised Hadamard matrices and Butson Hadamard matrices.

Theorem 1.3.5. [Remarks 1.3, [30]]

(i) In the definition of a BH(n, r)-matrix, the condition HH∗ = nI is equivalent to the

requirement that H∗H = nI.

(ii) Every generalised Hadamard matrix over Cr (i.e., GH(n,Cr)) is a Butson Hadamard

matrix (i.e., BH(n, r)) .

(iii) If r is a prime, every BH(n, r)-matrix over Cr (except for the matrix [1] of order 1)

is a GH(n,Cr)-matrix .

(iv) If r = pt, where p is a prime and t > 1, then there exists a Butson Hadamard matrix

of order p over Cr, but certainly no Generalised Hadamard matrix of order p over Cr.

The next theorem describes the existence of Butson Hadamard matrices and Gener-

alised Hadamard matrices.

Theorem 1.3.6. [Theorem 1, [27]]

For primes p > 2, there exists a Butson Hadamard matrix BH(n, p) over the cyclic group

Cp if and only if there exists a generalised Hadamard matrix GH(n,Zp) over the additive

group Zp = {0, 1, 2, . . . , p− 1}.

Definition 1.3.7 (Complex Hadamard matrix). The matrix H of order n with entries

from {1, i,−1,−i} that satisfies HH∗ = nI is called a complex Hadamard matrix of order

n, where i =
√−1, H∗ is the conjugate transpose of H and I is the identity matrix of

order n.
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It is conjectured that a complex Hadamard matrix exists for every even order. In [74]

it is shown that every complex Hadamard matrix has order 1 or divisible by 2. A complex

Hadamard matrix is a special case of a Butson Hadamard matrix BH(n, p) for p = 4.

For the various type of constructions and further studies of complex Hadamard matrices

reader can also refer to [26, 28, 48, 51, 54, 58, 67].

Definition 1.3.8 (Cocyclic Hadamard matrices). Let ϕ be a cocycle over a finite

group G and Mϕ = [ϕ(a, b)]a,b∈G. If Mϕ is a Hadamard (Complex Hadamard, Butson

Hadamard) matrix then Mϕ is called a cocyclic Hadamard (Complex Hadamard, Butson

Hadamard) matrix.

Cocycles have been used to construct Hadamard matrices in [3, 6, 43]. In [57], co-

cycles are used to construct cocyclic complex Hadamard and cocyclic Butson Hadamard

matrices. These results have appeared in [58, 65].

Definition 1.3.9 (Hadamard exponent matrix). Let H = [hi,j] be a Butson Hadamard

matrix (in [25, 27] this is referred to as a complex Hadamard matrix) over Cp, where

p is a fixed prime, p > 2. The matrix E = [ei,j], ei,j ∈ Zp, which is obtained from

H = [xei,j ] = [hi,j], where x = exp(2π
√−1/p), is called the Hadamard exponent matrix

associated with H.

By deleting the all zero row and column of E, the remaining elements constitute

a square sub-matrix Ep, called the core of H. The elements of the Hadamard exponent

matrix E lie in the Galois field GF (p), and its row vectors can be viewed as the codewords

of a code over Zp.

We give the next definition as a generalisation of the definition of the Hadamard

exponent matrix since we are going to use this in the thesis.

Definition 1.3.10 (Exponent matrix). Let H = [hi,j] be a square matrix over Cn =

{1, x, x2, . . . , xn−1}, where n is a positive integer and x = exp(2π
√−1/n). The matrix

E = [ei,j], ei,j ∈ Zn, which is obtained from H = [xei,j ] = [hi,j] is called the exponent

matrix associated with H.

In the next section we will study the fundamental properties of the trace maps over

Galois fields and Galois rings respectively.
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1.4 The trace map and its fundamental properties

In this section first we will give a brief idea about the Galois field GF (p,m) and basic

properties of the trace map over GF (p,m). Then the Galois ring GR(pe,m) and funda-

mental properties of the trace map over GR(pe,m) are studied.

Finite fields are used in most of the known constructions of codes and for encoding

and decoding. Let p be a prime number and Zp be the set of integers modulo p. This

set forms a field of order p and it is also denoted by GF (p). The elements of GF (p)

are {0, 1, 2, . . . , p − 1} and all field arithmetic is carried out mod p. Suppose f(x) is an

irreducible polynomial of degree m over Zp. Then the set of all polynomials in x of degree

≤ m− 1 with coefficients from Zp, and calculations performed modulo f(x), forms a field

of order pm. This is called a Galois field of order pm and is denoted by GF (p,m).

Definition 1.4.1 (Automorphism). Let σ be a one to one mapping from GF (p,m)

onto itself. If for all α, β ∈ GF (p,m) and a ∈ Zp

(i) σ(α + β) = σ(α) + σ(β),

(ii) σ(αβ) = σ(α)σ(β) and

(iii) σ(a) = a

then σ is called an automorphism of GF (p,m) over Zp.

The set of all such automorphisms of GF (p,m) over Zp forms a group if we define the

composition of σ and τ by τ ◦ σ(α) = τ(σ(α)).

Theorem 1.4.2. [Theorem 2.21, [52]]

The distinct automorphisms of GF (p,m) over Zp are exactly the mappings σ0, σ1, . . . , σm−1

defined by σj(α) = αpj
, for all α ∈ GF (p,m) and 0 ≤ j ≤ m− 1.

The automorphism σ1 of GF (p, m) over Zp which generates all automorphisms of

GF (p,m) over Zp by Theorem 1.4.2 is called the Frobenius automorphism of GF (p,m)

over Zp.

Let f be the Frobenius automorphism of GF (p,m) over Zp defined as

f : GF (p,m) → GF (p,m)

f(α) = αp

11



and let Tr be the trace map defined as

Tr : GF (p,m) → Zp

Tr(α) = α + f(α) + f 2(α) + . . . + fm−1(α).

Theorem 1.4.3. The trace map satisfies the following properties:

For all α, β ∈ GF (p, m) and a ∈ Zp

(i) Tr(α + β) = Tr(α) + Tr(β).

(ii) Tr(aα) = aT (α).

(iii) Tr is a linear transformation from GF (p,m) onto Zp.

(iv) As α ranges over GF (p,m), Tr(α) takes on each value in Zp equally often, i.e., pm−1

times.

For a detailed proof of this theorem, see [52, 53].

Now we will study the Galois ring of characteristic pe and dimension m and the

properties of the trace map over the Galois ring. For more details on Galois rings of this

type, the reader may refer to [55].

Definition 1.4.4 (Galois ring). Let p > 2 be a prime and e be a positive integer. The

ring of integers modulo pe is the set Zpe = {0, 1, 2, . . . , pe − 1}. Let h(x) ∈ Zpe [x] be a

basic irreducible monic polynomial of degree m that divides xpm−1 − 1. The Galois ring

of characteristic pe and dimension m is defined as the quotient ring Zpe [x]/(h(x)) and is

denoted by GR(pe,m).

The element ζ = x + (h(x)) is a root of h(x) and consequently ζ is a primitive

(pm − 1)th root of unity. Therefore we say that ζ is a primitive element of GR(pe,m)

and GR(pe, m) = Zpe [ζ]. It follows that GR(pe,m) = < 1, ζ, ζ2, . . . , ζm−1 > and hence

|GR(pe,m)| = pem. It is well known that each element u ∈ GR(pe,m) has a unique

representation u =
∑e−1

i=0 piui, where ui ∈ T = {0, 1, ζ, ζ2, . . . , ζpm−2}. This representation

is called the p-adic representation of elements of GR(pe,m) and the set T is called the

Teichmuller set. Note that u is invertible if and only if u0 6= 0. Thus every non-invertible

element of GR(pe,m) can be written as u =
∑e−1

i=k piui, where k ∈ {1, 2, . . . , e − 1}. By

using the p-adic representation of elements of GR(pe,m), the Frobenius automorphism f

has been defined in [12, 18] as

12



f : GR(pe,m) → GR(pe, m)

f(u) =
∑e−1

i=0 piup
i .

Note that when e = 1, f is the usual Frobenius automorphism for the Galois field GF (p,m)

[52]. The trace map over GR(pe,m) is defined by

Tr : GR(pe,m) → Zpe

Tr(u) = u + f(u) + f 2(u) + . . . + fm−1(u).

From the definition of Tr the following properties are satisfied:

Theorem 1.4.5. For any u, v ∈ GR(pe,m) and α ∈ Zpe

(i) Tr(u + v) = Tr(u) + Tr(v).

(ii) Tr(αu) = αTr(u).

(iii) Tr is nontrivial.

The trace map can be used to go down from a code defined over an extension field to

a code defined over the ground field. Let Fq be the ground field of the extended field Fqr .

Definition 1.4.6 (Trace code). Let C be an Fqr-linear code of length n and

Tr : Fqr → Fq be the trace map. The code Tr(C), defined as the set of all vectors

(Tr(x1), T r(x2), . . . , T r(xn)) ∈ Fqr , is called the trace code, where (x1, x2, . . . , xn) ∈ C.

Another method of going down from a code defined over an extension field to a code

defined over the ground field is the subfield code.

Definition 1.4.7 (Subfield code). Let C be an Fqr-linear code of length n. The code

CFq , defined as CFq = C ∩ Fn
q , is called the subfield code.

It is well known that the trace codes and the subfield codes are linear codes over the

ground field Fq. There is a nice relationship between trace code and subfield code which

is clarified by the following famous theorem due to Delsarte.

Theorem 1.4.8. [Theorem 12.14, [11]] Let C be an Fqr-linear code of length n. Then

(Tr(C))⊥ = (C⊥)Fq .
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It is also known that the trivial bounds for the dimension of the trace code are

dim(C) ≤ dim(Tr(C)) ≤ rdim(C). More details on trace codes can also be found in

[22, 36, 41, 69, 70, 73].

As we are going to use the trace map to construct mutually unbiased bases, we will

next study some basic theory of mutually unbiased bases.

1.5 Mutually Unbiased Bases (MUBs)

Let Cn be the complex vector space of dimension n. The inner product of x, y ∈ Cn,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), is denoted by < x, y > and defined by

< x, y > =
∑n

i=1 xiȳi, where ȳi is the complex conjugate of yi. The norm of x is defined

by ‖ x ‖ = < x, x >
1
2 . Two vectors x and y in Cn are called orthogonal to each other if

< x, y > = 0. Let B be a basis of the vector space Cn. B is called an orthogonal basis if

for all x, y ∈ B, < x, y > = 0. An orthogonal basis B is called an orthonormal basis if

for all x ∈ B, ‖ x ‖= 1.

Definition 1.5.1 (Mutually unbiased bases). Let B and B
′
be orthonormal bases of

the vector space Cn. These bases are called Mutually Unbiased if and only if

| < b, b
′
> | = 1√

n
, ∀ b ∈ B and b

′ ∈ B
′
.

The idea of mutually unbiased bases (MUBs) appeared in the literature of quantum

mechanics in 1960 in [66]. As they possess numerous applications in quantum information

science, researchers have allocated more time to study the existence of MUBs and have

introduced different types of construction methods. In [7] it has been proved that for

any dimension n, the number of MUBs, denoted by N(n), is at most n + 1 and when

n is a prime power then N(n) = n + 1. Different construction methods have been used

to construct MUBs. Authors in [49] have used the trace map over the Galois field of

characteristic p ≥ 5 very successfully in order to construct MUBs of odd prime power

dimensions while the trace map over the Galois ring of characteristic 4 has been used to

construct MUBs of even prime power dimensions. For a detailed survey of MUBs the

reader may refer to [1, 2, 9, 20, 31, 32, 35, 50, 60, 61, 79] and the references therein.
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Chapter 2

Cocyclic Codes over Zn

2.1 Introduction

The cocyclic map has been used to construct Hadamard matrices [6] and these Hadamard

matrices were found to yield extremal binary self-dual codes [3]. The nature of the cocyclic

map allowed for substantial cut-down in the computational time needed to generate the

matrices and then the codes. In [58] Pinnawala and Rao exploited this property to

construct cocyclic complex and Butson Hadamard matrices and consequently to construct

simplex codes of type α over Z4 and Z2e by defining cocycle maps via the trace maps over

Galois rings GR(4, m) and GR(2e,m) respectively. In [65], the above authors extended

this method to construct some new linear codes over Zp and Zpe for prime p > 2 and

positive integer e. A challenging open problem was the extension of this method to

construct cocyclic Butson Hadamard matrices of order n for any positive integer n. Since

n = pe1
1 pe2

2 . . . pek
k , where pi are distinct primes and ei are positive integers, i = 1, 2, . . . , k,

the motivation is to focus attention on the ring R(n,m) = GR(pe1
1 ,m) × GR(pe2

2 , m) ×
. . .×GR(pek

k ,m). However there is no known map over this ring similar to the trace map

over Galois rings and Galois fields. In this chapter we define a new map over the ring

R(n,m), which is called the trace-like map with fundamental properties parallel to the

other trace maps.

In Section 2.2 we include some preliminaries that we need in this chapter and in Section

2.3 we study the basic results of the Galois ring GR(pe,m) and the properties of the trace
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map over GR(pe,m). In Section 2.4 these properties are used to define a cocycle over

GR(pe,m) and to construct a cocyclic Butson Hadamard matrix of order pem. This matrix

is then used to construct a linear code over Zpe . These results are from [57] (published in

[58]). Section 2.5 is devoted to the study of the ring R(n,m) = GR(pe1
1 , m)×GR(pe2

2 ,m)

and defining a new map called the trace-like map over R(n,m). In Section 2.6, the

fundamental properties of the trace-like map are used to construct Butson Hadamard

matrices of order nm. The exponent matrix associated with this Butson Hadamard matrix

is then used to construct linear codes over Zn. In Section 2.7 we calculate the Lee,

Euclidean and Chinese Euclidean weights of the codes that we construct in Section 2.6.

In [37] Gupta et al. studied the senary simplex code of type α, β and γ and introduced

a Chinese product type construction. In Section 2.8 we introduce the cocyclic senary

simplex code of type α as a particular case of codes over Zn for n = 6. Finally in section

2.9 we study a further generalisation of the trace-like map T , called the weighted-trace

map, denoted by Tw.

2.2 Preliminaries

In this section we study the preliminary results that we need to use in other sections of

this chapter.

A linear code C of length n over the integers modulo k (i.e., Zk = {0, 1, 2, . . . , k−1}) is

an additive sub group of Zn
k . An element of C is called a codeword and a generator matrix

of C is a matrix whose rows generate C. The Hamming weight WH(x) of an n-tuple

x = (x1, x2, . . . , xn) in Zn
k is the number of non-zero co-ordinates of x and the Lee

weight WL(x) of x is
∑n

i=1 min {xi, k − xi}. The Euclidean weight WE(x) of x is
∑n

i=1 min {x2
i , (k − xi)

2} and the Chinese Euclidean weight WCH(x) of x is
∑n

i=1

{
2− 2 cos

(
2πxi

k

)}
. The Hamming, Lee, Euclidean and Chinese Euclidean distances

between x, y ∈ Zn
k are defined and denoted as dH(x, y) = WH(x−y), dL(x, y) = WL(x−y),

dE(x, y) = WE(x− y) and dCE(x, y) = WCE(x− y) respectively.

Cocycles (see Definition 1.3.1) have been used in the construction of cocyclic matrices

and consequently in the construction of error-correcting codes. In [44], Horadam and
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Perera define a code over a ring R as a cocyclic code if it can be constructed using a

cocycle or the rows of a cocyclic matrix or is equivalent to such a code.

Let ω = exp(2π
√−1
k

) be the complex kth root of unity and Ck = {1, ω, ω2, . . . , ωk−1} be

the multiplicative group of all complex kth roots of unity.

A Butson Hadamard matrix (see Definition 1.3.4), is denoted by B(n, k) and in the

cases of k = 2 and k = 4, B(n, k) provides Hadamard matrices (see Definition 1.3.2)

and complex Hadamard matrices (see Definition 1.3.7) respectively. Several methods

have been introduced to construct complex and Butson Hadamard matrices. In [54]

Matsufuji and Suehiro use real valued bent functions and Cooke and Heng [27] use monic

polynomials. To construct cocyclic Butson Hadmard matrices, we need the properties of

the trace map over GR(pe,m), and we look at these in the next section.

2.3 Galois ring and the trace map

We defined the Galois ring in Definition 1.4.4, but we repeat it here for ease of reading.

Definition 2.3.1 (Galois ring). Let p > 2 be a prime and e be a positive integer. The

ring of integers modulo pe is the set Zpe = {0, 1, 2, . . . , pe − 1}. Let h(x) ∈ Zpe [x] be a

basic monic irreducible polynomial of degree m that divides xpm−1 − 1. The Galois ring

of characteristic pe and dimension m is defined as the quotient ring Zpe [x]/(h(x)) and is

denoted by GR(pe,m).

The element ζ = x + (h(x)) is a root of h(x) and consequently ζ is a primitive

(pm − 1)th root of unity. Therefore we say that ζ is a primitive element of GR(pe,m)

and GR(pe,m) = Zpe [ζ]. Hence GR(pe, m) =< 1, ζ, ζ2, . . . , ζm−1 > and |GR(pe,m)| =

pem. It is well known that each element u ∈ GR(pe,m) has a unique representation:

u =
∑e−1

i=0 piui, where ui ∈ T = {0, 1, ζ, ζ2, . . . , ζpm−2}. This representation is called the

p-adic representation of elements of GR(pe,m) and the set T is called the Teichmuller

set. Note that u is invertible if and only if u0 6= 0. Thus every non-invertible element of

GR(pe,m) can be written as u =
∑e−1

i=k piui, where k ∈ {1, 2, . . . , e − 1}. We represent

elements of GR(pe,m) by u(k) =
∑e−1

i=k piui, where k ∈ {0, 1, 2, . . . , e − 1}. By using the
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p - adic representation of the elements of GR(pe,m), the Frobenius automorphism f has

been defined in [12, 18, 77] as

f : GR(pe,m) → GR(pe, m)

f(u) =
∑e−1

i=0 piup
i .

The following properties are satisfied by f :

Lemma 2.3.2. For all u, v ∈ GR(pe,m) and α ∈ Zpe

(i) f(u + v) = f(u) + f(v).

(ii) f(uv) = f(u)f(v).

(iii) f(α) = α.

Note that when e = 1, f is the usual Frobenius automorphism over the Galois field

GF (p,m) (see [52] for more details). The trace map over GR(pe,m) is defined by

Tr : GR(pe,m) → Zpe

Tr(u) = u + f(u) + f 2(u) + . . . + fm−1(u).

The trace map satisfies the properties given in Theorem 1.4.5. In addition to these

properties, the trace map also satisfies the following property:

Theorem 2.3.3. [Lemma 2.1,[65]]

Given a Galois ring GR(pe,m), let Dk = {pkt | t = 0, 1, 2, . . . , pe−k − 1} ⊆ Zpe and

u(k) ∈ GR(pe, m), as defined above. As x ranges over GR(pe,m), Tr(xu(k)) maps to each

element in Dk equally often, i.e., pe(m−1)+k times, where k = 0, 1, 2, . . . , e− 1.

Proof:

For any x ∈ GR(pe,m), consider the m - tuple Vx = (Tr(x), T r(ζx), . . . , T r(ζm−1x)) over

Zpe = D0. Let V = {Vx|x ∈ GR(pe,m)} and consider the following correspondence.

α : GR(pe,m) → V .

It is easy to see that α sets up a one to one correspondence between the elements of

GR(pe,m) and the m - tuples of V over D0 = Zpe . Thus as x ranges over GR(pe,m),

each co-ordinate Tr(xζ i), for i = 0, 1, 2, . . . ,m− 1, must take each element of D0 equally
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often, i.e., pem

pe = pe(m−1) times. In general, for any invertible element u(k) ∈ GR(pe,m)

(i.e., u(k) = u(0) =
∑e−1

i=0 piui; ui ∈ T and u0 6= 0), as x ranges over GR(pe,m), Tr(xu(0))

must also assume each element of D0 equally often, i.e., pe(m−1) times.

If b is not invertible then u(k) =
∑e−1

i=k piui, where k ∈ {1, 2, . . . , e− 1}. Now from the

expansion of Tr(xu(k)) and induction on k, as x ranges over GR(pe,m), Tr(xu(k)) must

takes each element of Dk equally often, i.e., pem

pe−k = pem−(e−k) = pe(m−1)+k times.

Note that this proof is also clear from the multiplicative Cayley table of Zpe . For more

details on Galois rings of this type, the reader may refer to [55, 77] and the references

therein. We are now in a position to use the trace map to construct cocyclic Butson

Hadamard matrices of order pem and codes over Zpe .

2.4 Cocyclic Butson Hadamard matrices and linear

codes via the trace map

In this section we will use the properties of the trace map over the Galois ring GR(pe,m)

that we studied in Section 2.3 to construct cocyclic Butson Hadamard matrices and con-

sequently to construct linear codes over Zpe .

Let ω = exp(2π
√−1
k

) be the complex kth root of unity. Let Ck be the multiplicative

group of all complex kth roots of unity. i.e., Ck = {1, ω, ω2, . . . , ωk−1}. It is well know

that

S =
k−1∑
j=0

ωj = 0 (2.1)

Let H = [hi,j] be a square matrix over Ck. The matrix E = [ei,j], ei,j ∈ Zk, which is

obtained from H = [ωei,j ] = [hi,j] is called the exponent matrix associated with H.

Theorem 2.4.1. [Proposition 3.1, [65]]

Let p > 2 be a prime and GR(pe,m) be the Galois ring of characteristic pe and dimension

m. Let Cpe be the multiplicative group of all complex (pe)th roots of unity.

(i) The set mapping
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ϕ : GR(pe,m)×GR(pe,m) → Cpe

ϕ(ci, cj) = (ω)Tr(cicj)

is a cocycle.

(ii) The matrix H = [ϕ(ci, cj)]ci,cj∈GR(pe,m) is a Butson Hadamard matrix of order pem.

(iii) The rows of the exponent matrix of H (i.e., A = [Tr(cicj)]ci,cj∈GR(pe,m)) form a linear

code over Zpe with the parameters [n, k, dL] =
[
pem,m, pe(m−1)

(
p2e−p2(e−1)

4

)]
.

Proof:

(i) Let a, b, c ∈ GR(pe,m). Then

ϕ(a, b) = ωTr(ab).

ϕ(a + b, c) = ωTr((a+b)c) = ωTr(ac)+Tr(bc).

ϕ(b, c) = ωTr(bc).

ϕ(a, b + c) = ωTr(a(b+c)) = ωTr(ab)+Tr(ac).

From these equations we have

ϕ(a, b)ϕ(a + b, c) = ϕ(b, c)ϕ(a, b + c).

Thus ϕ is a cocycle.

(ii) H = [ϕ(ci, cj)]ci,cj∈GR(pe,m). To prove that HH∗ = pemI, consider the sum

S =
∑

x∈GR(pe,m)

ϕ(ci, x)ϕ(x, cj), (2.2)

where ϕ(x, cj) is the complex conjugate of ϕ(x, cj). From the properties of the trace map

we have

S =
∑

x∈GR(pe,m)

(
exp

(
2πi

pe

))Tr(x(ci−cj))

. (2.3)

When ci = cj, it is clear that S = pem. When ci 6= cj, from Theorem 2.3.3 and the

equation 2.1 we have

S =
∑

x∈GR(pe,m)

(
exp

(
2πi

pe

))Tr(x(ci−cj))

.

= pe(m−1)+k

pe−k−1∑
t=0

(
exp

(
2πi

pe

))pkt

= 0. (2.4)
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Thus HH∗ = pemI.

(iii) Consider the exponent matrix A associated with H.

A = [Tr(cicj)]ci,cj∈GR(pe,m).

Since Tr(cicj) ∈ Zpe , we can consider the rows of A as codewords over Zpe . Now consider

the matrix

GA=




Tr(ci), i = 1, 2, . . . , pem

Tr(ζci), i = 1, 2, . . . , pem

...
...

Tr(ζm−1ci), i = 1, 2, . . . , pem




m×pem

,

where ci ∈ GR(pe,m). Since ζ i are invertible in GR(pe,m), from Theorem 2.3.3, each row

of GA contains each element of Zpe equally often pe(m−1) times. We can also show that

the rows of GA are linearly independent. Writing all the linear combinations of rows of

GA, we obtain

A = [Tr(cicj)]ci,cj∈GR(pe,m).

Therefore GA is a generator matrix for the code A and hence A is a linear code over Zpe

with the dimension m. Let x ∈ A be a non-zero codeword. Then x can be written as

x = (x1, x2, . . . , xpem), where xi ∈ Dk for i = 1, 2, . . . , pem. From Theorem 2.3.3, each

element in Dk should appear in x equally often, i.e., pe(m−1)+k times. Therefore the Lee

weight of x is pe(m−1)
(

p2e−p2k

4

)
. The minimum Lee weight of the codewords in A is ob-

tained when k = e − 1. Thus dL = min (Lee(x)) = pe(m−1)
(

p2e−p2(e−1)

4

)
and hence the

parameters of the code A are [n, k, dL] =
[
pem,m, pe(m−1)

(
p2e−p2(e−1)

4

)]
.

So far in this chapter we have used the trace map over the Galois ring GR(pe,m) to

construct cocyclic Butson Hadamard matrices of order pem and cocyclic linear codes over

Zpe . We now have enough basic information to study the ring R(n,m) = GR(pe1
1 ,m) ×

GR(pe2
2 ,m) and define the new map over R(n,m), the trace-like map.
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2.5 The direct product of Galois rings and the trace-

like map

In this section first we will study the structure of the ring R(n,m) = GR(pe1
1 ,m) ×

GR(pe2
2 ,m), where n = pe1

1 pe2
2 . Then by using some number theory results, we define the

trace-like map over the ring R(n,m) and study its fundamental properties noticing that

these are parallel to the properties of the trace maps over Galois fields and Galois rings.

Let p1 6= p2 ≥ 2 be primes and e1, e2 be positive integers. If n = pe1
1 pe2

2 , it is well

known that Zn
∼= Zp

e1
1
×Zp

e2
2

and hence for any positive integer m, Zm
n
∼=

(
Zp

e1
1
× Zp

e2
2

)m

.

For more details on these results see for example [34]. Let f1(x) and f2(x) be basic monic

irreducible polynomials of degree m over Zp
e1
1

and Zp
e2
2

respectively. As in Section 2.3 the

Galois rings of characteristics pe1
1 and pe2

2 and common dimension m are defined as the

quotient rings Zp
e1
1

[x]/(f1(x)) and Zp
e2
2

[x]/(f2(x)) respectively. These rings are denoted

by GR(pe1
1 ,m) and GR(pe2

2 ,m). If ζ1 and ζ2 are defined to be ζ1 = x + (f1(x)) and ζ2 =

x + (f2(x)), the two rings can then be expressed as GR(pe1
1 ,m) = < 1, ζ1, ζ

2
1 , . . . , ζ

m−1
1 >

and GR(pe2
2 ,m) = < 1, ζ2, ζ

2
2 , . . . , ζ

m−1
2 >. This tells us that GR(pe1

1 ,m) = Zp
e1
1

[ζ1] and

GR(pe2
2 ,m) = Zp

e2
2

[ζ2]. Hence any element c1 ∈ GR(pe1
1 ,m) can be expressed as an m-

tuple c1 = (a0, a1, . . . , am−1) over Zp
e1
1

while c2 ∈ GR(pe2
2 , m) as c2 = (b0, b1, . . . , bm−1)

over Zp
e2
2

.

Now consider the direct product of the two Galois rings GR(pe1
1 ,m) and GR(pe2

2 ,m).

Let R(n,m) = GR(pe1
1 ,m) × GR(pe2

2 , m). Any element c ∈ R(n,m) can be written as

c = (c1, c2), where c1 ∈ GR(pe1
1 ,m) and c2 ∈ GR(pe2

2 , m) and further as

c = ((a0, a1, . . . , am−1), (b0, b1, . . . , bm−1)). Since Zn
∼= Zp

e1
1
× Zp

e2
2

, c can also be written

as an m-tuple c = (d0, d1, . . . , dm−1) over Zn, where di = (ai, bi). Here ai ∈ Zp
e1
1

and

bi ∈ Zp
e2
2

, where i = 0, 1, 2, . . . , m− 1.

Let c, c
′ ∈ R(n,m). It is easy to see that R(n, m) is a ring under the addition c + c

′
=

((d0+d
′
0), (d1+d

′
1), . . . , (dm−1+d

′
m−1)) and the multiplication cc

′
= (d0d

′
0, d1d

′
1, . . . , dm−1d

′
m−1).

Also |R(n, m)| = nm = (pe1
1 pe2

2 )m = pe1m
1 pe2m

2 = |GR(pe1
1 ,m)||GR(pe2

2 , m)|.
To continue on, we need a couple of number theory results. The first one is well known.

Lemma 2.5.1. [Corollary 4.4, [34]]

22



If p is a prime and a is any integer then ap ≡ a(mod p).

The following result may also be a well known result, but ready reference seems hard

to find. Therefore we state it giving the complete proof in order to apply the proof to

some theorems that will appear later in this section.

Lemma 2.5.2. Let n = pe1
1 pe2

2 . Then Zn
∼= Zp

e1
1
× Zp

e2
2

and given α ∈ Zn there

exist α1 ∈ Zp
e1
1

and α2 ∈ Zp
e2
2

such that α = (α1p
e2
2 + α2p

e1
1 ) mod n. Thus Zn ={

(α1, α2)|α1 ∈ Zp
e1
1

, α2 ∈ Zp
e2
2

}
.

Proof:

Since the gcd(pe1
1 , pe2

2 ) = 1 there exist x, y ∈ Z such that xpe1
1 + ype2

2 = 1. Multiplying

both sides of this equation by α ∈ Zn we have

α = (αxpe1
1 + αype2

2 ) mod n.

⇒ α = (αxpe1
1 ) mod n + (αype2

2 ) mod n.

Suppose that αxpe1
1 ≡ t1 mod n. This implies that αxpe1

1 = nr + t1 which implies

pe1
1 |(nr + t1). Since pe1

1 |nr and hence pe1
1 |t1, we can write t1 = pe1

1 α2. Thus

αxpe1
1 = pe1

1 pe2
2 r + pe1

1 α2

⇒ αx = pe2
2 r + α2

⇒ αx ≡ α2 mod pe2
2

i.e., α2 ∈ Zp
e2
2

.

Similarly we can show that αy ≡ α1 mod pe1
1 . i.e., α1 ∈ Zp

e1
1

. Therefore there

exist α1 ∈ Zp
e1
1

and α2 ∈ Zp
e2
2

such that α = (α1p
e2
2 + α2p

e1
1 ) mod n. Thus Zn ={

(α1, α2)|α1 ∈ Zp
e1
1

, α2 ∈ Zp
e2
2

}
.

We are now in a position to define a new map and to prove its properties.

Theorem 2.5.3 (Trace-like map). Let Tr1 and Tr2 be the trace maps over GR(pe1
1 ,m)

and GR(pe2
2 ,m) respectively (see Section 2.3). For any c = (c1, c2) ∈ R(n,m), the map

T over R(n,m) defined by
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T : R(n,m) → Zn

T (c) = pe2
2 Tr1(c1) + pe1

1 Tr2(c2)

satisfies the following properties:

For c, c′ ∈ R(n, m) and α ∈ Zn

(i) T (c + c′) = T (c) + T (c′).

(ii) T (αc) = αT (c).

(iii) T is surjective.

Proof:

(i) Let c, c′ ∈ R(n,m) = GR(pe1
1 ,m) × GR(pe2

2 ,m). Then c = (c1, c2) and c′ = (c′1, c
′
2),

where c1, c
′
1 ∈ GR(pe1

1 ,m) and c2, c
′
2 ∈ GR(pe2

2 , m). Since c + c′ = ((c1 + c′1), (c2 + c′2)) we

have

T (c + c′) = pe2
2 Tr1(c1 + c′1) + pe1

1 Tr2(c2 + c′2).

= pe2
2 Tr1(c1) + pe2

2 Tr1(c
′
1) + pe1

1 Tr2(c2) + pe1
1 Tr2(c

′
2)(From Theorem 1.4.5)

= (pe2
2 Tr1(c1) + pe1

1 Tr2(c2)) + (pe2
2 Tr1(c

′
1) + pe1

1 Tr2(c
′
2)).

= T (c) + T (c′).

(ii) Let α ∈ Zn and c ∈ R(n,m).

T (αc) = pe2
2 Tr1(αc1) + pe1

1 Tr2(αc2).

= pe2
2 (αc1 + αp1f1(c1) + . . . + αpm−1

1 f1(c1)) + pe1
1 (αc2 + αp2f2(c2) + . . . + αpm−1

2 f2(c2)).

Here f1 and f2 are the Frobenius automorphisms over GR(pe1
1 ,m) and GR(pe2

2 ,m) respec-

tively. From Lemma 2.5.1 we know that if p is prime then for any integer a, ap ≡ a(mod p).

Therefore we have

T (αc) = pe2
2 α(Tr1(c1)) + pe1

1 α(Tr2(c2)).

= αT (c).

(iii) Since Tr1 and Tr2 are both surjective and not identically zero, there exist elements

c1 ∈ GR(pe1
1 ,m) and c2 ∈ GR(pe2

2 ,m) such that Tr1(c1) = 1 and Tr2(c2) = 1. Then for

c = (c1, c2) ∈ R(n,m), T (c) = pe1
1 Tr2(c2)+ pe2

2 Tr1(c1) = pe1
1 + pe2

2 . For all α ∈ Zn we have
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proved in (ii) that T (αc) = αT (c) and since pe1
1 + pe2

2 is not a multiple of either p1 or p2,

T (αc) = αT (c) should represent every element in Zn and hence T is surjective.

The main purpose of this chapter is to apply the trace-like map to construct cocylic

Butson Hadamard matrices of order nm and consequently to construct linear codes over

Zn for n = pe1
1 pe2

2 . So we need to study the distribution of the trace-like map T (cx) over

Zn as x ranges over R(n,m), where c ∈ R(n,m). The following theorem explains this

distribution in detail for invertible and non-invertible elements c ∈ R(n,m).

Theorem 2.5.4. For any c ∈ R(n,m) as x ranges over R(n,m), T (cx) takes each element

in

Si,j =

{
pi

1p
j
2t|t = 0, 1, 2, . . . ,

n

pi
1p

j
2

− 1

}
(2.5)

equally often, i.e., pi
1p

j
2n

m−1 times, where 0 ≤ i ≤ e1 and 0 ≤ j ≤ e2.

Proof:

First of all we will prove that T (cx) ∈ Si,j. Since c, x ∈ R(n,m), c = (c1, c2) and

x = (x1, x2), where c1, x1 ∈ GR(pe1
1 ,m) and c2, x2 ∈ GR(pe2

2 ,m). In the case of c = 0 it is

clear that T (cx) = 0.

If c 6= 0 and both c1 and c2 are non-zero, then as they are elements of Galois rings,

their p-adic representations are given by

c1 = u
(i)
1 =

e1−1∑

k=i

pk
1u1k : 0 ≤ i ≤ e1 − 1, u1i 6= 0 and

c2 = u
(j)
2 =

e2−1∑

k=j

pk
2u2k : 0 ≤ j ≤ e2 − 1, u2j 6= 0

respectively. Here u1k ∈ T1 and u2k ∈ T2, where T1 and T2 are the Teichmuller sets of the

Galois rings GR(pe1
1 ,m) and GR(pe2

2 ,m) respectively. From Theorem 2.3.3, as x ranges

over R(n,m), since T (cx) = pe2
2 Tr1(c1x1) + pe1

1 Tr2(c2x2), the trace maps Tr1(c1x1) and

Tr2(c2x2) will take values in the sets Di = {pi
1t1 | t1 = 0, 1, 2, . . . , pe1−i

1 − 1} and

Dj = {pj
2t2 | t1 = 0, 1, 2, . . . , pe2−j

2 − 1} respectively. Thus

T (cx) ∈ {
pe2

2 pi
1t1 + pe1

1 pj
2t2|t1 = 0, 1, 2, . . . , pe1−i

1 − 1, t2 = 0, 1, 2, . . . , pe2−j
2 − 1

}

=
{
pi

1p
j
2(p

e2−j
2 t1 + pe1−i

1 t2)|t1 = 0, 1, 2, . . . , pe1−i
1 − 1, t2 = 0, 1, 2, . . . , pe2−j

2 − 1
}

.
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Since the calculations are done modulo n,
{
(pe2−j

2 t1 + pe1−i
1 t2)|t1 = 0, 1, 2, . . . , pe1−i

1 − 1, t2 = 0, 1, 2, . . . , pe2−j
2 − 1

} ⊆ Zn.

From Lemma 2.5.2,
{
(pe2−j

2 t1 + pe1−i
1 t2)|t1 = 0, 1, 2, . . . , pe1−i

1 − 1, t2 = 0, 1, 2, . . . , pe2−j
2 − 1

} ∼= Zp
e1−i
1 p

e2−j
2

.

Hence T (cx) ∈ {
pi

1p
j
2t|t = 0, 1, 2 . . . , pe1−i

1 pe2−j
2 − 1

}
= Si,j.

If c 6= 0 and c1 = 0 (or c2 = 0) then T (cx) = pe1
1 Tr2(c2x2) (respectively T (cx) =

pe2
2 Tr1(c1x1)) and we are reduced to the Galois ring case. From Theorem 2.3.3,

Tr2(c2x2) ∈ Dj (respectively Tr1(c1x1) ∈ Di). This implies that

T (cx) ∈ {
pe1

1 pj
2t|t = 0, 1, 2, . . . , pe2−j

2 − 1
}

= S0,j

(respectively T (cx) ∈ {
pe2

2 pi
1t|t = 0, 1, 2, . . . , pe1−i

1 − 1
}

= Si,0).

Thus for all c, x ∈ R(n, m), T (cx) ∈ Si,j.

From Theorem 2.3.3, as x1 ranges over GR(pe1
1 ,m) (respectively as x2 ranges over

GR(pe2
2 ,m)) Tr1(c1x1) takes elements in Di (respectively Tr2(c2x2) takes elements in

Dj) equally often i.e., p
e1(m−1)+i
1 (respectively i.e., p

e2(m−1)+j
2 ) times. Hence as x ranges

over R(n,m), T (cx) takes elements in Si,j equally often p
e1(m−1)+i
1 p

e2(m−1)+j
2 = pi

1p
j
2n

m−1

times.

Since the map T satisfies properties similar to those satisfied by the trace maps over

the Galois fields and Galois rings, we call it the trace-like map.

As in Theorem 2.3.3, Theorem 2.5.4 is also clear from the multiplicative Cayley table

of Zn.

Example 2.5.5. Consider the ring R(6, 2) = GF (2, 2) × GF (3, 2). Consider the irre-

ducible polynomials f(x) = x2 + x + 1 over Z2 and g(x) = x2 + x + 2 over Z3. Let

GF (2, 2) = Z2[x]/(f(x)) and GF (3, 2) = Z3[x]/(g(x)). If ζ1 = (f(x)) + x then f(ζ1) = 0

and hence GF (2, 2) = Z2[ζ1]. Similarly if ζ2 = (g(x)) + x then g(ζ2) = 0 and hence

GF (3, 2) = Z3[ζ2].

Frobenius automorphisms f1 and f2 over GF (2, 2) and GF (3, 2) are given by

f1 : GF (2, 2) → GF (2, 2)

f1(c1) = c2
1

and
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f2 : GF (3, 2) → GF (3, 2)

f2(c2) = c3
2

respectively.

The trace maps Tr1 and Tr2 over GF (2, 2) and GF (3, 2) are given by

Tr1 : GF (2, 2) → Z2

Tr1(c1) = c1 + f1(c1)

and

Tr2 : GF (3, 2) → Z3

Tr2(c2) = c2 + f2(c2)

respectively.

The following tables illustrate the values of trace maps.

Element c1 Tr1(c1)

00 = 0 + 0 0 0

10 = 1 + 0 1 0

01 = 0 + ζ1 ζ1 1

11 = 1 + ζ1 ζ2
1 1

Element c2 Tr2(c2)

00 = 0 + 0 0 0

10 = 1 + 0 1 2

01 = 0 + ζ2 ζ2 2

12 = 1 + 2ζ2 ζ2
2 0

22 = 2 + 2ζ2 ζ3
2 2

20 = 2 + 0 ζ4
2 1

02 = 0 + 2ζ2 ζ5
2 1

21 = 2 + ζ2 ζ6
2 0

11 = 1 + ζ2 ζ7
2 1

Now define the trace-like map T over the ring R(6, 2) as follows:
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T : R(6, 2) → Z6

T (c) = 3Tr1(c1) + 2Tr2(c2),

where c1 ∈ GF (2, 2) and c2 ∈ GF (3, 2).

Since Z6
∼= Z2 × Z3, elements of Z6 can be represented by 0 = (0, 0), 1 = (1, 2), 2 =

(0, 1), 3 = (1, 0), 4 = (0, 2), 5 = (1, 1).

The following table illustrates the elements of R(6, 2) and values of the trace-like map

over R(6, 2).

c c = (c1, c2) T (c) c c = (c1, c2) T (c)

00 (00)(00) = ((00), (00)) 0 10 (12)(00) = ((10), (20)) 2

01 (00)(12) = ((01), (02)) 5 11 (12)(12) = ((11), (22)) 1

02 (00)(01) = ((00), (01)) 4 12 (12)(01) = ((10), (21)) 0

03 (00)(10) = ((01), (00)) 3 13 (12)(10) = ((11), (20)) 5

04 (00)(02) = ((00), (02)) 2 14 (12)(02) = ((10), (22)) 4

05 (00)(11) = ((01), (01)) 1 15 (12)(11) = ((11), (21)) 3

20 (01)(00) = ((00), (10)) 4 30 (10)(00) = ((10), (00)) 0

21 (01)(12) = ((01), (12)) 3 31 (10)(12) = ((11), (02)) 5

22 (01)(01) = ((00), (11)) 2 32 (10)(01) = ((10), (01)) 4

23 (01)(10) = ((01), (10)) 1 33 (10)(10) = ((11), (00)) 3

24 (01)(02) = ((00), (12)) 0 34 (10)(02) = ((10), (02)) 2

25 (01)(11) = ((01), (11)) 5 35 (10)(11) = ((11), (01)) 1

40 (02)(00) = ((00), (20)) 2 50 (11)(00) = ((10), (10)) 4

41 (02)(12) = ((01), (22)) 1 51 (11)(12) = ((11), (12)) 3

42 (02)(01) = ((00), (21)) 0 52 (11)(01) = ((10), (11)) 2

43 (02)(10) = ((01), (20)) 5 53 (11)(10) = ((11), (10)) 1

44 (02)(02) = ((00), (22)) 4 54 (11)(02) = ((10), (12)) 0

45 (02)(11) = ((01), (21)) 3 55 (11)(11) = ((11), (11)) 5

We now use the basic properties of the trace-like map over R(n,m) to construct

cocyclic Butson Hadamard matrices of order n and linear codes over Zn.
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2.6 Cocyclic Butsons Hadamard matrices and linear

codes via the trace-like map

In this section we define a cocycle by using the trace-like map in order to construct cocyclic

Butson Hadamard matrices of order nm and consequently to construct linear codes over

Zn.

The following lemma can be used as an alternate way to prove the part (i) of the next

theorem.

Lemma 2.6.1. [Proposition 2.4, [6]]

Let α and β be cocycles over G and H respectively. Then γ = α× β defined by

α× β((a, c)(b, d)) = α(a, b)β(c, d), a, b ∈ G and c, d ∈ H

is a cocycle over G×H.

Theorem 2.6.2. Let ω = exp
(

2π
√−1
n

)
be the complex nth root of unity, where n = pe1

1 pe2
2 .

Let Cn be the set of all complex nth roots of unity. Then

(i) The set mapping

ϕ : R(n,m)×R(n, m) → Cn

ϕ(a, b) = ωT (ab)

is a cocycle.

(ii) The matrix H = [ϕ(a, b)]a,b∈R(n,m) is a Butson Hadamard matrix of order nm.

(iii) The rows of the exponent matrix associated with H (i.e., A = [T (ab)]a,b∈R(n,m)) form

a linear code over Zn with the parameters [n, k, dH ] =
[
nm,m, (n− pe1

1 pe2−1
2 )nm−1

]
, where

p1 < p2 and e1 ≤ e2.

Proof:

(i) Let a, b, c ∈ R(n,m). Then

ϕ(a, b) = ωT (ab).

ϕ(a + b, c) = ωT ((a+b)c) = ωT (ac)+T (bc).

ϕ(b, c) = ωT (bc).

ϕ(a, b + c) = ωT (a(b+c)) = ωT (ab)+T (ac).
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From these equations we have

ϕ(a, b)ϕ(a + b, c) = ϕ(b, c)ϕ(a, b + c).

Thus ϕ is a cocycle. This proof also follows from Lemma 2.6.1: If α and β are the cocycles

defined over GR(pe1
1 ,m) and GR(pe2

2 ,m) respectively as in Theorem 2.4.1.

that is

α : GR(pe1
1 ,m)×GR(pe1

1 , m) → Cp
e1
1

α(a1, a2) = ω
Tr1(a1a2)
1

and

β : GR(pe2
2 , m)×GR(pe2

2 ,m) → Cp
e2
2

β(b1, b2) = ω
Tr2(b1b2)
2 .

Then

α× β : R(n,m)×R(n,m) → Cn

α× β((a1, b1), (a2, b2)) = ω
Tr1(a1a2)
1 ω

Tr2(b1b2)
2

= e

(
2π
√−1

p
e1
1

Tr1(a1a2)

)

e

(
2π
√−1

p
e2
2

Tr2(b1b2)

)

= e

(
2π
√−1

p
e1
1 p

e2
2

(p
e2
2 Tr1(a1a2)+p

e1
1 Tr2(b1b2))

)

= e

(
2π
√−1
n (p

e2
2 Tr1(a1a2)+p

e1
1 Tr2(b1b2))

)

= ωT (ab), a = (a1, b1) and b = (a2, b2)

= ϕ(a, b).

Therefore ϕ is a cocycle.

(ii) Let H = [ϕ(a, b)]a,b∈R(n,m). To prove that HH∗ = nmI, consider the sum

S =
∑

x∈R(n,m)

ϕ(a, x)ϕ(x, b), (2.6)

where ϕ(x, b) is the complex conjugate of ϕ(x, b). From the properties of the trace-like

map that we studied in Theorem 2.5.3 we have

S =
∑

x∈R(n,m)

ωT (x(a−b)). (2.7)
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When a = b it is clear that S = nm.

When a 6= b, from Theorem 2.5.4 we have

S =
∑

x∈R(n,m)

ωT (x(a−b)) = pi
1p

j
2n

m−1

n

pi
1p

j
2

−1

∑
t=0

ωpi
1pj

2t, (2.8)

where 0 ≤ i ≤ e1 and 0 ≤ j ≤ e2. From equation (2.1) we have S = 0. Thus the matrix

H = [ϕ(a, b)]a,b∈R(n,m) is a Butson Hadamard matrix of order nm. Since we used a cocycle

for this construction, H is a cocyclic Butson Hadamard matrix of order nm.

(iii) Let B = [Tr1(c1αc2α)]c1α,c2α∈GR(p
e1
1 ,m) and D = [Tr2(c1βc2β)]c1β ,c2β∈GR(p

e2
2 ,m) be the

codes over Zp
e1
1

and Zp
e2
2

respectively that we studied in Theorem 2.4.1. Let GB and GD

be the generator matrices of the codes B and D respectively and consider the m × nm

matrix GA defined by

GA = pe2
2 [pe2m

2 copies of GB] + pe1
1 [pe1m

1 copies of GD] . (2.9)

i.e.,

GA = pe2
2




pe2m
2 copies of {Tr1(c1l)}

pe2m
2 copies of {Tr1(ζ1c1l)}

...

pe2m
2 copies of {Tr1(ζm−1

1 c1l)}




+ pe1
1




pe1m
1 copies of {Tr2(c2t)}

pe1m
1 copies of {Tr2(ζ2c2t)}

...

pe1m
1 copies of {Tr2(ζm−1

2 c2t)}




, where

l = 1, 2, . . . , pe1m
1 and t = 1, 2, . . . , pe2m

2 . Thus the kth row of GA can be written as

xk = pe2
2

[
Tr1(ζ

k
1 c1l)

]
+ pe1

1

[
Tr2(ζ

k
2 c2t)

]
, (2.10)

where 0 ≤ k ≤ m− 1. That is,

xk = (xk1, xk2, . . . , xka, . . . , xknm) , (2.11)

where xka = pe2
2 Tr1(ζ

k
1 c1l) + pe1

1 Tr2(ζ
k
2 c2t) for some l and t.

Now let α0, α1, . . . , αm−1 ∈ Zn. Suppose that α0x0 + α1x1 + . . . + αm−1xm−1 = 0
¯

for

α0, α1, . . . , αm−1 ∈ Zn.
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Then for all a = 1, 2, . . . , nm,

α0x0a + α1x1a + . . . + αm−1x(m−1)a = 0.

⇒ α0 (pe2
2 Tr1(c1l) + pe1

1 Tr2(c2t)) +

α1 (pe2
2 Tr1(ζ1c1l) + pe1

1 Tr2(ζ2c2t)) +

. . . + αm−1

(
pe2

2 Tr1(ζ
m−1
1 c1l) + pe1

1 Tr2(ζ
m−1
2 c2t)

)
= 0 ∀ l, t.

⇒ pe2
2 Tr1

(
c1l

(
α0 + α1ζ1 + . . . + αm−1ζ

m−1
1

))
+

pe1
1 Tr2

(
c2t

(
α0 + α1ζ2 + . . . + αm−1ζ

m−1
2

))
= 0 ∀ l, t.

⇒ pe2
2 Tr1(c1lc

′
1) + pe1

1 Tr2(c2tc
′
2) = 0 ∀ l, t. (2.12)

Here c
′
1 = α0 + α1ζ1 + . . . + αm−1ζ

m−1
1 and c

′
2 = α0 + α1ζ2 + . . . + αm−1ζ

m−1
2 .

Equation (2.12) is true if and only if

Tr1(c1lc
′
1) = 0 = Tr2(c2tc

′
2) ∀ l, t.

However c1l 6= 0 for all l and c2t 6= 0 for at least one t. Therefore c
′
1 = 0 and c

′
2 = 0. If

c
′
1 = α0 + α1ζ1 + . . . + αm−1ζ

m−1
1 = 0 then αk = 0 for all k = 0, 1, . . . , m − 1, since ζk

1

are linearly independent in GR(pe1
1 , m). Similarly if c

′
2 = α0 + α1ζ2 + . . . + αm−1ζ

m−1
2 = 0

then αk = 0 for all k = 0, 1, . . . , m − 1, since ζk
2 are linearly independent in GR(pe2

2 ,m).

Therefore xk are linearly independent nm-tuples over Zn. Taking all the linear com-

binations of rows of GA we can generate the matrix A. If we consider the rows of A

as codewords over Zn then from Theorem 2.5.4 the Hamming weight of each non-zero

codeword is given by (n − pi
1p

j
2)n

m−1, where i = 0, 1, 2, . . . , e1 and j = 0, 1, 2, . . . , e2.

If p2 > p1 and e2 ≥ e1, the minimum Hamming weight is (n − pe2
2 pe1−1

1 )nm−1. Since

A is a linear code the minimum Hamming distance dH = (n − pe2
2 pe1−1

1 )nm−1. Thus

[n, k, dH ] =
[
nm,m, (n− pe2

2 pe1−1
1 )nm−1

]
.

The next example illustrates this result.

Example 2.6.3. In this example we illustrate the code constructed by using the trace-like

map over R(6, 2) = GF (2, 2) × GF (3, 2). Let T be the trace-like map over R(6, 2) and

Tr1 and Tr2 be the trace maps over GF (2, 2) and GF (3, 2) respectively.

Let
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B = [Tr1(a1b1)]a1,b1∈GF (2,2) =




0 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1




and

GB =


 0 0 1 1

0 1 1 0


.

GB is a generator matrix of B.

Let

D = [Tr2(a2b2)]a2,b2∈GF (3,2) =




0 0 0 0 0 0 0 0 0

0 2 2 0 2 1 1 0 1

0 2 0 2 1 1 0 1 2

0 0 2 1 1 0 1 2 2

0 2 1 1 0 1 2 2 0

0 1 1 0 1 2 2 0 2

0 1 0 1 2 2 0 2 1

0 0 1 2 2 0 2 1 1

0 1 2 2 0 2 1 1 0




and

GD =


 0 2 2 0 2 1 1 0 1

0 2 0 2 1 1 0 1 2


.

GD is a generator matrix of D.

Now consider the matrix

GA = 3[9 copies of GB] + 2[4 copies of GD].

That is,


 0 4 1 3 4 2 5 3 2 0 1 1 0 4 5 5 0 2 3 1 4 0 1 5 2 0 5 3 4 4 3 1 2 2 3 5

0 1 3 4 2 5 3 2 4 3 1 0 4 5 5 0 2 1 3 4 0 1 5 2 0 5 1 0 4 3 1 2 2 3 5 4


.
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Taking all the linear combinations of these two codewords over Z6 we obtain:




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 1 3 4 2 5 3 2 0 1 1 0 4 5 5 0 2 3 1 4 0 1 5 2 0 5 3 4 4 3 1 2 2 3 5

0 2 2 0 2 4 4 0 4 0 2 2 0 2 4 4 0 4 0 2 2 0 2 4 4 0 4 0 2 2 0 2 4 4 0 4

0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3

0 4 4 0 4 2 2 0 2 0 4 4 0 4 2 2 0 2 0 4 4 0 4 2 2 0 2 0 4 4 0 4 2 2 0 2

0 2 5 3 2 4 1 3 4 0 5 5 0 2 1 1 0 4 3 5 2 0 5 1 4 0 1 3 2 2 3 5 4 4 3 1

0 1 3 4 2 5 3 2 4 3 1 0 4 5 5 0 2 1 3 4 0 1 5 2 0 5 1 0 4 3 1 2 2 3 5 4

0 2 0 2 4 4 0 4 2 0 2 0 2 4 4 0 4 2 0 2 0 2 4 4 0 4 2 0 2 0 2 4 4 0 4 2

0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0

0 4 0 4 2 2 0 2 4 0 4 0 4 2 2 0 2 4 0 4 0 4 2 2 0 2 4 0 4 0 4 2 2 0 2 4

0 5 3 2 4 1 3 4 2 3 5 0 2 1 1 0 4 5 3 2 0 5 1 4 0 1 5 0 2 3 5 4 4 3 1 2

0 5 4 1 0 1 2 5 0 3 2 1 4 3 4 5 2 3 0 5 4 1 0 1 2 5 0 3 2 1 4 3 4 5 2 3

0 0 1 5 2 0 5 1 4 0 3 1 2 2 3 5 4 4 3 3 4 2 5 3 2 4 1 3 0 4 5 5 0 2 1 1

0 1 4 3 4 5 2 3 2 3 4 1 0 1 2 5 0 5 0 1 4 3 4 5 2 3 2 3 4 1 0 1 2 5 0 5

0 2 1 1 0 4 5 5 0 0 5 1 4 0 1 5 2 0 3 5 4 4 3 1 2 2 3 3 2 4 1 3 4 2 5 3

0 3 4 5 2 3 2 1 4 3 0 1 2 5 0 5 4 1 0 3 4 5 2 3 2 1 4 3 0 1 2 5 0 5 4 1

0 3 5 4 4 3 1 2 2 3 3 2 4 1 3 4 2 5 3 0 2 1 1 0 4 5 5 0 0 5 1 4 0 1 5 2

0 1 0 1 2 5 0 5 4 3 4 3 4 5 2 3 2 1 0 1 0 1 2 5 0 5 4 3 4 3 4 5 2 3 2 1

0 5 1 4 0 1 5 2 0 3 5 4 4 3 1 2 2 3 3 2 4 1 3 4 2 5 3 0 2 1 1 0 4 5 5 0

0 3 2 1 4 3 4 5 2 3 0 5 4 1 0 1 2 5 0 3 2 1 4 3 4 5 2 3 0 5 4 1 0 1 2 5

0 4 2 2 0 2 4 4 0 0 4 2 2 0 2 4 4 0 0 4 2 2 0 2 4 4 0 0 4 2 2 0 2 4 4 0

0 5 5 0 2 1 1 0 4 3 5 2 0 5 1 4 0 1 3 2 2 3 5 4 4 3 1 0 2 5 3 2 4 1 3 4

0 0 2 4 4 0 4 2 2 0 0 2 4 4 0 4 2 2 0 0 2 4 4 0 4 2 2 0 0 2 4 4 0 4 2 2

0 1 5 2 0 5 1 4 0 3 1 2 2 3 5 4 4 3 3 4 2 5 3 2 4 1 3 0 4 5 5 0 2 1 1 0

0 2 3 5 4 4 3 1 2 0 5 3 2 4 1 3 4 2 3 5 0 2 1 1 0 4 5 3 2 0 5 1 4 0 1 5

0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3

0 4 3 1 2 2 3 5 4 0 1 3 4 2 5 3 2 4 3 1 0 4 5 5 0 2 1 3 4 0 1 5 2 0 5 1

0 5 0 5 4 1 0 1 2 3 2 3 2 1 4 3 4 5 0 5 0 5 4 1 0 1 2 3 2 3 2 1 4 3 4 5

0 0 4 2 2 0 2 4 4 0 0 4 2 2 0 2 4 4 0 0 4 2 2 0 2 4 4 0 0 4 2 2 0 2 4 4

0 1 1 0 4 5 5 0 2 3 1 4 0 1 5 2 0 5 3 4 4 3 1 2 2 3 5 0 4 1 3 4 2 5 3 2

0 2 4 4 0 4 2 2 0 0 2 4 4 0 4 2 2 0 0 2 4 4 0 4 2 2 0 0 2 4 4 0 4 2 2 0

0 3 1 2 2 3 5 4 4 3 3 4 2 5 3 2 4 1 3 0 4 5 5 0 2 1 1 0 0 1 5 2 0 5 1 4

0 4 5 5 0 2 1 1 0 0 1 5 2 0 5 1 4 0 3 1 2 2 3 5 4 4 3 3 4 2 5 3 2 4 1 3

0 5 2 3 2 1 4 3 4 3 2 5 0 5 4 1 0 1 0 5 2 3 2 1 4 3 4 3 2 5 0 5 4 1 0 1

0 0 5 1 4 0 1 5 2 0 3 5 4 4 3 1 2 2 3 3 2 4 1 3 4 2 5 3 0 2 1 1 0 4 5 5

0 1 2 5 0 5 4 1 0 3 4 5 2 3 2 1 4 3 0 1 2 5 0 5 4 1 0 3 4 5 2 3 2 1 4 3




.

This is the code given by A = [T (ab)]a,b∈R(6,2). It is clear that the parameters of this

code are [36, 2, 18].

Thus far we have studied the trace-like map over R(n,m) for n = pe1
1 pe2

2 . It is relatively

straight forward to extend these results to the case n = pe1
1 pe2

2 . . . pek
k .

Theorem 2.6.4. Let Tri be the trace map over GR(pei
i ,m), where i = 1, 2, . . . , k, as

defined in section 2.3. The mapping defined over R(n,m) by

T : R(n,m) → Zn

T (c) =
k∑

i=1

n

pei
i

Tri(ci)

satisfies the following properties.
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For c, c
′ ∈ R(n,m) and α ∈ Zn:

(i) T (c + c
′
) = T (c) + T (c

′
).

(ii) T (αc) = αT (c).

(iii) T is surjective.

Proof is similar to that of Theorem 2.5.3.

As in Theorem 2.5.4, the next theorem describes the distribution of T (cx).

Theorem 2.6.5. For c ∈ R(n,m), as x ranges over R(n,m), T (cx) takes each element

in

Sl =

{
k∏

i=1

pli
i t|t = 0, 1, 2, . . . ,

n∏k
i=1 pli

i

− 1

}
(2.13)

equally often i.e.,
∏k

i=1 pli
i nm−1 times, where l = (l1, l2, . . . , lk), 0 ≤ li ≤ ei for i =

1, 2, . . . , k.

Proof is similar to that of Theorem 2.5.4.

We use these properties of the trace-like map T over R(n,m) to construct cocyclic

Butson Hadamard matrices of order nm for any n and consequently to construct cocyclic

codes over Zn. The next theorem describes this construction.

Theorem 2.6.6. Let ω = exp
(

2π
√−1
n

)
be the complex nth root of unity, where

n =
∏k

i=1 pei
i . Let Cn be the set of all complex nth root of unity.

(i) The set mapping

ϕ : R(n,m)×R(n, m) → Cn

ϕ(a, b) = ωT (ab)

is a cocycle.

(ii) The matrix H = [ϕ(a, b)]a,b∈R(n,m) is a Butson Hadamard matrix of order nm.

(iii) The rows of the exponent matrix associated with H (i.e., A = [T (ab)]a,b∈R(n,m)) form

a linear code over Zn with the parameters [n, k, dH ] =
[
nm,m, (n− pe1

1 pe2
2 . . . pek−1

k )nm−1
]
.

Proof is similar to that of Theorem 2.6.2. In this case the generator matrix GA of the

code A is

GA =
k∑

i=1

(
n

pei
i

)[(
n

pei
i

)m

copies of Gi

]
,
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where Gi is the generator matrix of the code Ai =
[
Tri(cc

′
)
]
c,c
′∈GR(p

ei
i ,m)

.

We have now constructed codes over Zn by using the trace-like map over R(n,m)

in the form of T (ax). In the next section we calculate the Lee, Euclidean and Chinese

Euclidean weights of these codes.

2.7 The Lee, Euclidean and Chinese Euclidean weights

In this section we first calculate the Lee, Euclidean and Chinese Euclidean weights of the

codewords of A = [T (ab)]a,b∈R(n,m), where n = pe1
1 pe2

2 . Let x be any row of the matrix A.

As in Theorem 2.5.4 x consists of elements from

Si,j =

{
pi

1p
j
2t|t = 0, 1, 2, . . . ,

n

pi
1p

j
2

− 1

}

equally often pi
1p

j
2n

m−1 times, where 0 ≤ i ≤ e1 and 0 ≤ j ≤ e2.

Case I: p1 = 2 and p2 > 2

For 0 ≤ i ≤ e1 − 1 and 0 ≤ j ≤ e2 − 1 the Lee weight of x is given by

WL1(x) = nm−12ipj
2


2


2ipj

2




n

2p
j
22i

−1

∑
t=0

t





 +

n

2




WL1(x) = nm−1

(
n2

4

)
=

nm+1

4

and for i = e1 and 0 ≤ j ≤ e2 − 1 it is given by

WL2(x) = nm−12e1pj
2


2


2e2pj

2




n

2e1p
j
2

−1

2∑
t=0

t










WL2(x) =
nm−1(n2 − (2e1pj

2)
2)

4
.

In this case the Euclidean weight of x is given by following formulae:

For 0 ≤ i ≤ e1 − 1 and 0 ≤ j ≤ e2 − 1

WE1(x) = nm−12ipj
2


2


(2ipj

2)
2




n

2p
j
22i

−1

∑
t=0

(t)2





 +

(n

2

)2




WE1(x) = nm−1

(
n

12

(
n2 − 3n2ipj

2 + 2
(
pj

22
i
)2

)
+

n22ipj

4

)
.
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For i = e1 and 0 ≤ j ≤ e2 − 1

WE2(x) = nm−12e1pj
2


2


(2e1pj

2)
2




n

2e1p
j
2

−1

2∑
t=0

(t)2










WE2(x) = nm−1
( n

12

(
n2 − (

2e1pj
2

)2
))

.

The Chinese Euclidean weight in this case is given by

WCE(x) = nm−12ipj
2




n

2ip
j
2

−1

∑
t=0

(
2− 2 cos

(
2πt2ipj

2

n

))


WCE(x) = 2nm.

Case II: p1 6= p2 > 2, 0 ≤ i ≤ e1 − 1 and 0 ≤ j ≤ e2 − 1.

In this case the Lee weight is given by

WL(x) = nm−1pi
1p

j
2


2


pi

1p
j
2




n

pi
1p

j
2

−1

2∑
t=0

t










WL(x) =
nm−1(n2 − (pi

1p
j
2)

2)

4
,

the Euclidean weight is given by

WE(x) = nm−1pi
1p

j
2


2


(pi

1p
j
2)

2




n

pi
1p

j
2

−1

2∑
t=0

(t)2










WE(x) = nm−1
( n

12

(
n2 − (

pi
1p

j
2

)2
))

and the Chinese Euclidean weight is given by

WCE(x) = nm−1pi
1p

j
2




n

pi
1p

j
2

−1

∑
t=0

(
2− 2 cos

(
2πtpi

1p
j
2

n

))


WCE(x) = 2nm.
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We can naturally extend the weights for the code A = [T (ab)]a,b∈R(n,m), where n =
∏k

i=1 pei
i . Let x be any row of the matrix A. As in Theorem 2.6.5, x consists of elements

from

Sl =

{
k∏

i=1

pli
i t|t = 0, 1, 2, . . . ,

n∏k
i=1 pli

i

− 1

}

equally often
∏k

i=1 pli
i nm−1 times, where l = (l1, l2, . . . , lk), 0 ≤ li ≤ ei for i = 1, 2, . . . , k.

Case I: p1 = 2 and pi > 2 for i = 2, 3, . . . , k.

For 0 ≤ l1 ≤ e1 − 1 and 0 ≤ li ≤ ei, i = 2, 3, . . . , k, the Lee weight of x is given by

WL1(x) = nm−12l1

k∏
i=2

pli
i


2


2l1

k∏
i=2

pli
i




n

22l1
∏k

i=2
p
li
i

−1

∑
t=0

t





 +

n

2




WL1(x) = nm−1

(
n2

4

)
=

nm+1

4

and for l1 = e1 and 0 ≤ li ≤ ei − 1, i = 2, 3, . . . , k, it is given by

WL2(x) = nm−12e1

k∏
i=2

pli
i


2


2e1

k∏
i=2

pli
i




n

2e1
∏k

i=2
p
li
i

−1

2∑
t=0

t










WL2(x) =
nm−1(n2 − (2e1

∏k
i=2 pli

i )2)

4
.

In this case the Euclidean weight of x is given by following formulae.

For 0 ≤ l1 ≤ e1 − 1 and 0 ≤ li ≤ ei, i = 2, 3, . . . , k

WE1(x) = nm−12l1

k∏
i=2

pli
i


2




(
2l1

k∏
i=2

pli
i

)2




n

22l1
∏k

i=2
p
li
i

−1

∑
t=0

(t)2





 +

(n

2

)2




WE1(x) = nm−1


 n

12


n2 − 3n2l1

k∏
i=2

pli
i + 2

(
2l1

k∏
i=2

pli
i

)2

 +

n22l1
∏k

i=2 pli
i

4


 .
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and for l1 = e1 and 0 ≤ li ≤ ei − 1, i = 2, 3, . . . , k

WE2(x) = nm−12e1

k∏
i=2

pli
i


2




(
2e1

k∏
i=2

pli
i

)2




n

2e1
∏k

i=2
p
li
i

−1

2∑
t=0

(t)2










WE2(x) = nm−1


 n

12


n2 −

(
2e1

k∏
i=2

pli
i

)2




 .

The Chinese Euclidean weight in this case is given by

WCE(x) = nm−12l1

k∏
i=2

pli
i




n

2l1
∏k

i=2
p
li
i

−1

∑
t=0

(
2− 2 cos

(
2πt2l1

∏k
i=2 pli

i

n

))



WCE(x) = 2nm.

Case II: p1 6= p2 > 2.

For 0 ≤ li ≤ ei − 1 and i = 1, 2, . . . , k the Lee weight is given by

WL(x) = nm−1

k∏
i=1

pli
i


2




k∏
i=1

pli
i




n∏k
i=1

p
li
i

−1

2∑
t=0

t










WL(x) =
nm−1(n2 −

(∏k
i=1 pli

i

)2

)

4
,

the Euclidean weight is given by

WE(x) = nm−1

k∏
i=1

pli
i


2




(
k∏

i=1

pli
i

)2




n∏k
i=1

p
li
i

−1

2∑
t=0

(t)2










WE(x) = nm−1


 n

12


n2 −

(
k∏

i=1

pli
i

)2






and the Chinese Euclidean weight is given by

WCE(x) = nm−1

k∏
i=1

pli
i




n
∏k

i=1
p
li
i

−1

∑
t=0

(
2− 2 cos

(
2πt

∏k
i=1 pli

i

n

))



WCE(x) = 2nm.
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We now have enough information to classify the code that we have constructed by using

the trace-like map over R(n,m) in the case of n = 6 as a simplex code of type α.

2.8 Cocyclic senary simplex codes of type α

In this section we point out the definition and basic properties of senary simplex codes

of type α as studied by Gupta et al. [37]. Then we use the technique that we have

introduced in section 2.6 to form cocyclic senary simplex codes of type α.

Definition 2.8.1. [[37]] Let Gα
m be a m× 2m3m matrix over Z6 consisting of all possible

distinct columns. Inductively, Gα
m is written as

Gα
m=


 00 . . . 0 11 . . . 1 22 . . . 2 33 . . . 3 44 . . . 4 55 . . . 5

Gm−1 Gm−1 Gm−1 Gm−1 Gm−1 Gm−1




with Gα
1 = [012345]. The code Sα

m generated by Gα
m is called the senary simplex code of

type α.

The code Sα
m has the following Hamming, Lee, Euclidean and Chinese Euclidean weight

distributions.

AH(0) = 1, AH(3 · 6m−1) = 2m − 1, AH(4 · 6m−1) = 3m − 1, AH(5 · 6m−1) =

(2m − 1)(3m − 1).

AL(0) = 1, AL(8 · 6m−1) = 3m − 1, AL(9 · 6m−1) = 3m(2m − 1).

AE(0) = 1, AE(27 · 6m−1) = 2m − 1, AE(16 · 6m−1) = 3m − 1, AH(19 · 6m−1) =

(2m − 1)(3m − 1).

ACE(0) = 1, AE(2 · 6m) = 3m · 2m − 1.

Here AH(i), AL(i), AE(i), ACE(i) denotes the number of 6m-tuples of Hamming,

Lee, Euclidean and Chinese Euclidean weight i in Sα
m.

Sα
m is an equidistance code with respect to Chinese Euclidean distance. For more

details of this code read [37].

In the case of p1 = 3, p2 = 2, e1 = e2 = 1, the generator matrix GA in section 2.6 is

permutation equivalent to Gα
m. Hence the code generated by GA is a senary simplex code

of type α and in particular this is a cocyclic senary simplex code of type α. See Example

2.6.3 for Sα
2 . Types β and γ codes of this type follow from GA as described in [37].
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2.9 The Weighted-Trace map

Thus far in this chapter we have studied the trace-like map and its fundamental properties

parallel to the trace map over Galois rings and Galois fields. The ring R(n,m) was the

direct product of Galois rings and Galois fields of the same degree (say m). This is

a motivation to study the ring R(d, n) that can be constructed by taking the direct

product of Galois rings and Galois fields of different degrees (say m1,m2, . . . , mk), where

d = pe1m1
1 pe2m2

2 . . . pekmk
k and n = pe1

1 pe2
2 . . . pek

k . In this section we study the structure of

this ring and give the definition of the weighted-trace map Tw that first appeared in [45].

We study the the fundamental properties of Tw and notice that the weighted-trace map

is a generalisation of the trace-like map. We use these properties to construct cocyclic

Butson Hadamard matrices Hw of order d. However, unlike in Section 2.6, the exponent

matrix Aw associated with Hw does not form a linear code over Zn. Experimental results

shows that the code Aw is non-linear over Zn.

Let GR(pei
i ,mi) be the Galois ring of characteristic pei

i and degree mi, where i =

1, 2, . . . , k. Let R(d, n) be the direct product of these rings. i.e., R(d, n) = GR(pe1
1 ,m1)×

GR(pe2
2 ,m2) . . .×GR(pek

k ,mk), where d = pe1m1
1 pe2m2

2 . . . pekmk
k and n = pe1

1 pe2
2 . . . pek

k . Any

element c ∈ R(d, n) can be written as c = (c1, c2, . . . , ck), where ci ∈ GR(pei
i ,mi), for

i = 1, 2, . . . , k. Since GR(pei
i ,mi) ∼= Zmi

p
ei
i

we can write ci as an mi - tuple over Zp
ei
i
. i.e.,

ci = (c1
i , c

2
i , . . . , c

mi
i ), where cj

i ∈ Zp
ei
i
, for j = 1, 2, . . . , mi. Let M =

∑k
i=1 mi. We can now

write the elements of R(d, n) as M -tuples c = ((c1
1, c

2
1, . . . , c

m1
1 ), (c1

2, c
2
2, . . . , c

m2
2 ), . . . , (c1

k, c
2
k,

. . . , cmk
k )), where cj

i ∈ Zp
ei
i
, for j ∈ {1, 2, . . . , mi}.

Let c, c
′ ∈ R(d, n) and define the addition and multiplication of c, c

′
as follows:

c + c
′
= (c1 + c

′
1, c2 + c

′
2, . . . , ck + c

′
k) and cc

′
= (c1c

′
1, c2c

′
2, . . . , ckc

′
k).

It is easy to show that R(d, n) is a ring under these binary operations and also that

the number of elements of R(d, n), denoted by d is given by d =
∏k

i=1 peimi
i .

i.e., d =
∏k

i=1 |GR(pei
i ,mi)|, where |GR(pei

i ,mi)| is the number of elements of GR(pei
i ,mi).

Definition 2.9.1 (Weighted-trace map). Let Tri be the trace map over the Galois

ring GR(pei
i ,mi), where i = 1, 2, . . . , k. The weighted-trace map over the ring R(d, n) is
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defined by

Tw : R(d, n) → Zn

Tw(x) =
k∑

i=1

n

pei
i

Tri(xi).

As in Theorem 2.5.3 we can prove that the weighted-trace map satisfies the following

properties:

Theorem 2.9.2. Let Tw be the weighted-trace map over the ring R(d, n), where d =

pe1m1
1 pe2m2

2 . . . pekmk
k and n = pe1

1 pe2
2 . . . pek

k . For c, c
′ ∈ R(d, n) and α ∈ Zn the following

properties are satisfied by Tw:

(i) Tw(c + c
′
) = Tw(c) + Tw(c

′
).

(ii) Tw(αc) = αTw(c).

(iii) Tw is surjective.

The weighted-trace map Tw also satisfies the following property which is very similar

to that of the trace-like map in Theorem 2.6.5.

Theorem 2.9.3. Let c = (c1, c2) ∈ R(d, n) and Tw be the weighted-trace map over

R(d, n). As x ranges over R(d, n), Tw(cx) takes each element in Sl = {∏k
i=1 pli

i t|t =

0, 1, 2, . . . , n∏k
i=1 p

li
i

− 1} equally often i.e.,
∏k

i=1 p
ei(mi−1)+li
i times, where l = (l1, l2, . . . , lk),

0 ≤ li ≤ ei for i = 1, 2, . . . , k.

We can use Tw to construct Butson Hadamard matrices of order d and consequently

to construct non-linear codes over Zn as follows:

Theorem 2.9.4. Let n =
∏k

i=1 pei
i and ωn = e

2π
√−1
n be the complex nth root of unity. Let

Cn be the multiplicative group of all complex nth roots of unity and Tw be the weighted-

trace map over the ring R(d, n). Then

(i) The set mapping defined by

ϕ : R(d, n)×R(d, n) → Cn

ϕ(a, b) = ω
Tw(ab)
n
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is a cocycle.

(ii) Matrix Hw = [ϕ(a, b)]a,b∈R(d,n) is a Butson Hadamard matrix of order d.

(iii) The exponent matrix of Hw, i.e., Aw = [Tw(ab)]a,b∈R(d,n) forms a non-linear code

over Zn with the parameters (d, N,wH), where d =
∏k

i=1 peimi
i is the length of the code,

N =
∏k

i=1 peimi
i is the number of codewords and wH = d − pekmk

k . . . pe2m2
2 pe1m1−1

1 is the

minimum Hamming weight provided that pe1
1 < pe2

2 < . . . < pek
k and m1 < m2 < . . . < mk.

Proof:

(i) and (ii) are the same as Theorem 2.6.2.

(iii) Since the number of elements in R(d, n) is d, it is clear that the length of the code

Aw is d =
∏k

i=1 peimi
i and the number of codewords in Aw is also N =

∏k
i=1 peimi

i . From

Theorem 2.9.3 it is clear that the Hamming weight of each codeword in Aw is given by

d −∏k
i=1 p

ei(mi−1)+li
i , where 0 ≤ li ≤ ei for i = 1, 2, . . . , k. When pe1

1 < pe2
2 < . . . < pek

k

and m1 < m2 < . . . < mk the minimum Hamming weight of codewords in Aw is

wH = d− pekmk
k . . . pe2m2

2 pe1m1−1
1 . Thus Aw is a (d, d, d− pekmk

k . . . pe2m2
2 pe1m1−1

1 ) code over

Zn.

The next example illustrates this result.

Example 2.9.5. Consider the ring R(12, 6) = GF (2, 2)×GF (3, 1). The trace maps Tr1

and Tr2 over GF (2, 2) and GF (3, 1) are given by

Tr1 : GF (2, 2) → Z2

Tr1(c1) = c1 + c2
1

and

Tr2 : GF (3, 1) → Z3

Tr2(c2) = c2

respectively.

The following tables illustrate the values of trace maps.
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c1 Tr1(c1)

00 0

10 0

01 1

11 1

c2 Tr2(c2)

0 0

1 1

2 2

The weighted-trace map Tw over the ring R(12, 6) is

Tw : R(12, 6) → Z6

Tw(c) = 3Tr1(c1) + 2Tr2(c2),

where c1 ∈ GF (2, 2) and c2 ∈ GF (3, 1).

The elements of the ring R(12, 6) and their weighted-trace values are given in the

following table.

c Tw(c)

(0, 0), 0 0

(0, 0), 1 2

(0, 0), 2 4

(1, 0), 0 0

(1, 0), 1 2

(1, 0), 2 4

(0, 1), 0 3

(0, 1), 1 5

(0, 1), 2 1

(1, 1), 0 3

(1, 1), 1 5

(1, 1), 2 1
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The code Aw = [Tw(ax)]a,x∈R(12,6) is

Aw =




0 0 0 0 0 0 0 0 0 0 0 0

0 2 4 0 2 4 0 2 4 0 2 4

0 4 2 0 4 2 0 4 2 0 4 2

0 0 0 0 0 0 3 3 3 3 3 3

0 2 4 0 2 4 3 5 1 3 5 1

0 4 2 0 4 2 3 1 5 3 1 5

0 0 0 3 3 3 3 3 3 0 0 0

0 2 4 3 5 1 3 5 1 0 2 4

0 4 2 3 1 5 3 1 5 0 4 2

0 0 0 3 3 3 0 0 0 3 3 3

0 2 4 3 5 1 0 2 4 3 5 1

0 2 4 3 1 5 0 2 4 3 1 5




and its parameters (d,N, wH) are (12, 12, 6)

Clearly Aw is a non-linear codes since the sum of the 10th and 12th rows is not a

codeword in Aw.

In this section we used the weighted-trace map Tw to construct cocyclic Butson

Hadamard matrices and non-linear codes over Zn. In the next chapter we will use Tw

to construct mutually unbiased bases of odd integer dimension d = pe1
1 pe2

2 . . . pek
k .
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Chapter 3

Mutually Unbiased Bases (MUBs)

3.1 Introduction

Two orthonormal bases B and B
′
of the vector space Cd are called mutually unbiased if

and only if | < b, b
′
> | = 1√

d
, for all b ∈ B and b

′ ∈ B
′
, where C is the complex number set.

Recently researchers have focused their attention on construction of mutually unbiased

bases (MUBs) in different dimensions. In [49] A. Klappenecker and M. Rotteler used the

properties of trace maps over the Galois field GF (p,m) and the Galois ring GR(4,m) to

construct MUBs of odd and even prime power dimensions respectively.

Let N(d) denote the number of MUBs of Cd. It is well know that the number of

MUBs is at most d + 1 [7, 42, 81]. Sets attaining these bounds are extremely interesting

because they allow quantum state tomography with projective measurements consisting

of a minimal number of operators [47]. It is also known that N(d) = d + 1 if d is

a prime power dimension [7, 47, 81]. The exact value of N(d) is not known for non-

prime dimension d. However in [49] it has been proved that if d = pe1
1 pe2

2 . . . pek
k then

N(d) ≥ min{N(pe1
1 ), N(pe2

2 ), . . . , N(pek
k )} and the case d = 6 is studied in [35]. In this

chapter we use the weighted-trace map Tw that we studied in Section 2.9 to construct

min{N(pe1
1 ), N(pe2

2 ), . . . , N(pek
k )} + 1 MUBs of odd integer dimension d given by d =

pe1
1 pe2

2 . . . pek
k . Lemma 3 in [49] gives a product construction of MUBs of odd integer

dimension d, but it is clear that this is an elimination search. Our construction is very

structured and points to possible future work in the area.
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In Section 3.2 we study the basic theory of MUBs and give some known construction

methods. Section 3.3 is devoted to the construction of MUBs of odd integer dimension d

by using the weighted-trace map Tw and finally we give a couple of examples to illustrate

the construction.

3.2 Preliminaries and known results

Let Cd be the complex vector space of dimension d. The inner product of x, y ∈ Cd is

denoted by < x, y > and is defined by < x, y >=
∑d

i=1 xiȳi, where ȳi is the complex

conjugate of yi. The norm of x is defined by ‖ x ‖=< x, x >
1
2 . Two vectors x and y in

Cd are said to be orthogonal to each other if < x, y >= 0. Let B be a basis of the vector

space Cd. B is called an orthogonal basis if for all x, y ∈ B, < x, y >= 0. An orthogonal

basis B is called an orthonormal basis if for all x ∈ B, ‖ x ‖= 1.

Definition 3.2.1 (Mutually unbiased bases). Let B and B
′
be orthonormal bases of

the vector space Cd. These bases are called mutually unbiased if and only if

| < b, b
′
> | = 1√

d
for all b ∈ B and b

′ ∈ B
′
.

We recall the definitions of trace maps over Galois fields and Galois rings to describe

some known constructions of MUBs that use the trace map.

Let f be the Frobenius automorphism over the Galois field GF (p,m) defined as

f : GF (p,m) → GF (p,m)

f(x) = xp

and Tr be the trace map defined as

Tr : GF (p,m) → Zp

Tr(x) = x + f(x) + f 2(x) + . . . + fm−1(x).

The trace map Tr satisfies the properties given in Theorem 1.4.3. The following definition

of an additive character of the additive group GF (p,m) plays a major role in the next

few theorems.
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Definition 3.2.2 (Additive character). Let ωp = e
2π
√−1
p be the complex pth root of

unity. The function χ1 defined by

χ1(x) = ωTr(x)
p ,∀x ∈ GF (p,m) (3.1)

is an additive character of the additive group of GF (p, m).

For x, y ∈ GF (p,m), from Theorem 1.4.3, we have Tr(x + y) = Tr(x) + Tr(y).

Therefore it is easy to see that χ1(x+y) = χ1(x)χ1(y). All additive characters of GF (p,m)

can be expressed in terms of χ1. For more details on additive characters please read

chapter 4 in [52].

Theorem 3.2.3. [Theorem 5.7, [52]]

Let b ∈ GF (p,m). For all x ∈ GF (p,m), the function χb defined by χb(x) = χ1(bx) is an

additive character of GF (p,m) and every additive character of GF (p,m) can be obtained

in this way.

Definition 3.2.4 (Weil sums). Let χ be a nontrivial additive character of GF (p,m)

and let f be a polynomial of degree n over GF (p, m). The sum

∑

x∈GF (p,m)

χ(f(x)) (3.2)

is called the Weil sum.

Theorem 3.2.5. [Theorem 5.38, [52]]

Let f be a polynomial of degree n ≥ 1 over GF (p,m) with gcd(n, pm) = 1 and let χ be a

nontrivial additive character of GF (p,m). Then
∣∣∣∣∣∣

∑

x∈GF (p,m)

χ(f(x))

∣∣∣∣∣∣
≤ (n− 1)

√
pm. (3.3)

The following lemma is a particular result from Theorem 3.2.5 that is in [49].

Lemma 3.2.6. [Lemma 1, [49]]

Let GF (p,m) be a Galois field of characteristic p and χ a nontrivial additive character of

GF (p,m). If f is a polynomial of degree 2 over GF (p,m) then
∣∣∣∣∣∣

∑

x∈GF (p,m)

χ(f(x))

∣∣∣∣∣∣
=
√

pm. (3.4)
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The following construction of MUBs of odd prime power dimensions is based on the

trace map over the Galois field GF (p,m).

Theorem 3.2.7. [Theorem 2, [49]]

Let GF (p,m) be the Galois field of characteristic p and Tr be the trace map over GF (p, m).

For a ∈ GF (p,m), let Ba = {va,b|b ∈ GF (p,m)} be the set of vectors given by

va,b = 1√
pm

(
ω

Tr(ax2+bx)
p

)
x∈GF (p,m)

, where ωp = e
2π
√−1
p is the complex pth root of unity. The

standard basis of Cpm
and the sets Ba form an extremal set of pm + 1 MUBs of Cpm

.

Proof:

For a, c ∈ GF (p,m) let Ba and Bc be the sets of vectors defined above. Let va,b ∈ Ba and

vc,d ∈ Bc. From the definition of the inner product of two vectors we have

< va,b, vc,d > =
1

pm

∑

x∈GF (p,m)

ωTr(ax2+bx)
p ω

Tr(cx2+dx)
p

=
1

pm

∑

x∈GF (p,m)

(e
2πi
p )Tr(ax2+bx)(e

−2πi
p )Tr(cx2+dx)

=
1

pm

∑

x∈GF (p,m)

(e
2πi
p )Tr(ax2+bx)(e

2πi
p )−Tr(cx2+dx)

=
1

pm

∑

x∈GF (p,m)

(e
2πi
p )Tr(ax2+bx)−Tr(cx2+dx)

=
1

pm

∑

x∈GF (p,m)

ωTr((a−c)x2+(b−d)x)
p .

Thus

| < va,b, vc,d > | =
∣∣∣∣∣∣

1

pm

∑

x∈GF (p,m)

ωTr(a−c)x2+(b−d)x
p

∣∣∣∣∣∣
. (3.5)

Suppose that a = c, i.e., both vectors belong to the same basis. If b = d then

| < va,b, vc,d > | = 1 and if b 6= d then from equation (2.1) in Chapter 2 and the properties

of the trace map given in Theorem 1.4.3 we have | < va,b, vc,d > | = 0. Thus Ba is an

orthonormal basis of the vector space Cpm
. The coefficients of the vector va,b are 1√

pm .

Thus Ba is mutually unbiased with the standard basis of Cpm
. On the other hand, if a 6= c

then from Lemma 3.2.6 we have | < va,b, vc,d > | = 1√
pm . Thus the bases Ba and Bc are

mutually unbiased. It is also clear that there are pm + 1 MUBs.
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Authors in [49] also use the trace map over the Galois ring GR(4,m) to construct MUBs

of even prime power dimensions as follows.

Theorem 3.2.8. [Theorem 3, [49]]

Let GR(4,m) be the Galois ring of characteristic 4, Tr be the trace map over GR(4,m)

and T be the Teichmuller set of GR(4,m). For a ∈ T , let Ba = {va,b | b ∈ T } be the

set of vectors given by va,b = 1√
2m

(
ω

Tr((a+2b)x)
4

)
x∈T

, where ω4 = e
2π
√−1
4 is the complex 4th

root of unity. The standard basis of C2m
and the sets Ba form an extremal set of 2m + 1

MUBs of C2m
.

The following lemma gives the lower bound for number of MUBs when the dimension

is a prime factorization.

Lemma 3.2.9. [Lemma 3, [49]]

Let d = pe1
1 pe2

2 . . . per
r be a factorization of d into distinct primes pi. Then N(d) ≥

min{N(pe1
1 ), N(pe2

2 ), . . . , N(per
r )}.

Proof:

We denote the minimum by m = miniN(pei
i ). Choose m mutually unbiased bases

B
(i)
1 , B

(i)
2 , . . . , B

(i)
m of Cp

ei
i , for all i in the range 1 ≤ i ≤ r. Then {B(1)

k

⊗
B

(2)
k

⊗
. . . B

(r)
k :

k = 1, 2, . . . , m} is a set of m MUBs of Cd.

In this section the trace map over the Galois field GF (p,m) and the Galois ring

GR(4,m) have been used to construct MUBs of odd and even prime power dimensions

respectively. This is a motivation to use the weighted-trace map Tw that we have studied

in Section 2.9 to construct MUBs of odd integer dimensions d = pe1
1 pe2

2 . . . per
r .

3.3 MUBs via the weighted-trace map for odd inte-

ger dimensions

So far we have studied the use of trace maps over the Galois field GF (p,m) and the Galois

ring GR(4,m) to construct MUBs of odd and even prime power dimensions respectively.
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When d is not a prime power then the exact value of N(d), that is the number of MUBs of

dimension d, is not yet known. As mentioned in [49] the problem of determining N(d) is

similar to the combinatorial problem of determining the number of mutually orthogonal

Latin squares M(d) of size d × d. In [49] it is shown that for a given d = pe1
1 pe2

2 . . . per
r ,

a factorisation of d into distinct primes pi, N(d) ≥ min{N(pe1
1 ), N(pe2

2 ), . . . , N(per
r )}.

Numerical evidence seems to suggest that considerably fewer MUBs might be possible if

the dimension is not a prime power. In this section we construct sets of MUBs of odd

dimension d by using the weighted-trace map Tw that we studied in Section 2.9. For a

given d = q1q2 . . . qr, where q1 < q2 < . . . < qr are odd prime powers, we construct the set

of q1 + 1 MUBs of dimension d.

Let us recall the ring that we studied in Section 2.9. Let n = p1p2 . . . pr and d be an

odd integer such that d = pe1
1 pe2

2 . . . per
r = q1q2 . . . qr, where q1 < q2 < . . . < qr. Consider

the ring R(d, n) = GF (p1, e1) × GF (p2, e2) × . . . × GF (pr, er), where for j = 1, 2, . . . , r,

GF (pj, ej) is the Galois field of characteristic pj. If x, y ∈ R(d, n) then x = (x1, x2, . . . , xr)

and y = (y1, y2, . . . , yr), where xj, yj ∈ GF (pj, ej) for j = 1, 2, . . . , r. R(d, n) is a ring

under the addition and multiplication of x, y defined by

x + y = (x1 + y1, x2 + y2, . . . , xr + yr) and

xy = (x1y1, x2y2, . . . , xryr) respectively.

Let Trj be the trace map defined over the Galois field GF (pj, ej). The weighted-trace

map over the ring R(d, n) is defined by

Tw : R(d, n) → Zn

Tw(x) =
∑r

j=1
n
pj

Trj(xj).

In Theorem 2.9.2 we have proved that the following basic properties are satisfied by the

weighted-trace map. Let x, y ∈ R(d, n) and a ∈ Zn. Then

(i) Tw(x + y) = Tw(x) + Tw(y)

(ii) Tw(ax) = aTw(x)

(iii) Tw is surjective.

The main construction of this section is based on the weighted-trace map. Before we

state the main theorem, we state and prove the following lemma that is mentioned in [71].
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Lemma 3.3.1. Let R(d, n) be the ring defined above by using the direct product of Galois

fields and Tw be the weighted-trace map over R(d, n). Let Trj be the trace map over the

Galois field GF (pj, ej). If ω = e
2π
√−1
n and ωj = e

2π
√−1
pj then

∑

x∈R(d,n)

ωTw(x) =
r∏

j=1

∑

xj∈GF (pj ,ej)

ω
Trj(xj)
j . (3.6)

Proof:

Since x ∈ R(d, n) we have x = (x1, x2, . . . , xr), where xj ∈ GF (pj, ej) for j = 1, 2, . . . , r.

By the definition of the weighted-trace map we have

∑

x∈R(d,n)

ωTw(x) =
∑

x∈R(d,n)

ω
∑r

j=1(
n
pj

Trj(xj))

=
∑

x∈R(d,n)

r∏
j=1

ω
Trj(xj)
j .

Collecting all the like terms on the right hand side of the above equation we get

∑

x∈R(d,n)

ωTw(x) =
r∏

j=1

∑

xj∈GF (pj ,ej)

ω
Trj(xj)
j .

We can now move into the major construction of this section which is the MUBs of

odd integer dimension d. We state the following theorem in order to explain this con-

struction by using the properties of the weighted-trace map over the ring R(d, n) and the

result in Lemma 3.3.1.

Theorem 3.3.2. Let d be an odd integer such that d = pe1
1 pe2

2 . . . per
r = q1q2 . . . qr,

where q1 < q2 < . . . < qr, n = p1p2 . . . pr and qi = pei
i . Let R(d, n) = GF (p1, e1) ×

GF (p2, e2) × . . . × GF (pr, er). Let Trj be the trace map over the Galois field GF (pj, ej)

for j = 1, 2, . . . , r and Tw be the weighted-trace map over the ring R(d, n). In addition

let ω = e
2π
√−1
n and ωj = e

2π
√−1
pj , for j = 1, 2, . . . , r. For a ∈ R(d, n), consider the set of

vectors Ba = {va,b|b ∈ R(d, n)}, where va,b = 1√
d

(
ωTw(ax2+bx)

)
x∈R(d,n)

. Now choose a set

{Ba(1) , Ba(2) , . . . , Ba(q1)} such that if a(t) =
(
a

(t)
1 , a

(t)
2 , . . . , a

(t)
r

)
then for t 6= k, 1 ≤ t, k ≤ q1

and for all 1 ≤ j ≤ r the components a
(t)
j 6= a

(k)
j . Then the standard basis of Cd and the
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set {Ba(1) , Ba(2) , . . . , Ba(q1)} form a set of q1 + 1 MUBs of dimension d. Further there are

q1!×

 q2

q1


×


 q3

q1


× . . .×


 qr

q1


 such sets of MUBs.

Proof:

For a, b, α, β ∈ R(d, n), let va,b = 1√
d

(
ωTw(ax2+bx)

)
x∈R(d,n)

and vα,β = 1√
d

(
ωTw(αx2+βx)

)
x∈R(d,n)

.

By using the definition of inner product of two vectors and from the properties of the

weighted-trace map we have

| < va,b, vα,β > | =

∣∣∣∣∣∣
1

d

∑

x∈R(d,n)

ωTw((a−α)x2+(b−β)x)

∣∣∣∣∣∣
.

We know that a, b, α, β, x ∈ R(d, n) are r-tuples that can be written as a = (a1, a2, . . . , ar)

and similarly b, α, β, x, where aj ∈ GF (pj, ej), 1 ≤ j ≤ r. Now from Lemma 3.3.1 we

have

| < va,b, vα,β > | =

∣∣∣∣∣∣
1

d

r∏
j=1

∑

xj∈GF (pj ,ej)

ω
Trj((aj−αj)x

2
j+(bj−βj)xj)

j

∣∣∣∣∣∣
.

Let us consider the following two cases:

Case 1: Suppose a = α, i.e., both vectors belong to the same basis. Then for all 1 ≤ j ≤ r,

aj = αj. Hence

| < va,b, vα,β > | =

∣∣∣∣∣∣
1

d

r∏
j=1

∑

xj∈GF (pj ,ej)

ω
Trj((bj−βj)xj)
j

∣∣∣∣∣∣
.

If b = β then bj = βj, for all 1 ≤ j ≤ r. Hence

| < va,b, vα,β > | =

∣∣∣∣∣
1

d

r∏
j=1

qj

∣∣∣∣∣
= 1.

If b 6= β then bt 6= βt for at least one t, where 1 ≤ t ≤ r, and from the properties of the

trace map over Galois fields, for these t we have

∑

xt∈GF (pt,et)

ω
Trt((bt−βt)xt)
t = 0.
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Thus

| < va,b, vα,β > | =

∣∣∣∣∣∣
1

d

r∏

j=1,j 6=t

∑

xj∈GF (pj ,ej)

ω
Trj((bj−βj)xj)
j · 0

∣∣∣∣∣∣
= 0.

From the definition of orthonormal basis, this proves that Ba is an orthonormal basis of

the vector space Cd.

Case 2: Suppose a 6= α. Then aj 6= αj for at least one j, where 1 ≤ j ≤ r. From

Lemma 3.2.6, for these j we have
∣∣∣∣∣∣

∑

xj∈GF (pj ,ej)

ω
Trj((aj−αj)x

2
j+(bj−βj)xj)

j

∣∣∣∣∣∣
=

√
qj.

If at = αt for some t, where 1 ≤ t ≤ r, then for these t, we have

∣∣∣∑xt∈GF (pt,et)
ω

Trt((at−αt)x2
t +(bt−βt)xt)

t

∣∣∣ =





0 when bt 6= βt

qt when bt = βt.

Without loss of generality we can assume at = αt for just one t. Then

| < va,b, vα,β > | =

∣∣∣∣∣∣
1

d

r∏

j=1,j 6=t

∑

xj∈GF (pj ,ej)

ω
Trj((aj−αj)x

2
j+(bj−βj)xj)

j

∣∣∣∣∣∣
× (0 or qt).

i.e.,

| < va,b, vα,β > | = 0

or

| < va,b, vα,β > | =
1

d

r∏

j=1,j 6=t

√
qj × qt

=
1∏r

j=1,j 6=t

√
qj

6= 1√
d
.

Therefore if a 6= α and for all j, aj 6= αj, then

| < va,b, vα,β > | =
1√
d
.
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Thus for Ba and Bα to be mutually unbiased, it is necessary that a and α do not have

any co-ordinates in common.

In addition to this the coefficients of the vector va,b have absolute value 1√
d
, hence Ba

is mutually unbiased with the standard basis of Cd.

Finally, since the first component of a can be chosen in q1 ways, the total number of

MUBs together with the standard basis cannot exceed q1 + 1. Since the jth co-ordinate

of a can be chosen in


 qj

q1


 ways, there are q1! ×


 q2

q1


 ×


 q3

q1


 × . . . ×


 qr

q1




such sets of MUBs.

The next couple of examples illustrate this construction.

Example 3.3.3. Let R(15, 15) = GF (3, 1)×GF (5, 1). Let Tw : R(15, 15) → Z15 defined

by Tw(x) = 5Tr1(x1) + 3Tr2(x2) be the weighted-trace map over the ring R(15, 15), where

Tr1 and Tr2 are trace maps over GF (3, 1) and GF (5, 1) respectively. We shall label the

elements of GF (3, 1) and GF (5, 1) as follows:

GF (3, 1) = {0, 1, α} = {0, 1, 2}.

GF (5, 1) = {0, 1, β, β2, β3} = {0, 1, 2, 3, 4}.

The elements of R(15, 15) can be written as follows.

0=(0,0) 1=(0,1) 2=(0,2) 3=(0,3) 4=(0,4)

5=(1,0) 6=(1,1) 7=(1,2) 8=(1,3) 9=(1,4)

10=(2,0) 11=(2,1) 12=(2,2) 13=(2,3) 14=(2,4)

Consider the basis Ba = {Va,b|b ∈ R(15, 15)}, where Va,b =
(

1√
15

ω
Tw(ax2+bx)
15

)
x∈R(15,15)

.

Here ω15 = e
2π
√−1
15 is the complex 15th root of unity. It can be calculated that if (a−a

′
) ∈ R∗

then S = | < Va,b, Va′ ,b′ > | = |∑x∈R(15,2) ω
Tw(a−a

′
)x2+(b−b

′
)x

15 | = 1√
15

, where R∗ is the set of

invertible elements of R(15, 15).

Followings are the such sets of MUBs:
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{B0, B6, B12}, {B0, B6, B13}, {B0, B6, B14}
{B0, B7, B11}, {B0, B7, B13}, {B0, B7, B14}
{B0, B8, B11}, {B0, B8, B12}, {B0, B8, B14}
{B0, B9, B11}, {B0, B9, B12}, {B0, B9, B13}

{B1, B5, B12}, {B1, B5, B13}, {B1, B5, B14}
{B1, B7, B10}, {B1, B7, B13}, {B1, B7, B14}
{B1, B8, B10}, {B1, B8, B12}, {B1, B8, B14}
{B1, B9, B10}, {B1, B9, B12}, {B1, B9, B13}

{B2, B5, B11}, {B2, B5, B13}, {B2, B5, B14}
{B2, B6, B10}, {B2, B6, B13}, {B2, B6, B14}
{B2, B8, B10}, {B2, B8, B11}, {B2, B8, B14}
{B2, B9, B10}, {B2, B9, B11}, {B2, B9, B13}

{B3, B5, B11}, {B3, B5, B12}, {B3, B5, B14}
{B3, B6, B10}, {B3, B6, B12}, {B3, B6, B14}
{B3, B7, B10}, {B3, B7, B11}, {B3, B7, B14}
{B3, B9, B10}, {B3, B9, B11}, {B3, B9, B12}

{B4, B5, B11}, {B4, B5, B12}, {B4, B5, B13}
{B4, B6, B10}, {B4, B6, B12}, {B4, B6, B13}
{B4, B7, B10}, {B4, B7, B11}, {B4, B7, B13}
{B4, B8, B10}, {B4, B8, B11}, {B4, B8, B12}.

It is clear that N(15) = 3 = min {3, 5} and together with the standard basis of C15

we can select 4 MUBs of C15. There are 60 such sets of MUBs given by

q1!×

 q2

q1


 = 3!×


 5

3


.

Followings are the vectors of the set of MUBs {B0, B6, B12}:
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B0 =

{(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

(1, 1, 1, ω3
15, ω

3
15, ω

3
15, ω

6
15, ω

6
15, ω

6
15, ω

9
15, ω

9
15, ω

9
15, ω

12
15, ω

12
15, ω

12
15),

(1, 1, 1, ω6
15, ω

6
15, ω

6
15, ω

12
15, ω

12
15, ω

12
15, ω

3
15, ω

3
15, ω

3
15, ω

9
15, ω

9
15, ω

9
15),

(1, 1, 1, ω9
15, ω

9
15, ω

9
15, ω

3
15, ω

3
15, ω

3
15, ω

12
15, ω

12
15, ω

12
15, ω

6
15, ω

6
15, ω

6
15),

(1, 1, 1, ω12
15, ω

12
15, ω

12
15, ω

9
15, ω

9
15, ω

9
15, ω

6
15, ω

6
15, ω

6
15, ω

3
15, ω

3
15, ω

3
15),

(1, ω5
15, ω

10
15, 1, ω

5
15, ω

10
15, 1, ω

5
15, ω

10
15, 1, ω

5
15, ω

10
15, 1, ω

5
15, ω

10
15),

(1, ω5
15, ω

10
15, ω

3
15, ω

8
15, ω

13
15, ω

6
15, ω

11
15, ω15, ω

9
15, ω

14
15, ω

4
15, ω

12
15, ω

2
15, ω

7
15),

(1, ω5
15, ω

10
15, ω

6
15, ω

11
15, ω

1
15, ω

12
15, ω

2
15, ω

7
15, ω

3
15, ω

8
15, ω

13
15, ω

9
15, ω

14
15, ω

4
15),

(1, ω5
15, ω

10
15, ω

9
15, ω

14
15, ω

4
15, ω

3
15, ω

8
15, ω

13
15, ω

12
15, ω

2
15, ω

7
15, ω

6
15, ω

11
15, ω15),

(1, ω5
15, ω

10
15, ω

12
15, ω

2
15, ω

7
15, ω

9
15, ω

14
15, ω

4
15, ω

6
15, ω

11
15, ω15, ω

3
15, ω

8
15, ω

13
15),

(1, ω10
15, ω

5
15, 1, ω

10
15, ω

5
15, 1, ω

10
15, ω

5
15, 1, ω

10
15, ω

5
15, 1, ω

10
15, ω

5
15),

(1, ω10
15, ω

5
15, ω

3
15, ω

13
15, ω

8
15, ω

6
15, ω15, ω

11
15, ω

9
15, ω

4
15, ω

14
15, ω

12
15, ω

7
15, ω

2
15),

(1, ω10
15, ω

5
15, ω

6
15, ω15, ω

11
15, ω

12
15, ω

7
15, ω

2
15, ω

3
15, ω

13
15, ω

8
15, ω

9
15, ω

4
15, ω

14
15),

(1, ω10
15, ω

5
15, ω

9
15, ω

4
15, ω

14
15, ω

3
15, ω

13
15, ω

8
15, ω

12
15, ω

7
15, ω

2
15, ω

6
15, ω15, ω

11
15),

(1, ω10
15, ω

5
15, ω

12
15, ω

7
15, ω

2
15, ω

9
15, ω

4
15, ω

14
15, ω

6
15, ω15, ω

11
15, ω

3
15, ω

13
15, ω

8
15)}.

B6 =

{(1, ω5
15, ω

5
15, ω

3
15, ω

8
15, ω

8
15, ω

12
15, ω

2
15, ω

2
15, ω

12
15, ω

2
15, ω

2
15, ω

3
15, ω

8
15, ω

8
15),

(1, ω5
15, ω

5
15, ω

6
15, ω

11
15, ω

11
15, ω

3
15, ω

8
15, ω

8
15, ω

6
15, ω

11
15, ω

11
15, 1, ω

5
15, ω

5
15),

(1, ω5
15, ω

5
15, ω

9
15, ω

14
15, ω

14
15, ω

9
15, ω

14
15, ω

14
15, 1, ω

5
15, ω

5
15, ω

12
15, ω

2
15, ω

2
15),

(1, ω5
15, ω

5
15, ω

12
15, ω

2
15, ω

2
15, 1, ω

5
15, ω

5
15, ω

9
15, ω

14
15, ω

14
15, ω

9
15, ω

14
15, ω

14
15),

(1, ω5
15, ω

5
15, 1, ω

5
15, ω

5
15, ω

6
15, ω

11
15, ω

11
15, ω

3
15, ω

8
15, ω

8
15, ω

6
15, ω

11
15, ω

11
15),

(1, ω10
15, 1, ω

3
15, ω

13
15, ω

3
15, ω

12
15, ω

7
15, ω

12
15, ω

12
15, ω

7
15, ω

12
15, ω

3
15, ω

13
15, ω

3
15),

(1, ω10
15, 1, ω

6
15, ω15, ω

6
15, ω

3
15, ω

13
15, ω

3
15, ω

6
15, ω15, ω

6
15, 1, ω

10
15, 1),

(1, ω10
15, 1, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15, 1, ω

10
15, 1, ω

12
15, ω

7
15, ω

12
15),

(1, ω10
15, 1, ω

12
15, ω

7
15, ω

12
15, 1, ω

10
15, 1, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15),

(1, ω10
15, 1, 1, ω

10
15, 1, ω

6
15, ω15, ω

6
15, ω

3
15, ω

13
15, ω

3
15, ω

6
15, ω15, ω

6
15),

(1, 1, ω10
15, ω

3
15, ω

3
15, ω

13
15, ω

12
15, ω

12
15, ω

7
15, ω

12
15, ω

12
15, ω

7
15, ω

3
15, ω

3
15, ω

13
15),
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(1, 1, ω10
15, ω

6
15, ω

6
15, ω15, ω

3
15, ω

3
15, ω

13
15, ω

6
15, ω

6
15, ω15, 1, 1, ω

10
15),

(1, 1, ω10
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15, 1, 1, ω

10
15, ω

12
15, ω

12
15, ω

7
15),

(1, 1, ω10
15, ω

12
15, ω

12
15, ω

7
15, 1, 1, ω

10
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15),

(1, 1, ω10
15, 1, 1, ω

10
15, ω

6
15, ω

6
15, ω15, ω

3
15, ω

3
15, ω

13
15, ω

6
15, ω

6
15, ω15}.

B12 =

{(1, ω10
15, ω

10
15, ω

6
15, ω15, ω15, ω

9
15, ω

4
15, ω

4
15, ω

9
15, ω

4
15, ω

4
15, ω

6
15, ω15, ω15),

(1, ω10
15, ω

10
15, ω

9
15, ω

4
15, ω

4
15, 1, ω

10
15, ω

10
15, ω

3
15, ω

13
15, ω

13
15, ω

3
15, ω

13
15, ω

13
15),

(1, ω10
15, ω

10
15, ω

12
15, ω

7
15, ω

7
15, ω

6
15, ω15, ω15, ω

12
15, ω

7
15, ω

7
15, 1, ω

10
15, ω

10
15),

(1, ω10
15, ω

10
15, 1, ω

10
15, ω

10
15, ω

12
15, ω

7
15, ω

7
15, ω

6
15, ω15, ω15, ω

12
15, ω

7
15, ω

7
15),

(1, ω10
15, ω

10
15, ω

3
15, ω

13
15, ω

13
15, ω

3
15, ω

13
15, ω

13
15, 1, ω

10
15, ω

10
15, ω

9
15, ω

4
15, ω

4
15),

(1, 1, ω5
15, ω

6
15, ω

6
15, ω

11
15, ω

9
15, ω

9
15, ω

14
15, ω

9
15, ω

9
15, ω

14
15, ω

6
15, ω

6
15, ω

11
15),

(1, 1, ω5
15, ω

9
15, ω

9
15, ω

14
15, 1, 1, ω

5
15, ω

3
15, ω

3
15, ω

8
15, ω

3
15, ω

3
15, ω

8
15),

(1, 1, ω5
15, ω

12
15, ω

12
15, ω

2
15, ω

6
15, ω

6
15, ω

11
15, ω

12
15, ω

12
15, ω

2
15, 1, 1, ω

5
15),

(1, 1, ω5
15, 1, 1, ω

5
15, ω

12
15, ω

12
15, ω

2
15, ω

6
15, ω

6
15, ω

11
15, ω

12
15, ω

12
15, ω

2
15),

(1, 1, ω5
15, ω

3
15, ω

3
15, ω

8
15, ω

3
15, ω

3
15, ω

8
15, 1, 1, ω

5
15, ω

9
15, ω

9
15, ω

14
15),

(1, ω5
15, 1, ω

6
15, ω

11
15, ω

6
15, ω

9
15, ω

14
15, ω

9
15, ω

9
15, ω

14
15, ω

9
15, ω

6
15, ω

11
15, ω

6
15),

(1, ω5
15, 1, ω

9
15, ω

14
15, ω

9
15, 1, ω

5
15, 1, ω

3
15, ω

8
15, ω

3
15, ω

3
15, ω

8
15, ω

3
15),

(1, ω5
15, 1, ω

12
15, ω

2
15, ω

12
15, ω

6
15, ω

11
15, ω

6
15, ω

12
15, ω

2
15, ω

12
15, 1, ω

5
15, 1),

(1, ω5
15, 1, 1, ω

5
15, 1, ω

12
15, ω

2
15, ω

12
15, ω

6
15, ω

11
15, ω

6
15, ω

12
15, ω

2
15, ω

12
15),

(1, ω5
15, 1, ω

3
15, ω

8
15, ω

3
15, ω

3
15, ω

8
15, ω

3
15, 1, ω

5
15, 1, ω

9
15, ω

14
15, ω

9
15)}.

Followings are the vectors of the set of MUBs {B0, B6, B13}:

B0 =

{(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

(1, 1, 1, ω3
15, ω

3
15, ω

3
15, ω

6
15, ω

6
15, ω

6
15, ω

9
15, ω

9
15, ω

9
15, ω

12
15, ω

12
15, ω

12
15),

(1, 1, 1, ω6
15, ω

6
15, ω

6
15, ω

12
15, ω

12
15, ω

12
15, ω

3
15, ω

3
15, ω

3
15, ω

9
15, ω

9
15, ω

9
15),

(1, 1, 1, ω9
15, ω

9
15, ω

9
15, ω

3
15, ω

3
15, ω

3
15, ω

12
15, ω

12
15, ω

12
15, ω

6
15, ω

6
15, ω

6
15),

(1, 1, 1, ω12
15, ω

12
15, ω

12
15, ω

9
15, ω

9
15, ω

9
15, ω

6
15, ω

6
15, ω

6
15, ω

3
15, ω

3
15, ω

3
15),
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(1, ω5
15, ω

10
15, 1, ω

5
15, ω

10
15, 1, ω

5
15, ω

10
15, 1, ω

5
15, ω

10
15, 1, ω

5
15, ω

10
15),

(1, ω5
15, ω

10
15, ω

3
15, ω

8
15, ω

13
15, ω

6
15, ω

11
15, ω15, ω

9
15, ω

14
15, ω

4
15, ω

12
15, ω

2
15, ω

7
15),

(1, ω5
15, ω

10
15, ω

6
15, ω

11
15, ω

1
15, ω

12
15, ω

2
15, ω

7
15, ω

3
15, ω

8
15, ω

13
15, ω

9
15, ω

14
15, ω

4
15),

(1, ω5
15, ω

10
15, ω

9
15, ω

14
15, ω

4
15, ω

3
15, ω

8
15, ω

13
15, ω

12
15, ω

2
15, ω

7
15, ω

6
15, ω

11
15, ω15),

(1, ω5
15, ω

10
15, ω

12
15, ω

2
15, ω

7
15, ω

9
15, ω

14
15, ω

4
15, ω

6
15, ω

11
15, ω15, ω

3
15, ω

8
15, ω

13
15),

(1, ω10
15, ω

5
15, 1, ω

10
15, ω

5
15, 1, ω

10
15, ω

5
15, 1, ω

10
15, ω

5
15, 1, ω

10
15, ω

5
15),

(1, ω10
15, ω

5
15, ω

3
15, ω

13
15, ω

8
15, ω

6
15, ω15, ω

11
15, ω

9
15, ω

4
15, ω

14
15, ω

12
15, ω

7
15, ω

2
15),

(1, ω10
15, ω

5
15, ω

6
15, ω15, ω

11
15, ω

12
15, ω

7
15, ω

2
15, ω

3
15, ω

13
15, ω

8
15, ω

9
15, ω

4
15, ω

14
15),

(1, ω10
15, ω

5
15, ω

9
15, ω

4
15, ω

14
15, ω

3
15, ω

13
15, ω

8
15, ω

12
15, ω

7
15, ω

2
15, ω

6
15, ω15, ω

11
15),

(1, ω10
15, ω

5
15, ω

12
15, ω

7
15, ω

2
15, ω

9
15, ω

4
15, ω

14
15, ω

6
15, ω15, ω

11
15, ω

3
15, ω

13
15, ω

8
15)}.

B6 =

{(1, ω5
15, ω

5
15, ω

3
15, ω

8
15, ω

8
15, ω

12
15, ω

2
15, ω

2
15, ω

12
15, ω

2
15, ω

2
15, ω

3
15, ω

8
15, ω

8
15),

(1, ω5
15, ω

5
15, ω

6
15, ω

11
15, ω

11
15, ω

3
15, ω

8
15, ω

8
15, ω

6
15, ω

11
15, ω

11
15, 1, ω

5
15, ω

5
15),

(1, ω5
15, ω

5
15, ω

9
15, ω

14
15, ω

14
15, ω

9
15, ω

14
15, ω

14
15, 1, ω

5
15, ω

5
15, ω

12
15, ω

2
15, ω

2
15),

(1, ω5
15, ω

5
15, ω

12
15, ω

2
15, ω

2
15, 1, ω

5
15, ω

5
15, ω

9
15, ω

14
15, ω

14
15, ω

9
15, ω

14
15, ω

14
15),

(1, ω5
15, ω

5
15, 1, ω

5
15, ω

5
15, ω

6
15, ω

11
15, ω

11
15, ω

3
15, ω

8
15, ω

8
15, ω

6
15, ω

11
15, ω

11
15),

(1, ω10
15, 1, ω

3
15, ω

13
15, ω

3
15, ω

12
15, ω

7
15, ω

12
15, ω

12
15, ω

7
15, ω

12
15, ω

3
15, ω

13
15, ω

3
15),

(1, ω10
15, 1, ω

6
15, ω15, ω

6
15, ω

3
15, ω

13
15, ω

3
15, ω

6
15, ω15, ω

6
15, 1, ω

10
15, 1),

(1, ω10
15, 1, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15, 1, ω

10
15, 1, ω

12
15, ω

7
15, ω

12
15),

(1, ω10
15, 1, ω

12
15, ω

7
15, ω

12
15, 1, ω

10
15, 1, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15),

(1, ω10
15, 1, 1, ω

10
15, 1, ω

6
15, ω15, ω

6
15, ω

3
15, ω

13
15, ω

3
15, ω

6
15, ω15, ω

6
15),

(1, 1, ω10
15, ω

3
15, ω

3
15, ω

13
15, ω

12
15, ω

12
15, ω

7
15, ω

12
15, ω

12
15, ω

7
15, ω

3
15, ω

3
15, ω

13
15),

(1, 1, ω10
15, ω

6
15, ω

6
15, ω15, ω

3
15, ω

3
15, ω

13
15, ω

6
15, ω

6
15, ω15, 1, 1, ω

10
15),

(1, 1, ω10
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15, 1, 1, ω

10
15, ω

12
15, ω

12
15, ω

7
15),

(1, 1, ω10
15, ω

12
15, ω

12
15, ω

7
15, 1, 1, ω

10
15, ω

9
15, ω

9
15, ω

4
15, ω

9
15, ω

9
15, ω

4
15),

(1, 1, ω10
15, 1, 1, ω

10
15, ω

6
15, ω

6
15, ω15, ω

3
15, ω

3
15, ω

13
15, ω

6
15, ω

6
15, ω15}.

B13 =

{(1, ω10
15, ω

10
15, ω

9
15, ω

4
15, ω

4
15, ω

6
15, ω15, ω15, ω

6
15, ω15, ω15, ω

9
15, ω

4
15, ω

4
15),
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(1, ω10
15, ω

10
15, ω

12
15, ω

7
15, ω

7
15, ω

12
15, ω

7
15, ω

7
15, 1, ω

10
15, ω

10
15, ω

6
15, ω15, ω15),

(1, ω10
15, ω

10
15, 1, ω

10
15, ω

10
15, ω

3
15, ω

13
15, ω

13
15, ω

9
15, ω

4
15, ω

4
15, ω

3
15, ω

13
15, ω

13
15),

(1, ω10
15, ω

10
15, ω

3
15, ω

13
15, ω

13
15, ω

9
15, ω

4
15, ω

4
15, ω

3
15, ω1513, ω1513, 1, ω10

15, ω
10
15),

(1, ω10
15, ω

10
15, ω

6
15, ω15, ω15, 1, ω

10
15, ω

10
15, ω

12
15, ω

7
15, ω

7
15, ω

12
15, ω

7
15, ω

7
15),

(1, 1, ω5
15, ω

9
15, ω

9
15, ω

14
15, ω

6
15, ω

6
15, ω

11
15, ω

6
15, ω

6
15, ω

11
15, ω

9
15, ω

9
15, ω

14
15),

(1, 1, ω5
15, ω

12
15, ω

12
15, ω

2
15, ω

12
15, ω

12
15, ω

2
15, 1, 1, ω

5
15, ω

6
15, ω

6
15, ω

11
15),

(1, 1, ω5
15, 1, 1, ω

5
15, ω

3
15, ω

3
15, ω

8
15, ω

9
15, ω

9
15, ω

14
15, ω

3
15, ω

3
15, ω

8
15),

(1, 1, ω5
15, ω

3
15, ω

3
15, ω

8
15, ω

9
15, ω

9
15, ω

14
15, ω

3
15, ω

3
15, ω

8
15, 1, 1, ω

5
15),

(1, 1, ω5
15, ω

6
15, ω

6
15, ω

8
11, 1, 1, ω

5
15, ω

12
15, ω

12
15, ω

2
15, ω

12
15, ω

12
15, ω

2
15),

(1, ω5
15, 1, ω

9
15, ω

14
15, ω

9
15, ω

6
15, ω

11
15, ω

6
15, ω

6
15, ω

11
15, ω

6
15, ω

9
15, ω

14
15, ω

9
15),

(1, ω5
15, 1, ω

12
15, ω

2
15, ω

12
15, ω

12
15, ω

2
15, ω

12
15, 1, ω

5
15, 1, ω

6
15, ω

11
15, ω

6
15),

(1, ω5
15, 1, 1, ω

5
15, 1, ω

3
15, ω

8
15, ω

3
15, ω

9
15, ω

14
15, ω

9
15, ω

3
15, ω

8
15, ω

3
15),

(1, ω5
15, 1, ω

3
15, ω

8
15, ω

3
15, ω

9
15, ω

14
15, ω

9
15, ω

3
15, ω

8
15, ω

3
15, 1, ω

5
15, 1),

(1, ω5
15, 1, ω

6
15, ω

11
15, ω

6
15, 1, ω

5
15, 1, ω

12
15, ω

2
15, ω

12
15, ω

12
15, ω

2
15, ω

12
15)}.

Example 3.3.4. Let R(45, 15) = GF (5, 1)×GF (3, 2). Let Tw : R(45, 15) → Z15 defined

by Tw(x) = 3Tr1(x1) + 5Tr2(x2) be the weighted-trace map over the ring R(45, 15), where

Tr1 and Tr2 are trace maps over GF (5, 1) and GF (3, 2) respectively. We shall label the

elements of GF (5, 1) and GF (3, 2) as follows:

GF (5, 1) = {0, 1, α, α2, α3} = {0, 1, 2, 3, 4}
GF (3, 2) = {0, 1, β, β2, β3, β4, β5, β6, β7} = {0, 1, 2, 3, 4, 5, 6, 7, 8}
The elements of R(45, 15) can be written as follows:

0=(0,0) 1=(0,1) 2=(0,2) 3=(0,3) 4=(0,4) 5=(0,5) 6=(0,6) 7=(0,7) 8=(0,8)

9=(1,0) 10=(1,1) 11=(1,2) 12=(1,3) 13=(1,4) 14=(1,5) 15=(1,6) 16=(1,7) 17=(1,8)

18=(2,0) 19=(2,1) 20=(2,2) 21=(2,3) 22=(2,4) 23=(2,5) 24=(2,6) 25=(2,7) 26=(2,8)

27=(3,0) 28=(3,1) 29=(3,2) 30=(3,3) 31=(3,4) 32=(3,5) 33=(3,6) 34=(3,7) 35=(3,8)

36=(4,0) 37=(4,1) 38=(4,2) 39=(4,3) 40=(4,4) 41=(4,5) 42=(4,6) 43=(4,7) 44=(4,8)

Now consider the basis Ba = {Va,b|b ∈ R(45, 15)}, where Va,b =
(

1√
45

ω
Tw(ax2+bx)
15

)
x∈R(45,15)

.

Here ω15 = e
2π
√−1
15 is the complex 15th root of unity. It can be calculated that if (a−a

′
) ∈ R∗

then S = | < Va,b, Va′ ,b′ > | = |∑x∈R(45,15) ω
Tw(a−a

′
)x2+(b−b

′
)x

15 | = 1√
45

, where R∗ is the set

of invertible elements of R(45, 15) .
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For example {B0, B10, B20, B30, B40}, {B1, B11, B21, B31, B41},
{B2, B12, B22, B32, B42},{B3, B13, B23, B33, B43}, etc. are the sets of MUBs of C45. It is

clear that N(45) = 5 = min {5, 32} and together with the standard basis of C45 we can

select 6 MUBs of C45. There are 15120 such sets of MUBs given by

q1!×

 q2

q1


 = 5!×


 9

5


.

In this chapter we used trace maps over the Galois field GF (p,m) and the Galois ring

GR(4,m) and the weighted-trace map Tw over the ring R(d, n) = GF (p1, e1)×GF (p2, e2)×
. . . × GF (pk, ek) in the form of Tr(ax2 + bx) and Tw(ax2 + bx) to construct MUBs. In

the next chapter we will use the trace map over the Galois field GF (p, 2) in the form of

Tr(ax2) to construct two-weight, self-orthogonal codes over Zp.
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Chapter 4

Two-Weight, Self-Orthogonal Codes

from Tr(ax2)

4.1 Introduction

In Chapter 2 the trace map was used in the form of Tr(ax) to construct linear and non-

linear codes and in Chapter 3 in the form of Tr(ax2 + bx) to construct mutually unbiased

bases. The only difference between the use of the trace map in the constructions of codes

and mutually unbiased bases was that the argument was a different one, i.e., ax and

ax2 + bx. Extending the code construction to include such different arguments was a

challenging problem as the task of mapping the distribution of the trace values was not

an easy one. Authors in [19] study the use of the trace map over GF (p,m) in the form of

Tr(aπ(x)+bx) to construct linear codes over Zp, where π(x) is a perfect nonlinear mapping

from GF (p,m) to itself. They have not studied the distribution of Tr(aπ(x) + bx) and

therefore they are unable to determine the exact value of the minimum distance of the

codes. However in Theorem 10 in [19], the case π(x) = x2 is studied and the minimum

distance and all weights are determined without using the distribution of Tr(ax2 + bx).

In our work we study the distribution of Tr(axλ), λ ≥ 2 over GF (p, 2), which is a special

case of Tr(aπ(x) + bx) and we construction 2-dimensional codes over Zp. These codes

satisfy the Griesmer bound which is always the best bound for low-dimensional codes. In

this chapter we study λ = 2 case and Chapters 5 and 6 are devoted to study λ > 2 cases.
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In this chapter and the next couple of chapters we also construct cyclic codes with

the length p2 − 1 and the dimension 2. In [8] the trace map over GF (p,m) is used in

the form of c(x) = (Tr(x), T r(xθ), T r(xθ2), . . . , T r(xθn−1)) to construct irreducible cyclic

codes over Zp, where θ = e
2πi
n . The generating function given in Section 2 in [8] is used to

determine the parameters of the codes. In the case of m = 2 the length and the dimension

of the code are p2− 1 and 2 respectively, which are the same length and dimension of our

cyclic codes. In our work we use the distribution of Tr(axλ) for λ ≥ 2 over GF (p, 2) to

determine the parameters of the codes which is different to the work that has been done

in [8].

In Section 4.2 we give some preliminary information of two-weight codes and self-

orthogonal codes together with some known results. The distribution of Tr(ax2) over

GF (p, 2) is studied in Section 4.3. In Section 4.4, we find that using the argument as

above we can construct two-weight, self-orthogonal codes over Zp.

4.2 Preliminaries

In this section we include some preliminary results that will come in handy in latter

sections of this chapter.

Let p be a prime and Zn
p be the vector space of all n-tuples over the finite field Zp. If C

is a k-dimensional subspace of Zn
p then C is called an [n, k] linear code over Zp. There are

two most common ways of representing a linear code. One is with a generator matrix and

the other one is with a parity check matrix. A generator matrix for C is any n×k matrix

G whose rows form a basis for C. There are many generator matrices for a code and for

any set of k linearly independent columns of a generator matrix G, the corresponding set

of co-ordinates forms an information set for C. The remaining r = n− k co-ordinates are

termed a redundancy set and r is called the redundancy of C. If the first k co-ordinates

form an information set, the code has a unique generator matrix of the form [Ik|A]. Since

C is a subspace of Zn
p , it is the kernel of some linear transformation. In particular there

is an (n− k)× n matrix H, called a parity check matrix for the code C. Now C can be

defined by C = {x ∈ Zn
p | HxT = 0}. It is clear that the rows of H are also linearly
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independent. It is well known that if the generator matrix of C is G = [Ik|Ak×(n−k)] then

the parity check matrix of C is H = [−AT
(n−k)×k|In−k]. Thus C is contained in the kernel

of the linear transformation f : Zn
p → Zn−k

p defined by f(x) = HxT . As H has rank

(n− k) this linear transformation has kernel of dimension k, which is also the dimension

of C. Kerf = {x ∈ Zn
p |f(x) = 0} and C = {x ∈ Zn

p |HxT = 0}. Thus C = Kerf .

The generator matrix G of an [n, k] code C is simply a matrix whose rows are linearly

independent and span the code. The rows of the parity check matrix H are independent.

Hence H is the generator matrix of some code. This is called the dual or orthogonal code

of C and is denoted by C⊥. C⊥ is an [n, n− k] code. Alternately the dual code is defined

by using the inner product of vectors. The inner product of x = (x1, x2, . . . xn), y =

(y1, y2, . . . yn) ∈ Zn
p is defined by x · y =

∑n
i=1 xiyi. Then C⊥ can be defined by C⊥ =

{x ∈ Zn
p |x · c = 0 ∀c ∈ C}.

Definition 4.2.1 (Self-orthogonal and self-dual codes). The code C is called self-

orthogonal if C ⊆ C⊥ and if C = C⊥ then C is called self-dual.

Since C is an [n, k] linear code, C⊥ is an [n, n− k] linear code. If C is a self-dual code

then k = n − k. Thus k = n
2

and n = 2k, i.e. if C is a self-dual code then the length of

the code C is even and the dimension k is n
2
.

An important invariant of a code is the minimum distance between codewords.

Definition 4.2.2 (Hamming distance). The Hamming distance dH(x, y) between two

vectors x, y ∈ Zn
p is defined to be the number of co-ordinates in which x and y differ.

The minimum distance of a code C is the smallest distance between distinct codewords,

and is simply denoted by d. The higher the minimum distance, the greater the number

of errors that can be corrected. The Hamming weight wH(x) of a vector x ∈ Zn
p is the

number of non-zero co-ordinates in x. If x, y ∈ Zn
p then dH(x, y) = wH(x − y). If C is a

linear code the minimum distance d is the same as the minimum weight of the non-zero

codewords of C. As a result of this the minimum distance of a linear code is also known

as the minimum weight of the code. If the minimum distance d of an [n, k] code is known

then we denote the code C as an [n, k, d] code.

The following lemma is a part of Theorem 1.4.3 in [46].

64



Lemma 4.2.3. [Theorem 1.4.3, [46]]

(i) If x ∈ Zn
2 then wH(x) ≡ x · x (mod 2).

(ii) If x ∈ Zn
3 then wH(x) ≡ x · x (mod 3).

Proof:

(i) Let n1 be the number of 1’s in x ∈ Zn
2 . Then the Hamming weight of x is wH(x) = n1.

Also x · x =
∑n

i=1 x2
i = n1. Thus wH(x) ≡ x · x (mod 2).

(ii) Let n1 and n2 be the number of 1s and 2s in x ∈ Zn
3 . Then the Hamming weight

of x is wH(x) = n1+n2. Also x·x =
∑n

i=1 x2
i = n1+n22

2. Thus wH(x) ≡ x·x (mod 3).

Note that this result does not hold for x ∈ Zn
p when p > 3. The reason is that

when x ∈ Zn
p the wH(x) =

∑p−1
i=1 ni, where ni is the number of non-zero i’s in x and

x · x =
∑n

i=1 x2
i = n1 + n22

2 + n33
2 + . . . + np−1(p − 1)2. This does not imply that

wH(x) ≡ x · x( mod p).

The following theorem can be used to check whether a given ternary code is self-

orthogonal.

Theorem 4.2.4. [Theorem 1.4.10, [46]]

Let C be an [n, k, d] code over Z3. C is self-orthogonal if and only if the weight of every

non-zero codeword is divisible by 3.

Proof:

Suppose that C is a self-orthogonal code over Z3. Then C ⊆ C⊥ and therefore for all

c ∈ C, c·c = 0. Since wH(c) = n1+n2 and from Lemma 4.2.3 we have wH(c) ≡ c·c (mod 3).

Thus wH(c) ≡ 0 (mod 3) and hence 3|wH(c).

Conversely suppose that the weight of every codeword is divisible by 3. For any

x, y ∈ C we need to prove that x · y = 0. We can view the codewords x and y as follows:

There are a co-ordinates where x is non-zero and y is zero.

There are b co-ordinates where y is non-zero and x is zero.

There are c co-ordinates where both agree and are non-zero.

There are d co-ordinates where both disagree and are non-zero.

There are e co-ordinates where both are zero.
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So wH(x + y) = a + b + c and wH(x − y) = a + b + d. But x ± y ∈ C and

hence a + b + c ≡ a + b + d ≡ 0 mod 3. In particular c ≡ d mod 3. Therefore

x · y = c + 2d ≡ 0 mod 3. Thus C ⊆ C⊥ and hence C is self-orthogonal.

This result cannot be applied to check the self-orthogonality of codes over Zp for p > 3.

Therefore we state the next theorem to overcome the problem of checking the self-

orthogonality of codes over Zp for p > 3.

Theorem 4.2.5. [Proposition 1, [76]]

Let p be an odd prime and C be a linear code over Zp. Then C is self-orthogonal if and

only if c · c = 0, ∀ c ∈ C.

Proof:

Suppose that C is self-orthogonal. i.e. C ⊆ C⊥ = {x ∈ Zn
p : x · c = 0, ∀ c ∈ C}. Then

c · c = 0, ∀ c ∈ C. Conversely suppose that c · c = 0, ∀ c ∈ C. For any c, c
′ ∈ C, since C

is linear, c + c
′ ∈ C. Then

c · c = c
′ · c′ = (c + c

′
) · (c + c

′
) = 0.

⇒ c · c + 2c · c′ + c
′ · c′ = 0.

⇒ 2c · c′ = 0.

Since p is odd we have c · c′ = 0. Thus C ⊆ C⊥. Therefore C is a self-orthogonal code

over Zp.

For a detailed survey of self-orthogonal codes, reader may refer to [14, 21, 37, 38, 76]

and the references therein.

The weight enumerator of C is the polynomial WC(x, y) =
∑n

i=0 Aix
n−iyi, where Ai

is the number of codewords of weight i.

Definition 4.2.6 (Two-weight code). A code is called a two-weight code if

|{i|i 6= 0 and Ai 6= 0}| = 2.

More information of two-weight codes can be found in [10, 13, 17, 23, 29, 40] and the

references therein. We note that the codes found in this chapter could be classed as trace

codes, since they are found using a trace map. See [22, 36, 41, 69, 70, 73] for details on

trace codes.
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We now have some of the tools required to classify the codes constructed in this

chapter. In the next section we study the distribution of the trace map over GF (p, 2),

using the argument ax2. In Section 4.4 we construct our codes and study their properties.

4.3 The distribution of Tr(ax2) over GF(p,2)

In this section we recall the definition of the trace map over the Galois field GF (p,m)

and state its fundamental properties. In particular we study the distribution of the trace

values when the argument is ax2 over GF (p, 2).

Let p(x) be a primitive polynomial of degree m over Zp. The Galois field of character-

istic p is defined as the quotient field GF (p,m) = Zp[x]/(p(x)). Let ζ be a root of p(x) and

therefore GF (p,m) = Zp[ζ]. Any element in GF (p,m) can be written as a polynomial of

ζ over Zp and further it is well known that GF (p,m) = {0, 1, ζ, ζ2, . . . , ζpm−2}

Definition 4.3.1 (Trace map). Let GF (p,m) be the Galois field of characteristic p.

The trace map Tr : GF (p,m) → Zp is defined by Tr(x) = x + xp + xp2
+ . . . + xpm−1

.

The following theorem lists the fundamental properties of the trace map over the

Galois field GF (p,m).

Theorem 4.3.2. The trace map satisfies the following properties:

(i) Tr(x + y) = Tr(x) + Tr(y), ∀ x, y ∈ GF (p, m).

(ii) Tr(ax) = aTr(x), ∀ a ∈ Zp, x ∈ GF (p,m).

(iii) Tr(xp) = Tr(x), ∀ x ∈ GF (p,m).

(iv) Tr(a) = am, ∀ a ∈ Zp.

(v) Tr(x) = 0 if and only if x = yp − y for some y ∈ GF (p,m).

(vi) As x ranges over GF (p,m), Tr(x) takes each element in Zp equally often i.e., pm−1-

times.

Detailed proof of these properties can be found in [52, 53].

In order to study the distribution of the trace values when the argument is ax2 over

GF (p, 2), we first need to identify the elements of GF (p, 2) which have trace zero.
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Theorem 4.3.3. Let Tr be the trace map over GF (p, 2) defined by Tr(x) = x + xp. Let

ζt ∈ GF (p, 2)∗ = GF (p, 2) \ {0}, where 0 ≤ t ≤ p2 − 2.

(i) If Tr(ζt) = 0 then Tr(ζt(2k+1)) = 0, for all k = 0, 1, . . . , p− 2.

(ii) Tr(ζ
p+1
2 ) = 0.

(iii) For 0 ≤ t < p+1
2

, Tr(ζt) 6= 0.

Proof:

(i) From the definition of the trace map if Tr(ζt) = 0 then

ζt + ζtp = 0.

⇒ ζt = −ζtp.

⇒ (ζt)2k = (ζtp)2k.

Therefore

Tr(ζt(2k+1)) = ζt(2k+1) + ζtp(2k+1)

= ζtζ2tk + ζ2tkpζtp

= ζtζ2tkp + ζ2tkpζtp

= ζ2tkp(ζt + ζtp)

= ζ2tkp(0).

Thus if Tr(ζt) = 0 then Tr(ζt(2k+1)) = 0. From part (vi) of Theorem 4.3.2 there are p− 1

elements in GF (p, 2)∗ such that Tr(x) = 0. Hence if Tr(ζt) = 0 then Tr(ζt(2k+1)) = 0,

for all k = 0, 1, 2, . . . , p− 2.

(ii) By using the definition of the trace map we have

Tr(ζ
p+1
2 ) = ζ

p+1
2 +

(
ζ

p+1
2

)p

= ζ
p+1
2

(
1 + ζ( p+1

2 )p−( p+1
2 )

)

= ζ
p+1
2

(
1 + ζ

(
p2+p−p−1

2

))

= ζ
p+1
2

(
1 + ζ

(
p2−1

2

))
.
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Since ζp2−1 is the only element in GF (p, 2)∗ such that ζp2−1 = 1, we have ζ

(
p2−1

2

)

= −1.

Therefore Tr(ζ
p+1
2 ) = 0.

(iii) Let Tr(ζt) = 0 for some t, 0 ≤ t < p+1
2

. This implies that

ζt + ζtp = 0.

⇒ ζt(1 + ζ(p−1)t) = 0.

⇒ ζt = 0 or ζ(p−1)t = −1.

Since ζ is a primitive element of GF (p, 2)∗, ζt 6= 0 for any t. Thus ζ(p−1)t = −1

and ζ(p−1)2t = 1. Since ζp2−1 = 1 and therefore (p2 − 1)|(p − 1)2t, i.e., 2(p − 1)t =

(p2 − 1)m, m ∈ Z+. This implies that t = (p+1)
2

m, a contradiction to the assumption.

Therefore Tr(ζt) 6= 0, for any t, 0 ≤ t < p+1
2

and the minimum value of t such that

Tr(ζt) = 0 is t = p+1
2

.

Corollary 4.3.4. For x ∈ GF (p, 2)∗, Tr(x) = 0 if and only if x = ζ( p+1
2 )(2k+1) =

ζ(p+1)kζ
(p+1)

2 , where k = 0, 1, 2, . . . , p− 2.

The base field GF (p, 1) ∼= Zp is a subfield of the extended field GF (p, 2). The next

lemma gives us those indices t for which ζt ∈ GF (p, 1)∗.

Lemma 4.3.5. Let ζt ∈ GF (p, 2)∗, for some t, 0 ≤ t ≤ p2 − 2. If ζt ∈ GF (p, 1)∗ then

t = (p + 1)k, where k = 0, 1, 2, . . . , p− 2.

Proof:

Let ζt ∈ GF (p, 2)∗, for some t, 0 ≤ t ≤ p2 − 2. Now GF (p, 1) ∼= Zp is a subfield of

GF (p, 2). Hence if ζt ∈ GF (p, 1)∗ ∼= Zp \ {0} then Tr(ζtζ
p+1
2 ) = ζtTr(ζ

p+1
2 ) = 0, from

part (ii) of Theorem 4.3.2 and part (ii) of Theorem 4.3.3.

From Corollary 4.3.4, if x ∈ GF (p, 2)∗ such that Tr(x) = 0 then x = ζ( p+1
2 )(2k+1) =

ζ(p+1)kζ
(p+1)

2 . Hence ζtζ
p+1
2 = ζ(p+1)kζ

(p+1)
2 ⇒ ζt = ζ(p+1)k, since ζ

(p+1)
2 6= 0. Therefore if

ζt ∈ GF (p, 1)∗ then t = (p + 1)k, where k = 0, 1, 2, . . . , p− 2., i.e., ζt is an element of the

subfield when t = (p + 1)k, where k = 0, 1, 2, . . . , p− 2.

So far we have identified the elements ζt ∈ GF (p, 2)∗ which have trace 0 or are in the base
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field GF (p, 1)∗. For a ∈ GF (p, 2), we are now in a position to study the distribution of

Tr(ax2), when x ranges over GF (p, 2). A useful tool in this study is to list the elements of

GF (p, 2)∗ in a two-dimensional array based on the powers of a chosen primitive element

ζ.

Let ζ be a primitive element of GF (p, 2). Then GF (p, 2)∗ = {1, ζ, ζ2, . . . , ζp2−2}
and ζp2−1 = ζ0 = 1. Also ζ( p+1

2 )(2p−3)+( p+1
2 ) = ζ

2p2−3p+2p−3+p+1
2 = ζ

2(p2−1)
2 = ζp2−1 = 1.

The elements in GF (p, 2)∗ can now be listed by means of a (p − 1) × (p + 1) matrix:[
ζ( p+1

2 )(2k+1)+d
]
, where k = 0, 1, 2, . . . , p − 2 ranges over the rows of the matrix creating

p − 1 rows and d = 0, 1, 2, . . . , p ranges over the columns of the matrix creating p + 1

columns. This (p− 1)× (p + 1) matrix is given by

GF (p, 2)∗=




ζ

(
p+1
2

)
. . . ζ

(
p+1
2

)
+d

. . . ζ

(
p+1
2

)
+

(
p+1
2

)
. . . ζ

(
p+1
2

)
+p

ζ

(
p+1
2

)
3

. . . ζ

(
p+1
2

)
3+d

. . . ζ

(
p+1
2

)
3+

(
p+1
2

)
. . . ζ

(
p+1
2

)
3+p

.

.

. . . .

.

.

. . . .

.

.

. . . .

.

.

.

ζ

(
p+1
2

)
(2k+1)

. . . ζ

(
p+1
2

)
(2k+1)+d

. . . ζ

(
p+1
2

)
(2k+1)+

(
p+1
2

)
. . . ζ

(
p+1
2

)
(2k+1)+p

.

.

. . . .

.

.

. . . .

.

.

. . . .

.

.

.

ζ

(
p+1
2

)
(2p−3)

. . . ζ

(
p+1
2

)
(2p−3)+d

. . . ζp2−1 = 1 . . . ζ

(
p+1
2

)
(2p−3)+p




(p−1)×(p+1)

.

This arrangement of the elements of GF (p, 2)∗ enables us to better understand the

distribution of the values of the trace map. For ease of reading let ak, where k =

0, 1, 2, . . . , p− 2, be a listing of the non-zero elements of the base field GF (p, 1)∗.

Lemma 4.3.6. The trace of elements of GF (p, 2)∗ is distributed in the following manner:

(i) The trace of each element in the first column of the matrix representation of GF (p, 2)∗

is zero.

(ii) The trace of elements in every other column of the matrix representation of GF (p, 2)∗

takes every element in Zp \ {0} once only.

Proof:

(i) From Corollary 4.3.4, we know that Tr(x) = 0 if and only if x = ζ( p+1
2

)(2k+1), where

k = 0, 1, 2, . . . , p − 2. Therefore it is clear that the trace of the elements in the first

column of the matrix representation of GF (p, 2)∗ is zero, i.e., Tr
(
ζ( p+1

2 )(2k+1)
)

= 0,∀ k =

0, 1, 2, . . . , p− 2.

(ii) The trace of elements in the dth column (d 6= 0) of the matrix representation of
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GF (p, 2)∗ is given by

Tr(ζ( p+1
2 )(2k+1)+d) = Tr(ζ(p+1)kζ

p+1
2 ζd).

From Lemma 4.3.5 we know that ζ(p+1)k ∈ GF (p, 1)∗, where k = 0, 1, 2, . . . , p − 2. By

using the notation ak = ζ(p+1)k we have

Tr(ζ( p+1
2 )(2k+1)+d) = Tr(akζ

p+2d+1
2 ) (from Lemma 4.3.5).

From part (ii) of Theorem 4.3.2 we have

Tr(ζ( p+1
2 )(2k+1)+d) = akTr(ζ

p+2d+1
2 ).

From Corollary 4.3.4 again we know that for x ∈ GF (p, 2)∗, Tr(x) = 0 if and only

if x = ζ( p+1
2 )(2k+1), where k = 0, 1, 2 . . . , p − 2 and therefore Tr(ζ

p+2d+1
2 ) 6= 0, for all

d = 1, 2 . . . , p. In addition ak represents every element in Zp \{0} for k = 0, 1, 2 . . . , p−2.

Consequently the trace of the elements in the dth column of the matrix representation of

GF (p, 2)∗ takes each element in Zp \ {0} exactly once.

The next example illustrates this result.

Example 4.3.7. Consider the primitive polynomial p(x) = x2 + x + 2 over Z5. The

elements in GF (5, 2)∗ = {1, ζ, ζ2, . . . , ζ23} and their trace values are given in the following

table:
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Element x x = a1ζ + a0 Tr(x) Element x x = a1ζ + a0 Tr(x)

1 0ζ + 1 2 ζ12 0ζ + 4 3

ζ 1ζ + 0 4 ζ13 4ζ + 0 1

ζ2 4ζ + 3 2 ζ14 1ζ + 2 3

ζ3 4ζ + 2 0 ζ15 1ζ + 3 0

ζ4 3ζ + 2 1 ζ16 2ζ + 3 4

ζ5 4ζ + 4 4 ζ17 1ζ + 1 1

ζ6 0ζ + 2 4 ζ18 0ζ + 3 1

ζ7 2ζ + 0 3 ζ19 3ζ + 0 2

ζ8 3ζ + 1 4 ζ20 2ζ + 4 1

ζ9 3ζ + 4 0 ζ21 2ζ + 1 0

ζ10 1ζ + 4 2 ζ22 4ζ + 1 3

ζ11 3ζ + 3 3 ζ23 2ζ + 2 2

The matrix representation of GF (5, 2)∗ is then:

GF (5, 2)∗=




ζ3 ζ4 ζ5 ζ6 ζ7 ζ8

ζ9 ζ10 ζ11 ζ12 ζ13 ζ14

ζ15 ζ16 ζ17 ζ18 ζ19 ζ20

ζ21 ζ22 ζ23 ζ24 = 1 ζ25 = ζ ζ26 = ζ2




4×6

and the corresponding trace matrix is:

Tr(GF (5, 2)∗)=




0 1 4 4 3 4

0 2 3 3 1 3

0 4 1 1 2 1

0 3 2 2 4 2




4×6

.

It is clear that the first column is an all zero column and all the other columns contain

each element in Z5 \ {0} exactly once.

We can now examine the trace distribution for the specific case considered in this

chapter: Tr(ax2).
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Theorem 4.3.8. Let Tr be the trace map over GF (p, 2). As x ranges over GF (p, 2)∗

and for a ∈ GF (p, 2)∗, Tr(ax2) takes each element in Zp \ {0} equally often either p + 1

times or p− 1 times.

Proof:

Let a ∈ GF (p, 2)∗ be an even (respectively odd) power of ζ and consider the set

{Tr(ax2) | x ∈ GF (p, 2)∗}. This set can be written as two copies of the trace of the ele-

ments in the set {ζ2h | h = 0, 1, 2 . . . , p2−3
2
} (respectively {ζ2h+1 | h = 0, 1, 2 . . . , p2−3

2
})

or its cyclic shifts.

In the matrix representation of GF (p, 2)∗ that we have studied in Lemma 4.3.6, we

note that there are p+1
2

columns with odd powers of ζ and p+1
2

columns with even powers

of ζ. (See example 4.3.7). We will label these columns as odd and even respectively. We

call the matrix obtained by taking the trace of each element in the matrix representation

of GF (p, 2)∗ as the trace matrix of GF (p, 2)∗. We consider the two cases, p ≡ 1(mod 4)

and p ≡ 3(mod 4) respectively.

Case I. p ≡ 1(mod 4):

In this case p+1
2

is odd. From Theorem 4.3.3 we know that Tr(ζ( p+1
2 )(2k+1)) = 0, for

all k = 0, 1, 2 . . . , p − 2. Hence the first odd column (which is the first column of the

matrix representation of GF (p, 2)∗) has trace zero. Therefore there are p+1
2
− 1 = p−1

2

odd columns of the matrix representation of GF (p, 2)∗ with non-zero trace. From Lemma

4.3.6, the trace of elements of each of these p−1
2

odd columns contain each element in

Zp \ {0} exactly once. Thus the trace of all the odd powers of ζ gives us each element in

Zp \ {0}, p−1
2

times, and so the trace of all the even powers of ζ gives us each element in

Zp \ {0} , p+1
2

times.

Thus if a ∈ GF (p, 2)∗ is an odd power of ζ then, as x ranges over GF (p, 2)∗, Tr(ax2)

takes each element in Zp \{0} equally often p−1 times. If a ∈ GF (p, 2)∗ is an even power

of ζ then Tr(ax2) takes each element in Zp \ {0} equally often p + 1 times.

Case II. p ≡ 3(mod 4):

Here p+1
2

is even. As in case I, Tr(ζ( p+1
2 )(2k+1)) = 0, for all k = 0, 1, 2 . . . , p − 2 and

the first even column of the matrix representation of GF (p, 2)∗ has trace zero. Therefore

there are other p+1
2
− 1 = p−1

2
even columns in the matrix representation of GF (p, 2)∗
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with non-zero trace. Hence the trace of all the even powers of ζ gives us each element in

Zp \ {0}, p−1
2

times. Consequently the trace of all the odd powers of ζ gives each element

in Zp \ {0}, p+1
2

times.

Hence when a ∈ GF (p, 2)∗ is an even power of ζ then, as x ranges over GF (p, 2)∗,

Tr(ax2) takes each element in Zp \ {0} equally often p − 1 times. If a ∈ GF (p, 2)∗ is an

odd power of ζ then as x ranges over GF (p, 2)∗, Tr(ax2) takes each element in Zp \ {0}
equally often p + 1 times.

Examples 4.4.2 and 4.4.3 illustrate this result.

We now have enough information to apply the trace map over GF (p, 2) in the form of

Tr(ax2) to construct two-weight, self-orthogonal codes.

4.4 Construction of two-weight, self-orthogonal codes

So far we have studied the distribution of Tr(ax2) by changing x over the Galois field

G(p, 2). In this section we apply this result to construct cyclic, two-dimensional, two-

weight, self-orthogonal codes over Zp. For more details of two-weight codes, the reader is

referred to [17, 29, 40] and the references therein.

Theorem 4.4.1. Let GF (p, 2) be the Galois field of characteristic p ≥ 3 and Tr be the

trace map over GF (p, 2). Consider the matrix H2 = [Tr(ax2)]a,x∈GF (p,2).

(i) H2 is a linear code over Zp with the parameters [n, k, dH ] = [p2, 2, (p− 1)2], where dH

is the minimum Hamming distance.

(ii) H2 is a two-weight code with Hamming weights p2 − 1 and (p− 1)2.

(iii) The code obtained by deleting the first column of H2, denoted by H∗
2 , is a

[p2 − 1, 2, (p− 1)2] code and the codewords of H∗
2 are the left-cyclic shifts of the first two

non-zero codewords of H∗
2 .

(iv) For p > 3, H2 is a self-orthogonal code.

Proof:

(i) Let ζ be a primitive element of GF (p, 2) and ci be any element in GF (p, 2). Consider

the matrix
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GH2=


 Tr(c2

i ), i = 1, 2, . . . , p2

Tr(ζc2
i ), i = 1, 2, . . . , p2




2×p2

.

First we will show that the two rows of GH2 are linearly independent. Let x = (Tr(c2
i ); i =

1, 2, . . . , p2) and y = (Tr(ζc2
i ); i = 1, 2, . . . , p2). For any a0, a1 ∈ Zp suppose that a0x +

a1y = 0. i.e., for all i = 1, 2, . . . , p2, a0Tr(c2
i ) + a1Tr(ζc2

i ) = 0. From the properties of the

trace map, for all i = 1, 2, . . . , p2, Tr((a0+a1ζ)c2
i ) = 0. According to the distribution of the

values of trace, Tr((a0 + a1ζ)c2
i ) = 0 implies that (a0 + a1ζ)c2

i = 0, for all i = 1, 2, . . . , p2.

However c2
i 6= 0, for some i and hence a0 + a1ζ = 0. Since 1 and ζ represent linearly

independent 2-tuples over Zp, a0 and a1 should be 0. Therefore the two rows in GH2 are

linearly independent.

Next consider all linear combinations of the two rows in GH2 . This gives us

a0Tr(c2
i ) + a1Tr(ζc2

i ) = Tr((a0 + a1ζ)c2
i ), i = 1, 2, . . . , p2, which implies that the rows of

the matrix H2 are generated by the rows in GH2 . Thus GH2 is a generator matrix of H2,

the length n and the dimension k of the code H2 are p2 and 2 respectively, and hence H2

is a linear code over Zp.

From Theorem 4.3.8 every non-zero row of H contains every non-zero element of Zp

equally often either p + 1 times or p− 1 times. Since there are p− 1 non-zero elements in

Zp, the minimum Hamming weight of H2 is (p− 1)2. Therefore H2 = [Tr(ax2)]a,x∈GF (p,2)

is a linear code over Zp with the parameters [n, k, dH ] = [p2, 2, (p− 1)2].

(ii) Since every non-zero codeword of H2 contains each element in Zp \ {0} equally often

either p + 1 times or p − 1 times, the codewords have Hamming weight either p2 − 1 or

(p− 1)2 and hence H2 is a two-weight code over Zp.

(iii) Let H∗
2 be obtained by deleting the first column of H2:

H∗2 =




Tr(0) Tr(0) . . . Tr(0) Tr(0) Tr(0) . . . Tr(0)

Tr(1) Tr(ζ2) . . . Tr(ζ
2 (p2−3)

2 ) Tr(1) Tr(ζ2) . . . Tr(ζ
2 (p2−3)

2 )

Tr(ζ) Tr(ζ3) . . . Tr(ζζ
2 (p2−3)

2 ) Tr(ζ) Tr(ζ3) . . . Tr(ζζ
2 (p2−3)

2 )

Tr(ζ2) Tr(ζ4) . . . Tr(ζ2ζ
2 (p2−3)

2 ) Tr(ζ2) Tr(ζ4) . . . Tr(ζ2ζ
2 (p2−3)

2 )

Tr(ζ3) Tr(ζ5) . . . Tr(ζ3ζ
2 (p2−3)

2 ) Tr(ζ3) Tr(ζ5) . . . Tr(ζ3ζ
2 (p2−3)

2 )

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

. . . .

.

.

.

Tr(ζp2−2) Tr(ζp2
) . . . Tr(ζp2−2ζ

2 (p2−3)
2 ) Tr(ζp2−2) Tr(ζp2

) . . . Tr(ζp2−2ζ
2 (p2−3)

2 )




p2×(p2−1)

.

The first two non-initial rows generate this code and the next consecutive two rows

are the left-cyclic shift by one element of the first two non-initial rows, and so on. The
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parameters of H∗
2 are [p2 − 1, 2, (p− 1)2]. Indeed H∗

2 is a cyclic code.

(iv) Let S be the dot product of every non-zero codeword of H2 with itself. Again from

Theorem 4.3.8 it is clear that every non-zero codeword of H∗
2 contains each element in

Zp \ {0} equally often either p + 1 times or p− 1 times. Therefore either

S = (p + 1)

p−1∑
i=1

i2

=
p

6
(p + 1)(2p2 − 3p + 1)

or

S = (p− 1)

p−1∑
i=1

i2

=
p

6
(p− 1)(2p2 − 3p + 1).

If p > 3 we have S ≡ 0 mod p. From Theorem 4.2.5 we know that, for p > 3, a linear

code is self-orthogonal if and only if the dot product of every codeword of the code with

itself is zero. Therefore H2 is a self-orthogonal code over Zp for p > 3.

The following two examples illustrate Theorem 4.3.8 and 4.4.1.

Example 4.4.2. Consider the primitive polynomial p(x) = x2 + x + 2 over Z3 and let

ζ be a root of p(x). The elements of GF (3, 2) = Z3[x]/(p(x)) = Z3[ζ] can be written

as {0, 1, ζ, ζ2, . . . , ζ7}. The following table provides the trace value of these elements and

their squares.

Element x x = a1ζ + a0 Tr(x) x2 Tr(x2)

0 0ζ + 0 0 0 0

1 0ζ + 1 2 1 2

ζ 1ζ + 0 2 ζ2 0

ζ2 2ζ + 1 0 ζ4 1

ζ3 2ζ + 2 2 ζ6 0

ζ4 0ζ + 2 1 1 2

ζ5 2ζ + 0 1 ζ2 0

ζ6 1ζ + 2 0 ζ4 1

ζ7 1ζ + 1 1 ζ6 0
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Taking a, x ∈ GF (3, 2) = {0, 1, ζ, ζ2, . . . , ζ7}, the 9 × 9 matrix A2 = [(ax2)]a,x∈GF (3,2) is

given by

A2=




0 0 0 0 0 0 0 0 0

0 ζ0 ζ2 ζ4 ζ6 ζ0 ζ2 ζ4 ζ6

0 ζ1 ζ3 ζ5 ζ7 ζ1 ζ3 ζ5 ζ7

0 ζ2 ζ4 ζ6 ζ0 ζ2 ζ4 ζ6 ζ0

0 ζ3 ζ5 ζ7 ζ1 ζ3 ζ5 ζ7 ζ1

0 ζ4 ζ6 ζ0 ζ2 ζ4 ζ6 ζ0 ζ2

0 ζ5 ζ7 ζ1 ζ3 ζ5 ζ7 ζ1 ζ3

0 ζ6 ζ0 ζ2 ζ4 ζ6 ζ0 ζ2 ζ4

0 ζ7 ζ1 ζ3 ζ5 ζ7 ζ1 ζ3 ζ5




9×9

and the matrix H2 = [Tr(ax2)]a,x∈GF (3,2) is given by

H2=




0 0 0 0 0 0 0 0 0

0 2 0 1 0 2 0 1 0

0 2 2 1 1 2 2 1 1

0 0 1 0 2 0 1 0 2

0 2 1 1 2 2 1 1 2

0 1 0 2 0 1 0 2 0

0 1 1 2 2 1 1 2 2

0 0 2 0 1 0 2 0 1

0 1 2 2 1 1 2 2 1




9×9

.

A generator matrix for H2 is

GH2=


 0 2 0 1 0 2 0 1 0

0 2 2 1 1 2 2 1 1




2×9

.

By deleting the first column of H2 we obtain
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H∗
2=




0 0 0 0 0 0 0 0

2 0 1 0 2 0 1 0

2 2 1 1 2 2 1 1

0 1 0 2 0 1 0 2

2 1 1 2 2 1 1 2

1 0 2 0 1 0 2 0

1 1 2 2 1 1 2 2

0 2 0 1 0 2 0 1

1 2 2 1 1 2 2 1




9×8

.

H2 is a linear code over Z3 with the parameters [9, 2, 4]. The Hamming weight of each

non-zero codeword is either 4 or 8. Thus H2 is a two-weight code. The punctured code H∗
2 ,

obtained by deleting the first column of H2 is an [8, 2, 4] code over Z3 and codewords of

H∗
2 are the left-cyclic shifts of elements of the first two non-zero codewords of H∗

2 . Indeed

H∗
2 is a cyclic code. The weight of each non-zero codeword is not divisible by 3 and from

Theorem 4.2.4, H2 is not a self-orthogonal code.

Example 4.4.3. Consider the primitive polynomial p(x) = x2 + x + 2 over Z5 and let ζ

be a root of p(x). Thus ζ2 = 4ζ + 3 and the elements of GF (5, 2) = Z5[x]/(p(x)) = Z5[ζ]

can be written as {0, 1, ζ, ζ2, . . . , ζ23}. The following table provides the trace value of these

elements and their squares.
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Element x x = a1ζ + a0 Tr(x) x2 Tr(x2)

0 0ζ + 0 0 0 0

1 0ζ + 1 2 1 2

ζ 1ζ + 0 4 ζ2 2

ζ2 4ζ + 3 2 ζ4 1

ζ3 4ζ + 2 0 ζ6 4

ζ4 3ζ + 2 1 ζ8 4

ζ5 4ζ + 4 4 ζ10 2

ζ6 0ζ + 2 4 ζ12 3

ζ7 2ζ + 0 3 ζ14 3

ζ8 3ζ + 1 4 ζ16 4

ζ9 3ζ + 4 0 ζ18 1

ζ10 1ζ + 4 2 ζ20 1

ζ11 3ζ + 3 3 ζ22 3

ζ12 0ζ + 4 3 1 2

ζ13 4ζ + 0 1 ζ2 2

ζ14 1ζ + 2 3 ζ4 1

ζ15 1ζ + 3 0 ζ6 4

ζ16 2ζ + 3 4 ζ8 4

ζ17 1ζ + 1 1 ζ10 2

ζ18 0ζ + 3 1 ζ12 3

ζ19 3ζ + 0 2 ζ14 3

ζ20 2ζ + 4 1 ζ16 4

ζ21 2ζ + 1 0 ζ18 1

ζ22 4ζ + 1 3 ζ20 1

ζ23 2ζ + 2 2 ζ22 3

By selecting a, x ∈ GF (5, 2) = {0, 1, ζ, ζ2, . . . , ζ23}, the matrix A2 = [(ax2)]a,x∈GF (5,2) is
given by
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A2=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0

0 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 . . . ζ22

0 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 . . . ζ23

0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 . . . ζ0

0 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 . . . ζ1

0 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 . . . ζ2

0 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 . . . ζ3

0 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 . . . ζ4

0 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 . . . ζ5

0 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 . . . ζ6

0 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 . . . ζ7

0 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 . . . ζ8

0 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 . . . ζ9

0 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 . . . ζ10

0 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 . . . ζ11

0 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 . . . ζ12

0 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 . . . ζ13

0 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 . . . ζ14

0 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 . . . ζ15

0 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 . . . ζ16

0 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 . . . ζ17

0 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 . . . ζ18

0 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 . . . ζ19

0 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 ζ10 ζ12 ζ14 ζ16 ζ18 ζ20 ζ22 ζ0 ζ2 ζ4 ζ6 ζ8 . . . ζ20

0 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 ζ11 ζ13 ζ15 ζ17 ζ19 ζ21 ζ23 ζ1 ζ3 ζ5 ζ7 ζ9 . . . ζ21



25×25

and the matrix H2 = [Tr(ax2)]a,x∈GF (5,2) is given by
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H2=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3

0 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2

0 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2

0 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4

0 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2

0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0

0 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1

0 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4

0 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4

0 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3

0 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4

0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0

0 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2

0 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3

0 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3

0 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1

0 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3

0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0

0 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4

0 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1

0 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1

0 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2

0 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1

0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0




25×25

.

The rows of H can be generated by

GH2=


 0 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3

0 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2




2×25

.

Therefore H2 is a linear code over Z5 and its parameters are [25, 2, 16]. By deleting the
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first column of the matrix H2 we obtain:

H∗
2=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3

4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2

2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2

0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4

1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2

4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0

4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1

3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4

4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4

0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3

2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4

3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0

3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2

1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3

3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3

0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1

4 1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3

1 2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0

1 1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4

2 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1

1 3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1

0 2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2

3 2 2 1 4 4 2 3 3 4 1 1 3 2 2 1 4 4 2 3 3 4 1 1

2 4 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2 0




25×24

.

The punctured code H∗
2 , obtained by deleting the first column of H2 is a [24, 2, 16] code

over Z5 and codewords of H∗
2 are the left-cyclic shifts of elements of the first two non-zero

codewords of H∗
2 . Indeed H∗

2 is a cyclic code. The Hamming weight of each non-zero

codeword of H2 is either 16 or 24. Thus H2 is a two-weight code. From part (iv) of
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Theorem 4.4.1, H2 is a self-orthogonal code.

Throughout this chapter we have studied the distribution of the trace map over

GF (p, 2) in the form of Tr(ax2) and used it to construct two-dimensional, two-weight,

self-orthogonal codes over Zp. The next question is whether we can apply the trace map

over GF (p, 2) in the form of Tr(axλ) for any λ > 2 integer. We devote the next two

chapters to study this case.
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Chapter 5

Two-Weight, Self-Orthogonal Codes

from Tr(axλ)

5.1 Introduction

In Chapter 4 we studied the distribution of the trace map over the Galois field GF (p, 2) in

the form of Tr(ax2) and constructed cyclic, two-weight, self-orthogonal codes over Zp with

the parameters [p2, 2, (p− 1)2]. This is a motivation to examine the use of the trace map

over the Galois field GF (p, 2) in the form of Tr(axλ) for λ > 2. Since Tr(x) = Tr(xp), we

consider the values of λ in the range of 2 < λ < p. In the case of λ = 2 in Chapter 4 we

divided the elements of GF (p, 2)∗ equally into two subsets to study the distribution of the

trace values (see Theorem 4.3.8). Similarly, in this chapter, we will divide the elements of

GF (p, 2)∗ equally into λ subsets in order to study the distribution of trace values. Thus

λ|p2 − 1. i.e., λ|(p + 1)(p − 1). Now since only 2 divides both (p + 1) and (p − 1), for

λ > 2, we only consider the cases when λ|(p+1) and λ|(p−1). In this chapter we focus on

λ|(p+1). Since (p−1) does not divide (p+1), the range of λ now becomes 2 < λ < p−1.

In Section 5.2 we study the distribution of Tr(axλ) for x and a in GF (p, 2). Subse-

quently we apply this distribution to construct codes over Zp in Section 5.3 classifying

them as cyclic, two-weight, self-orthogonal codes with the parameters

[p2, 2, (p− (λ− 1))(p− 1)].
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5.2 The distribution of Tr(axλ)

In this section we study the distribution of Tr(axλ) by changing x over the Galois field

GF (p, 2) for a ∈ GF (p, 2).

Let us recall from Chapter 4 the Galois field GF (p, 2) and properties of the trace map.

Let p(x) be a primitive polynomial of degree 2 over Zp. The Galois field of characteristic

p is defined as the quotient field GF (p, 2) = Zp[x]/(p(x)). Let ζ be a root of p(x) and

therefore GF (p, 2) = Zp[ζ]. Thus any element in GF (p, 2) can be written as a polynomial

of degree 1 in ζ over Zp and further GF (p, 2) = {0, 1, ζ, ζ2, . . . , ζp2−2}. The trace map

Tr : GF (p, 2) → Zp is defined by Tr(x) = x + xp. From Corollary 4.3.4 we know that

for x ∈ GF (p, 2)∗, Tr(x) = 0 if and only if x = ζ
p+1
2

(2k+1), where k = 0, 1, 2 . . . , p− 2. In

this section, for a ∈ GF (p, 2), we study the distribution of Tr(axλ) by changing x over

GF (p, 2).

The first step towards understanding the distribution of Tr(axλ) requires us to identify

the position of the trace zero elements in A∗ = [axλ]a,x∈GF (p,2)∗ . To do this, we first

divide the elements of GF (p, 2)∗ into equivalence classes modulo λ. Since the elements of

GF (p, 2)∗ can also be expressed as powers of ζ the primitive element, the best way is to

define the disjoint sets (i)λ as follows:

Definition 5.2.1. (i)λ = {ζλh+i | h = 0, 1, 2, . . . , p2−1
λ
− 1}, for i = 0, 1, 2, . . . , λ− 1.

Thus the (i)λ are the equivalence classes modulo λ and they partition GF (p, 2)∗ into

disjoint sets., i.e.,

GF (p, 2)∗ =
λ−1⋃
i=0

(i)λ. (5.1)

The following lemma examines the pattern of elements in each row of the matrix

A∗ = [axλ]a,x∈GF (p,2)∗ as a power of ζ.

Lemma 5.2.2. Let 2 < λ < p − 1 be an integer such that λ|(p + 1). Let A∗ =

[axλ]a,x∈GF (p,2)∗ and ζ be a primitive element of GF (p, 2). Let (i)λ = {ζλh+i | h =

0, 1, 2, . . . , p2−1
λ
− 1}, where i = 0, 1, 2, . . . , λ− 1. Then

(i) The first λ rows of A∗ are given by λ copies of (i)λ, where i = 0, 1, 2, . . . , λ− 1.
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(ii) The next λ rows of A∗ are given by λ copies of one cyclic shift of (i)λ, where

i = 0, 1, 2, . . . , λ− 1.

(iii) In this manner the last λ rows of A∗ are given by λ copies of p2−1
λ
− 1 cyclic shifts of

(i)λ, where i = 0, 1, 2, . . . , λ− 1.

Proof:

Consider the matrix A∗ = [axλ]a,x∈GF (p,2)∗ , where a, x ∈ GF (p, 2)∗ = {1, ζ, ζ2, . . . , ζp2−2}.
Let a = ζt0 , for a fixed t0, 0 ≤ t0 ≤ p2 − 2 and x = ζt, for all 0 ≤ t ≤ p2 − 2. Then

any row in A∗ can be written as {axλ}t0 = {ζt0+λt|0 ≤ t ≤ p2 − 2}. Since (i)λ =

{ζλh+i | h = 0, 1, 2, . . . , p2−1
λ
− 1}, where i = 0, 1, 2, . . . , λ− 1, it is clear that |(i)λ| = p2−1

λ

and |{axλ}t0| = p2− 1. Now A∗ = [ζt0+λt], where t changes from 0 to p2− 2 giving p2− 1

columns and t0 changes from 0 to p2 − 2 giving p2 − 1 rows.

(i) Let t0 = 0 and 0 ≤ t ≤ p2 − 2. Then {axλ}0 = {ζλt|t = 0, 1, 2, . . . , p2 − 2}. This is the

first row of the matrix A∗. Now look at the set (i)λ = {ζλh+i | h = 0, 1, 2, . . . , p2−1
λ
− 1},

where i = 0, 1, 2, . . . , λ−1. Let i = 0 and then (0)λ = {ζλh | h = 0, 1, 2, . . . , p2−1
λ
−1}. It is

clear that (0)λ ⊂ {axλ}0. The last element in the set (0)λ is ζλ( p2−1
λ

−1) = ζp2−λ−1. This is

the
(

p2−1
λ
− 1

)th

element in the set {axλ}0. The next element in {axλ}0 is ζ
λ

(
p2−1

λ
−1+1

)

=

ζp2−1 = 1. That means after the
(

p2−1
λ
− 1

)th

element in the set {axλ}0, the elements of

the set (0)λ will start to repeat. Since there are p2−1 elements in {axλ}0 we need λ copies

of (0)λ to form the entire set {axλ}0. i.e., the first row of the matrix A∗. We can continue

the same process for t0 = 1, 2, . . . , λ− 1. In each case, the value of i is i = 1, 2, . . . , λ− 1.

This completes the creation of the first λ rows of the matrix A∗.

(ii) Now consider t0 = λ. Then a = ζλ and the set

{axλ}λ = {ζλ+λt = ζ(t+1)λ|t = 0, 1, 2, . . . , p2 − 2}
= {ζλ, ζ2λ, . . . , ζ(p2−1)λ}.

Also consider a one cyclic shift of each element in (0)λ to the left and label this as L1(0)λ.

Then

L1(0)λ = {ζλh|h = 1, 2, . . . , (
p2 − 1

λ
− 1), 0}

= {ζλ, ζ2λ, . . . , 1}.
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It is clear that L1(0)λ ⊂ {axλ}λ and
(

p2−1
λ
− 1

)th

element in the set {axλ}λ is ζ
λ

(
p2−1

λ
−1+1

)

=

ζp2−1 = 1. This is the last element in the set L1(0)λ and the next element in {axλ}λ

will be ζλ. Thus the elements of the set L1(0)λ will start to repeat in {axλ}λ. Since

|L1(0)λ| = p2−1
λ

we need λ copies of L1(0)λ to form the entire set {axλ}λ. i.e., the (λ+1)th

row of the matrix A∗. We can continue this process for t0 = λ+1, λ+2, . . . , λ+λ− 1. In

each case, the value of i is i = 1, 2, . . . , λ − 1 and relevant set can be denoted by L1(i)λ.

This completes the creation of the second λ rows of the matrix A∗.

(iii) Now consider t0 = 2λ, 2λ + 1, . . . , 2λ + λ − 1. In each of these cases, the value of i

is i = 0, 1, 2, . . . , λ − 1 and the relevant set should be labeled by L2(i)λ. This means we

need to get two left-cyclic shifts of each element of (i)λ. λ copies of each of these L2(i)λ

sets form the set {axλ}t0 = {ζλ(2+t)+i|t = 0, 1, 2, . . . , p2 − 2}. By continuing this process

until it makes
(

p2−1
λ
− 1

)
left-cyclic shifts of elements in (i)λ for all i = 0, 1, 2, . . . , λ− 1,

we can form all the rows of the matrix A∗.

The following example illustrates this result.

Example 5.2.3. Let p = 5 and λ = 3. Then λ|(p+1) and the matrix A∗
3 = [ax3]a,x∈GF (5,2)∗

is

A∗3=




1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21

ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22

ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23

ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1

ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ

ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2

ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3

ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4

ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5

ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6

ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7

ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8

ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9

ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10

ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11

ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9 ζ12

ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10 ζ13

ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11 ζ14

ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15

ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16

ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17

ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18

ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19

ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20




24×24

.
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Elements in each row of A∗
3 = [ax3]a,x∈GF (5,2)∗ can be written by using 3 copies of

(i)3 = {ζ3h+i | h = 0, 1, 2, . . . , 52−(3+1)
3

}, where i = 0, 1, 2.

i.e.,

(0)3 = {ζ3h | h = 0, 1, 2, . . . , 52−(3+1)
3

= 7}.
(1)3 = {ζ3h+1 | h = 0, 1, 2, . . . , 52−(3+1)

3
= 7}.

(2)3 = {ζ3h+2 | h = 0, 1, 2, . . . , 52−(3+1)
3

= 7}.

i.e.,

(0)3 = {1, ζ3, ζ6, ζ9, ζ12, ζ15, ζ18, ζ21}.
(1)3 = {ζ, ζ4, ζ7, ζ10, ζ13, ζ16, ζ19, ζ22}.
(2)3 = {ζ2, ζ5, ζ8, ζ11, ζ14, ζ17, ζ20, ζ23}.

and 7 left-cyclic shifts of 3 copies of each of these three sets.

The main purpose of this section is studying the distribution of {Tr(axλ) | x ∈
GF (p, 2)∗} for a ∈ GF (p, 2)∗. From Lemma 5.2.2 it is clear that for a fixed a ∈ GF (p, 2)∗

the set {axλ | x ∈ GF (p, 2)∗} is equal to λ copies of (i)λ = {ζλh+i | h = 0, 1, 2, . . . , p2−1
λ
−1}

or cyclic shifts of λ copies of (i)λ, where i = 0, 1, 2, . . . , λ − 1. Therefore it is enough to

study the trace values of elements in each set (i)λ for i = 0, 1, 2 . . . , λ − 1. First we will

find out the elements that have trace 0 and how they are distributed in the set (i)λ.

Lemma 5.2.4. Let λ be a positive integer. If Ψλ = {axλ | Tr(axλ) = 0; a, x ∈ GF (p, 2)∗}
then Ψλ = {ζ (p+1)

2
(2k+1) | k = 0, 1, 2, . . . , p− 2}.

Proof:

Since a, x ∈ GF (p, 2)∗, a and x can be written as a = ζt0 and x = ζt1 , for some t0 and t1,

where 0 ≤ t0, t1 ≤ p2 − 2. Now for any positive integer λ we have axλ = ζt0+λt1 = ζt ∈
GF (p, 2)∗, for some 0 ≤ t ≤ p2 − 2. Therefore Ψλ = {ζt | Tr(ζt) = 0}. From Corollary

4.3.4 we know that for x ∈ GF (p, 2)∗, Tr(x) = 0 if and only if x = ζ( p+1
2 )(2k+1), where

k = 0, 1, 2, . . . , p− 2. In other words, Tr(ζt) = 0 if and only if t =
(

p+1
2

)
(2k + 1), where

k = 0, 1, 2, . . . , p− 2. Thus Ψλ = {ζ (p+1)
2

(2k+1) | k = 0, 1, 2, . . . , p− 2}.
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Note that when we represent the elements in the set Ψλ as powers of ζ, the elements

are independent from λ. Therefore from now on we use Ψ to represent the set Ψλ.

The following lemma describes the distribution of the elements of Ψ in the set (i)λ.

Lemma 5.2.5. Let p > 3 be a prime and λ be an integer such that 2 < λ < p − 1 and

λ|(p + 1). Let i = 0, 1, 2, . . . , λ − 1 and (i)λ =
{

ζλh+i | h = 0, 1, 2, . . . , p2−1
λ
− 1

}
. Let

Ψ = {ζ (p+1)
2

(2k+1) | k = 0, 1, 2, . . . , (p− 1)− 1}.
(i) If λ = p+1

2
then Ψ ⊂ (0)λ.

(ii) If λ = p+1
2

and its prime factorisation is λ = λe1
1 λe2

2 . . . λeu
u then for all j = 1, 2, . . . , u,

Ψ ⊂ (0)λj
and Ψ ⊂ (0)

λ
ej
j

.

(iii) For q > 1, if λ = 2q then Ψ ⊂ (q)2q.

Proof:

(i) Consider the set (0)λ =
{

ζλh | h = 0, 1, 2, . . . , p2−1
λ
− 1

}
. If λ = (p+1)

2
then we have

p2 − 1

λ
− 1 =

p2 − ( (p+1)
2

+ 1)
(p+1)

2

=
2p2 − p− 3

(p + 1)

=
(p + 1)(2p− 3)

(p + 1)

= (2p− 3)

= 2(p− 1)− 1.

Hence for λ = p+1
2

, the set (0)λ is (0) (p+1)
2

=
{

ζ
(p+1)

2
h | h = 0, 1, 2, . . . , 2(p− 1)− 1

}
.

It is clear that (p−1)−1 < 2(p−1)−1 and the highest power of ζ in Ψ is p+1
2

(2(p−1)−1).

Thus it is clear that all the elements in Ψ are in the set (0) p+1
2

. Therefore for λ = p+1
2

we

have Ψ ⊂ (0)λ.

(ii) Let λ = p+1
2

and its prime factorisation be λ = λe1
1 λe2

2 . . . λeu
u . For each λj, where

j = 1, 2, . . . , u, we write

(0)λj
=

{
ζλjh | h = 0, 1, 2, . . . , p2−1

λj
− 1

}
. Since λj|λ, there exists αj ∈ Z+ such that

λ = αjλj.

⇒ p + 1

2
= αjλj.

⇒ λj =
p + 1

2αj

.
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Therefore (0)λj
= (0) p+1

2αj

=

{
ζ

(
p+1
2αj

)
h | h = 0, 1, 2, . . . , p2−1

p+1
2αj

− 1

}
and

p2−1
p+1
2αj

− 1 = 2αjp− (1 + 2αj) = 2αj(p− 1)− 1.

Hence (0)λj
= (0) p+1

2αj

=

{
ζ

(
p+1
2αj

)
h | h = 0, 1, 2, . . . , (2αjp− (1 + 2αj))

}
. It is also clear

that, for all αj ∈ Z+, (p − 1) − 1 < 2αj(p − 1) − 1 and therefore all the elements in the

set Ψ are entirely in the set (0)λj
= (0) p+1

2αj

=

{
ζ

(
p+1
2αj

)
h | h = 0, 1, 2, . . . , 2αj(p− 1)− 1

}
.

Thus for all j = 1, 2, . . . , u, Ψ ⊂ (0)λj
. By using a similar argument, we can also prove

that, for all j = 1, 2, . . . , u, Ψ ⊂ (0)
λ

ej
j

.

(iii) For q > 1, let λ = 2q and consider the set (q)2q given by

(q)λ = (q)2q =
{

ζ2qh+q = ζq(2h+1) | h = 0, 1, 2, . . . , p2−1
2q

− 1
}

.

Since λ|(p + 1), there exists µ ∈ Z+ such that

p + 1 = λµ.

⇒ p + 1 = 2qµ.

⇒ q =
p + 1

2µ
.

Therefore (q)λ = (q) p+1
µ

=

{
ζ( p+1

2µ )(2h+1) | h = 0, 1, 2, . . . , p2−1
p+1

µ

− 1

}
and

p2−1
p+1

µ

− 1 = µp− (1 + µ) = µ(p− 1)− 1.

Hence (q)λ = (q) p+1
µ

=
{

ζ( p+1
2µ )(2h+1) | h = 0, 1, 2, . . . , µ(p− 1)− 1

}
. It is also clear that

p+1
2µ

< p+1
2

and (p− 1)− 1 < µ(p− 1)− 1. Thus Ψ ⊂ (q)2q.

In Lemma 5.2.5 we have identified some values of λ such that Ψ ⊂ (i)λ, where i =

0, 1, 2, . . . , λ−1. We noticed that if λ = p+1
2

then Ψ ⊂ (0)λ and if λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u

then, for all j = 1, 2, . . . , u, Ψ ⊂ (0)λj
and Ψ ⊂ (0)

λ
ej
j

. We can also show that, for

j = 1, 2, . . . , u, if θ is a product of any combination of λj and λ
ej

j then Ψ ⊂ (0)θ. We also

noticed that, for q > 1, if λ = 2q then Ψ ⊂ (q)λ. We now have to answer two more ques-

tions that arise from Lemma 5.2.5. Are there any other values of λ such that Ψ ⊂ (q)λ

and in the case of λ = 2q, what are the relevant prime numbers such that λ|(p + 1)? In

order to answer these two questions we need to do a careful investigation of the indices

of elements in the two sets Ψ and (q)λ respectively.
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From Lemma 5.2.4 we know that Ψ = {ζ (p+1)
2

(2k+1)|k = 0, 1, 2, . . . , p − 2}. Consider

the set (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1}. If Ψ is entirely in (q)λ for q > 1 then, for

all k = 0, 1, 2, . . . , p− 2, there exists αk ∈ Z+ such that

(p + 1)

2
(2k + 1) = λαk + q, where 0 ≤ αk ≤ p2 − 1

λ
− 1. (5.2)

From (5.2), if q 6= 0 then we have

(2p + 2)k + (p− 2q + 1) = 2λαk.

Since αk ∈ Z+ and λ|(p + 1) both (2p + 2) and (p − 2q + 1) should be divisible by 2λ.

i.e., 2p+2
2λ

= β and p−2q+1
2λ

= γ, where β, γ ∈ Z+. This implies that p = λβ − 1 and

p = 2λγ + 2q − 1.

⇒ λβ − 1 = 2λγ + 2q − 1.

⇒ β = 2γ + 2q
λ

.

Since β ∈ Z+ and q < λ we have λ = 2q. Conversely if λ = 2q then it is obvious that

q 6= 0. Thus there are no other values of λ (except when λ = 2q) such that Ψ ⊂ (q)λ.

The relevant primes for λ = 2q are given by p = 2λγ + 2q − 1 = 4qγ + 2q − 1. This

implies p ≡ (2q − 1) mod (4q) or p ≡ (λ − 1) mod (2λ). Since 2 < λ < p − 1, we have

1 < q < p−1
2

.

Example 5.2.6. Let q = 2 then λ = 4 and p ≡ 3(mod 8). This gives us p = 11, 19, 43,

etc. For all these primes, the set Ψ = {ax4 | Tr(ax4) = 0, a, x ∈ GF (p, 2)∗} =

{ζ (p+1)
2

(2k+1) | k = 0, 1, 2, . . . , p− 2} ⊂ (2)4 =
{

ζ4h+2 | h = 0, 1, 2, . . . , p2−1
4
− 1

}
.

Let q = 3 then λ = 6 and p ≡ 5(mod 12). This gives p = 17, 29, 41, etc. For all

these primes, the set Ψ = {ax6 | Tr(ax6) = 0, a, x ∈ GF (p, 2)∗} = {ζ (p+1)
2

(2k+1) | k =

0, 1, 2, . . . , p− 2} ⊂ (3)6 =
{

ζ6h+3 | h = 0, 1, 2, . . . , p2−1
6
− 1

}
.

Let us consider the elements of GF (11, 2)∗ that are in (i)4, where i = 0, 1, 2, 3, to

illustrate the case q = 2 and λ = 4 such that Ψ ⊂ (2)4 .

(0)4 = {1, ζ4, ζ8, ζ12, ζ16, ζ20, ζ24, ζ28, ζ32, ζ36, ζ40, ζ44, ζ48, ζ52, ζ56, . . .}.
(1)4 = {ζ, ζ5, ζ9, ζ13, ζ17, ζ21, ζ25, ζ29, ζ33, ζ37, ζ41, ζ45, ζ49, ζ53, ζ57, . . .}.
(2)4 = {ζ2, (ζ6), ζ10, ζ14, (ζ18), ζ22, ζ26, (ζ30), ζ34, ζ38, (ζ42), ζ46, ζ50, (ζ54), ζ58, . . .}.
(3)4 = {ζ3, ζ7, ζ11, ζ15, ζ19, ζ23, ζ27, ζ31, ζ35, ζ39, ζ43, ζ47, ζ51, ζ55, ζ59, . . .}.
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From Theorem 4.3.3 we know that Tr(ζ
p+1
2

(2k+1)) = 0, for all k = 0, 1, 2, . . . , p− 2. In

this example Tr(ζ6(2k+1)) = 0, for all k = 0, 1, 2, . . . , 9. Thus

Ψ = {ζ6(2k+1)|k = 0, 1, 2, . . . , 9}
= {ζ4(3k+1)+2|k = 0, 1, 2, . . . , 9}
= {ζ4h+2|h = (3k + 1), k = 0, 1, 2, . . . , 9} ⊂ (2)4.

The elements of Ψ are in parenthesis in (2)4.

Let us now recall the matrix representation of elements of GF (p, 2)∗ that we studied

in Lemma 4.3.6.

GF (p, 2)∗=




ζ

(
p+1
2

)
. . . ζ

(
p+1
2

)
+d

. . . ζ

(
p+1
2

)
+

(
p+1
2

)
. . . ζ

(
p+1
2

)
+p

ζ

(
p+1
2

)
3

. . . ζ

(
p+1
2

)
3+d

. . . ζ

(
p+1
2

)
3+

(
p+1
2

)
. . . ζ

(
p+1
2

)
3+p

.

.

. . . .

.

.

. . . .

.

.

. . . .

.

.

.

ζ

(
p+1
2

)
(2k+1)

. . . ζ

(
p+1
2

)
(2k+1)+d

. . . ζ

(
p+1
2

)
(2k+1)+

(
p+1
2

)
. . . ζ

(
p+1
2

)
(2k+1)+p

.

.

. . . .

.

.

. . . .

.

.

. . . .

.

.

.

ζ

(
p+1
2

)
(2p−3)

. . . ζ

(
p+1
2

)
(2p−3)+d

. . . ζp2−1 = 1 . . . ζ

(
p+1
2

)
(2p−3)+p




(p−1)×(p+1)

,

where d = 0, 1, 2, . . . , p and k = 0, 1, 2, . . . , p − 2. Here we will label each column by

using the first element of that column.

In the next three lemmas, we study, for different values of λ, the position of the

elements of the set (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1} in the columns of the matrix

representation of GF (p, 2)∗.

Lemma 5.2.7. Let p > 3 be a prime and 2 < λ < p − 1 such that λ|(p + 1). Let

i = 0, 1, 2, . . . , λ − 1 and for each i, the set (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1}. If

λ = p+1
2

then for a fixed i, the elements in the set (i)λ are completely listed in the columns

indexed by ζ
p+1
2

+λl+i in the matrix representation of GF (p, 2)∗, where l = 0, 1, . . . , p+1
λ
−1.

Proof:

If λ = p+1
2

then (i)λ = (i) p+1
2

= {ζ( p+1
2

)h+i|h = 0, 1, 2, . . . , 2p− 3}. The set of elements of

the column indexed by ζ
p+1
2

+λl+i in the matrix representation of GF (p, 2)∗ (denoted by

(l)) is given by (l) = {ζ( p+1
2

)(2k+1)+( p+1
2

)l+i|k = 0, 1, 2, . . . , p−2}, where l = 0, 1, . . . , p+1
λ
−1.

Since λ = p+1
2

we have l = 0, 1 and hence

(l = 0) = {ζ( p+1
2

)(2k+1)+i|k = 0, 1, 2, . . . , p− 2}
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and

(l = 1) = {ζ( p+1
2

)(2k+2)+i|k = 0, 1, 2, . . . , p− 2} respectively.

We need to prove that (i) p+1
2

= (l = 0) ∪ (l = 1).

Let x ∈ (i) p+1
2

. Then x = ζ( p+1
2

)h+i for some h = 0, 1, 2, . . . , 2p − 3. If h is odd then

x ∈ (l = 0) and if h is even then x ∈ (l = 1). Therefore

(i) p+1
2
⊂ (l = 0) ∪ (l = 1). (5.3)

Next let any element x ∈ (l = 0) ∪ (l = 1). If x ∈ (l = 0) then x = ζ( p+1
2

)(2k+1)+i for some

k = 0, 1, 2, . . . , p − 2. We also have 0 ≤ k ≤ p − 2 ⇒ 1 ≤ 2k + 1 ≤ 2p − 3. Therefore

x ∈ (i) p+1
2

.

If x ∈ (l = 1) then x = ζ( p+1
2

)(2k+2)+i for some k = 0, 1, 2, . . . , p − 2. It is clear that

x ∈ (i)λ since these values of k correspond to the even h for 0 ≤ h ≤ 2p − 3, except

possibly for k = p− 2. When k = p− 2, x = ζ( p+1
2

)(2k+2)+i = ζ( p+1
2

)(2p−2)+i = ζ i, which is

corresponds to h = 0. Thus

(l = 0) ∪ (l = 1) ⊂ (i) p+1
2

. (5.4)

Now from equations (5.3) and (5.4) we have (i) p+1
2

= (l = 0) ∪ (l = 1). i.e., in the case

of λ = p+1
2

, the elements in the set (i)λ are completely listed in the columns indexed by

ζ
p+1
2

+λl+i in the matrix representation of GF (p, 2)∗, where l = 0, 1, . . . p+1
λ
− 1 = 0, 1.

The next example illustrates this result.

Example 5.2.8. Let p = 5 and λ = 3. Then λ|(p + 1) and the set (i)3 = {ζ3h+i | h =

0, 1, 2, . . . , 52−1
3
− 1}, where i = 0, 1, 2.

i.e.,

(0)3 = {ζ3h | h = 0, 1, 2, . . . , 52−1
3
− 1 = 7}.

(1)3 = {ζ3h+1 | h = 0, 1, 2, . . . , 52−1
3
− 1 = 7}.

(2)3 = {ζ3h+2 | h = 0, 1, 2, . . . , 52−1
3
− 1 = 7}.

i.e.,

(0)3 = {1, ζ3, ζ6, ζ9, ζ12, ζ15, ζ18, ζ21}.
(1)3 = {ζ, ζ4, ζ7, ζ10, ζ13, ζ16, ζ19, ζ22}.
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(2)3 = {ζ2, ζ5, ζ8, ζ11, ζ14, ζ17, ζ20, ζ23}.
The elements in the set (i)3 are from the columns indexed by ζ3+i and ζ6+i in the matrix

representation of GF (5, 2)∗, where i = 0, 1, 2. For example the elements of (0)3 are in the

columns indexed by ζ3 and ζ6.

GF (5, 2)∗=




ζ3 ζ4 ζ5 ζ6 ζ7 ζ8

ζ9 ζ10 ζ11 ζ12 ζ13 ζ14

ζ15 ζ16 ζ17 ζ18 ζ19 ζ20

ζ21 ζ22 ζ23 ζ24 = 1 ζ25 = ζ ζ26 = ζ2




4×6

.

In Lemma 5.2.7 we noticed that when λ = p+1
2

, the elements in the set (i)λ are com-

pletely listed in columns indexed by ζ
p+1
2

+λl+i of the matrix representation of GF (p, 2)∗,

where l = 0, 1. Let us next look at the case λ = p+1
2

with a prime factorisation

λe1
1 λe2

2 . . . λeu
u . The next lemma describes, for j = 1, 2, . . . , u, the placement of the elements

of the sets (i)λj
and (i)

λ
ej
j

in the columns of the matrix representation of GF (p, 2)∗.

Lemma 5.2.9. Let p > 3 be a prime and 2 < λ < p − 1 such that λ|(p + 1). Let

i = 0, 1, 2, . . . , λ − 1 and for each i the set (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1}. If

λ = p+1
2

and its prime factorisation is λ = p+1
2

=
∏u

j=1 λ
ej

j then

(i) for a fixed i = 0, 1, 2, . . . , λj − 1, the elements of the set (i)λj
are completely listed

in the columns indexed by ζ
p+1
2

+λj l+i in the matrix representation of GF (p, 2)∗, where

l = 0, 1, . . . , p+1
λj
− 1.

(ii) for a fixed i = 0, 1, 2, . . . , λ
ej

j − 1, the elements of the set (i)
λ

ej
j

are completely listed

in the columns indexed by ζ
p+1
2

+λ
ej
j l+i in the matrix representation of GF (p, 2)∗, where

l = 0, 1, . . . , p+1

λ
ej
j

− 1.

Proof:

(i) If λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u then λj|p+1

2
, for all j = 1, 2, . . . , u. i.e., there exist αj ∈ Z+

such that λj = p+1
2αj

. Now for a fixed i = 0, 1, 2, . . . , λj − 1, the set (i)λj
= {ζλjh+i|h =

0, 1, 2, . . . , p2−1
λj

− 1} can be written as (i)λj
= {ζλjh+i|h = 0, 1, 2, . . . , (p− 1)2αj− 1}. The

values of h in (i)λj
can be re-arranged as follows:

(i)λj
= {ζλjh+i|h = αj, αj + 1, . . . , (p− 1)2αj − 1, 0, 1, 2, . . . , αj − 1}. In addition to this,

these values of h in (i)λj
can be written in matrix form as follows:
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h=




αj αj + 1 αj + 2 . . . αj + αj − 1 αj + αj . . . αj + 2αj − 1

3αj 3αj + 1 3αj + 2 . . . 3αj + αj − 1 3αj + αj . . . 3αj + 2αj − 1

5αj 5αj + 1 5αj + 2 . . . 5αj + αj − 1 5αj + αj . . . 5αj + 2αj − 1

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

. . . .

.

.

.

(2p− 3)αj (2p− 3)αj + 1 (2p− 3)αj + 2 . . . (2p− 3)αj + αj − 1 (2p− 3)αj + αj . . . (2p− 3)αj + 2αj − 1




.

The following results hold:

λj((2p− 3)αj + αj − 1) ≡ λj((p− 1)2αj − 1) mod (p2 − 1).

λj((2p− 3)αj + αj) ≡ 0 mod (p2 − 1).

λj((2p− 3)αj + 2αj − 1) ≡ λj(αj − 1) mod (p2 − 1).

The set of elements in the column indexed by ζ( p+1
2

)+λj l+i in the matrix representation

of GF (p, 2)∗ is denoted by (l) and given by (l) = {ζ( p+1
2

)(2k+1)+λj l+i|k = 0, 1, 2, . . . , p− 2},
where l = 0, 1, 2, . . . , p+1

λj
− 1. By using the substitution λj = p+1

2αj
we can re-write the

elements of (l) as (l) = {ζλj(αj(2k+1)+l)+i|k = 0, 1, 2, . . . , p−2}, where l = 0, 1, 2, . . . , 2αj−1.

It is clear that the number of elements of (i)λj
is (p−1)2αj and for l = 0, 1, 2, . . . , 2αj−1,

the sum of the number of elements in the sets (l) is also (p− 1)2αj.

Now consider the set (l = 0) = {ζλj(αj(2k+1))+i|k = 0, 1, 2, . . . , p − 2}. It is clear that

these elements are in the set (i)λj
and the corresponding values of h in (i)λj

are in the

first column of the matrix h above.

Next consider the set (l = 1) = {ζλj(αj(2k+1)+1)+i|k = 0, 1, 2, . . . , p−2}. It is clear that

these elements are in the set (i)λj
and the corresponding values of h in (i)λj

are in the

second column of the matrix h above.

Similarly we can show that the elements in the set (l = 2αj−1) = {ζλj(αj(2k+1)+2αj−1)+i|
k = 0, 1, 2, . . . , p− 2} are in the set (i)λj

and the corresponding values of h in (i)λj
are in

the last column of the matrix h above.

Thus it is clear that

(i)λj
=

2αj−1⋃

l=0

(l).

i.e., in the case of p+1
2

= λe1
1 λe2

2 . . . λeu
u , for a fixed i = 0, 1, 2, . . . , λj − 1, the elements of

(i)λj
are completely listed in the columns indexed by ζ

p+1
2

+λj l+i of the matrix representa-

tion of GF (p, 2)∗, where l = 0, 1, 2, . . . , p+1
λj
− 1.

(ii) If λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u then λ

ej

j |p+1
2

, for all j = 1, 2, . . . , u. i.e., there exists
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βj ∈ Z+ such that λ
ej

j = p+1
2βj

. The rest of the proof is very similar to the proof of part

(i).

Note 5.2.10. In Lemma 5.2.9, for j = 1, 2, . . . , u, we identified the elements in the sets

(i)λj
and (i)

λ
ej
j

from the columns in the matrix representation of GF (p, 2)∗. Similarly,

for j = 1, 2, . . . , u, if θ is a product of any combination of λj and λ
ej

j we can identify the

elements in the set (i)θ from the columns in the matrix representation of GF (p, 2)∗. In

this case the elements of (i)θ are completely listed in the columns indexed by ζ
p+1
2

+θl+i in

the matrix representation of GF (p, 2)∗, where l = 0, 1, 2, . . . , p+1
θ
− 1.

Example 5.2.11. Let p = 11 and λ = p+1
2

= 6 = 2 × 3. Then 6|(p + 1), 2|(p + 1) and

3|(p + 1). The set (i)3 = {ζ3h+i | h = 0, 1, 2, . . . , 112−(3+1)
3

}, where i = 0, 1, 2.

i.e.,

(0)3 = {ζ3h | h = 0, 1, 2, . . . , 112−1
3

− 1 = 39}.
(1)3 = {ζ3h+1 | h = 0, 1, 2, . . . , 112−1

3
− 1 = 39}.

(2)3 = {ζ3h+2 | h = 0, 1, 2, . . . , 112−1
3

− 1 = 39}.
i.e.,

(0)3 = {1, ζ3, ζ6, ζ9, ζ12, ζ15, ζ18, ζ21, ζ24, ζ27, ζ30, ζ33, ζ36, ζ39, ζ42, ζ45, ζ48, ζ51, ζ54, . . .}.
(1)3 = {ζ, ζ4, ζ7, ζ10, ζ13, ζ16, ζ19, ζ22, ζ25, ζ28, ζ31, ζ34, ζ37, ζ40, ζ43, ζ46, ζ49, ζ52, ζ55, . . .}.
(2)3 = {ζ2, ζ5, ζ8, ζ11, ζ14, ζ17, ζ20, ζ23, ζ26, ζ29, ζ32, ζ35, ζ38, ζ41, ζ44, ζ47, ζ50, ζ53, ζ56, . . .}.

The elements of (i)3 are completely listed in the columns indexed by ζ6+3l+i in the

matrix representation of GF (11, 2)∗, where l = 0, 1, 2, 3 and i = 0, 1, 2. For example

elements of (0)3 are in the columns indexed by ζ6, ζ9, ζ12 and ζ15.
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GF (11, 2)∗=




ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12 ζ13 ζ14 ζ15 ζ16 ζ17

ζ18 ζ19 ζ20 ζ21 ζ22 ζ23 ζ24 ζ25 ζ26 ζ27 ζ28 ζ29

ζ30 ζ31 ζ32 ζ33 ζ34 ζ35 ζ36 ζ37 ζ38 ζ39 ζ40 ζ41

ζ42 ζ43 ζ44 ζ45 ζ46 ζ47 ζ48 ζ49 ζ50 ζ51 ζ52 ζ53

ζ54 ζ55 ζ56 ζ57 ζ58 ζ59 ζ60 ζ61 ζ62 ζ63 ζ64 ζ65

ζ66 ζ67 ζ68 ζ69 ζ70 ζ71 ζ72 ζ73 ζ74 ζ75 ζ76 ζ77

ζ78 ζ79 ζ80 ζ81 ζ82 ζ83 ζ84 ζ85 ζ86 ζ87 ζ88 ζ89

ζ90 ζ91 ζ92 ζ93 ζ94 ζ95 ζ96 ζ97 ζ98 ζ99 ζ100 ζ101

ζ102 ζ103 ζ104 ζ105 ζ106 ζ107 ζ108 ζ109 ζ110 ζ111 ζ112 ζ113

ζ114 ζ115 ζ116 ζ117 ζ118 ζ119 1 ζ ζ2 ζ3 ζ4 ζ5




10×12

.

Thus far we have identified the positioning of the elements of (i)λ in the matrix rep-

resentation of GF (p, 2)∗ for λ = p+1
2

, for the prime power factors of λ = p+1
2

and for the

product of any combination of these factors. In the next lemma we will study the case

λ = 2q for 1 < q < p−1
2

such that p ≡ (2q − 1)mod(4q).

Lemma 5.2.12. Let p > 3 be a prime such that, for 1 < q < p−1
2

, p ≡ (2q − 1)(mod 4q)

and 2 < λ < p−1 such that λ|(p+1). Let i = 0, 1, 2, . . . , λ−1 and the set (i)λ = {ζλh+i|h =

0, 1, 2, . . . , p2−1
λ
− 1}. For 1 < q < p−1

2
, if λ = 2q then for a fixed i = 0, 1, 2, . . . , 2q − 1

the elements of the set (i)2q are completely listed in the columns indexed by ζ
p+1
2

+2ql+q+i

in the matrix representation of GF (p, 2)∗, where l = 0, 1, 2, . . . , p+1
2q
− 1.

Proof:

Since λ = 2q and λ|(p + 1) we have 2q|(p + 1) and hence there exists γ ∈ Z+ such that

p+1
2q

= γ. Since p ≡ (2q − 1)(mod 4q) there exists ρ ∈ Z+ such that p−(2q−1)
4q

= ρ. This

implies that p+1
4q
− 2q

4q
= 1

2

(
p+1
2q

)
− 1

2
is a positive integer. That is γ−1

2
is a positive integer

and hence γ is an odd positive integer.

Now by using the substitution p+1
2q

= γ we can re-write the set (i)2q as

(i)2q = {ζ2qh+i|h = 0, 1, 2, . . . ,
p2 − 1

2q
− 1}

= {ζ2qh+i|h = 0, 1, 2, . . . , γ(p− 1)− 1}.

Let (l) be the set of elements in the column labeled by ζ
p+1
2

+2ql+q+i of the matrix rep-

resentation of GF (p, 2)∗, where l = 0, 1, 2, . . . , p+1
2q
− 1. Again by using the substitution
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p+1
2q

= γ we can write the elements of the set (l) as

(l) = {ζ p+1
2

(2k+1)+2ql+q+i|k = 0, 1, 2, . . . , p− 2}
= {ζqγ(2k+1)+2ql+q+i|k = 0, 1, 2, . . . , p− 2},

where l = 0, 1, 2, . . . , γ − 1.

For l = 0, 1, 2, . . . , γ − 1, it is clear that the number of elements of (i)2q and the sum

of the number of elements of (l) are equal to γ(p− 1).

Re-writing the set (i)2q:

(i)2q = {ζ2qh+i|h = 0, 1, 2, . . . , γ(p− 1)− 1}
= {ζ2qh+i|h =

γ + 1

2
,
γ + 1

2
+ 1,

γ + 1

2
+ 2, . . . , γ(p− 1), 0, 1, 2, . . . ,

γ − 1

2
}

= {ζ2qh+i|h =
γ + 1

2
,
γ + 3

2
,
γ + 5

2
, . . . , γ(p− 1), 0, 1, 2, . . . ,

γ − 1

2
}.

As in Lemma 5.2.9, the values of h of (i)2q can be written in matrix form as follows:

h=




γ+1
2

γ+3
2

γ+5
2 . . . γ+γ−2

2
γ+γ

2 . . . 3γ−1
2

3γ+1
2

3γ+3
2

3γ+5
2 . . . 3γ+γ−2

2
3γ+γ

2 . . . 5γ−1
2

5γ+1
2

5γ+3
2

5γ+5
2 . . . 5γ+γ−2

2
5γ+γ

2 . . . 7γ−1
2

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

. . . .

.

.

.
(2p−3)γ+1

2
(2p−3)γ+3

2
(2p−3)γ+5

2 . . .
(2p−3)γ+γ−2

2
(2p−3)γ+γ

2 . . .
(2p−3)γ+2γ−1

2




.

The following results hold:

2q
(

(2p−3)γ+γ−2
2

)
≡ 2q(γ(p− 1)− 1) mod (p2 − 1).

2q
(

(2p−3)γ+γ
2

)
≡ 0 mod (p2 − 1).

2q
(

(2p−3)γ+2γ−1
2

)
≡ 2q

(
γ−1

2

)
mod (p2 − 1).

Now consider the sets (l) = {ζqγ(2k+1)+2ql+q+i|k = 0, 1, 2, . . . , p−2}, for l = 0, 1, 2, . . . , γ−1.

(0) = {ζqγ(2k+1)+q+i|k = 0, 1, 2, . . . , p− 2}
= {ζq(γ+1)+i, ζq(3γ+1)+i, ζq(5γ+1)+i, . . . , ζq((2p−3)γ+1)+i}.

It is clear that the entire set (0) is in (i)2q and the corresponding values of h in (i)2q are

in the first column of the matrix h above.

(1) = {ζqγ(2k+1)+2q+q+i|k = 0, 1, 2, . . . , p− 2}
= {ζq(γ+3)+i, ζq(3γ+3)+i, ζq(5γ+3)+i, . . . , ζq((2p−3)γ+3)+i}.
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It is clear that this entire set is in (i)2q and the corresponding h values in (i)2q are in the

second column of the matrix h above.

Continuing in this manner we have

(γ − 1) = {ζqγ(2k+1)+2q(γ−1)+q+i|k = 0, 1, 2, . . . , p− 2}
= {ζq(3γ−1)+i, ζq(5γ−1)+i, ζq(7γ−1)+i, . . . , ζq((2p−3)γ+2γ−1)+i}

and it is also clear that the entire set (γ − 1) is in (i)2q and the corresponding values of

h in (i)2q are in the last column of the matrix h above.

Thus it is clear that

(i)2q =

γ−1⋃

l=0

(l).

i.e., in the case of λ = 2q, for a fixed i = 0, 1, 2, . . . , 2q − 1, the elements in the set (i)2q

are completely listed in ζ
p+1
2

+2ql+q+i columns of the matrix representation of GF (p, 2)∗,

where l = 0, 1, 2, . . . , p+1
2q
− 1.

The following example illustrates this result.

Example 5.2.13. Let q = 2 and p = 11. It is clear that 11 ≡ (2×2−1)mod(4×2). (i.e.,

11 ≡ 3(mod 8)). Let λ = 2q = 4. Then λ|(p+1). (i.e. 4|12 ). The set (i)4 = {ζ4h+i | h =

0, 1, 2, . . . , 112−(4+1)
4

}, where i = 0, 1, 2, 3.

i.e.,

(0)4 = {ζ4h | h = 0, 1, 2, . . . , 112−1
4

− 1 = 29}.
(1)4 = {ζ4h+1 | h = 0, 1, 2, . . . , 112−1

4
− 1 = 29}.

(2)4 = {ζ4h+2 | h = 0, 1, 2, . . . , 112−1
4

− 1 = 29}.
(3)4 = {ζ4h+3 | h = 0, 1, 2, . . . , 112−1

4
− 1 = 29}.

i.e.,

(0)4 = {1, ζ4, ζ8, ζ12, ζ16, ζ20, ζ24, ζ28, ζ32, ζ36, ζ40, ζ44, ζ48, ζ52, ζ56, . . .}.
(1)4 = {ζ, ζ5, ζ9, ζ13, ζ17, ζ21, ζ25, ζ29, ζ33, ζ37, ζ41, ζ45, ζ49, ζ53, ζ57, . . .}.
(2)4 = {ζ2, ζ6, ζ10, ζ14, ζ18, ζ22, ζ26, ζ30, ζ34, ζ38, ζ42, ζ46, ζ50, ζ54, ζ58, . . .}.
(3)4 = {ζ3, ζ7, ζ11, ζ15, ζ19, ζ23, ζ27, ζ31, ζ35, ζ39, ζ43, ζ47, ζ51, ζ55, ζ59, . . .}.

99



The elements of (i)4 are completely listed in the columns indexed by ζ6+4l+2+i = ζ8+4l+i

in the matrix representation of GF (11, 2)∗, where l = 0, 1, 2 and i = 0, 1, 2, 3. For example

the elements of (0)4 are in the columns indexed by ζ8, ζ12 and ζ16.

GF (11, 2)∗=




ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12 ζ13 ζ14 ζ15 ζ16 ζ17

ζ18 ζ19 ζ20 ζ21 ζ22 ζ23 ζ24 ζ25 ζ26 ζ27 ζ28 ζ29

ζ30 ζ31 ζ32 ζ33 ζ34 ζ35 ζ36 ζ37 ζ38 ζ39 ζ40 ζ41

ζ42 ζ43 ζ44 ζ45 ζ46 ζ47 ζ48 ζ49 ζ50 ζ51 ζ52 ζ53

ζ54 ζ55 ζ56 ζ57 ζ58 ζ59 ζ60 ζ61 ζ62 ζ63 ζ64 ζ65

ζ66 ζ67 ζ68 ζ69 ζ70 ζ71 ζ72 ζ73 ζ74 ζ75 ζ76 ζ77

ζ78 ζ79 ζ80 ζ81 ζ82 ζ83 ζ84 ζ85 ζ86 ζ87 ζ88 ζ89

ζ90 ζ91 ζ92 ζ93 ζ94 ζ95 ζ96 ζ97 ζ98 ζ99 ζ100 ζ101

ζ102 ζ103 ζ104 ζ105 ζ106 ζ107 ζ108 ζ109 ζ110 ζ111 ζ112 ζ113

ζ114 ζ115 ζ116 ζ117 ζ118 ζ119 1 ζ ζ2 ζ3 ζ4 ζ5




10×12

.

By completing the proof of the previous few lemmas and giving suitable examples,

we have studied a nice relationship between the elements in the columns of the matrix

representation of GF (p, 2)∗ and the elements of (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1},

for various values of λ. We are now in a position to study the distribution of Tr(axλ) for

various values of λ, where 2 < λ < p− 1 such that λ|(p + 1).

Theorem 5.2.14. Let p > 3 be a prime and 2 < λ < p − 1 such that λ|(p + 1). Let Tr

be the trace map over GF (p, 2) and a ∈ GF (p, 2)∗.

(i) If λ = p+1
2

then as x ranges over GF (p, 2)∗, Tr(axλ) takes each element in Zp \ {0}
equally often either p− (λ− 1) times or p + 1 times.

(ii) If λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u then

(a) for each λj, j = 1, 2, . . . , u, as x ranges over GF (p, 2)∗, Tr(axλj) takes each element

in Zp \ {0} equally often either p− (λj − 1) times or p + 1 times.

(b) for each λj, j = 1, 2, . . . , u, as x ranges over GF (p, 2)∗, Tr(axλ
ej
j ) takes each element

in Zp \ {0} equally often either p− (λ
ej

j − 1) times or p + 1 times.

(iii) For 1 < q < p−1
2

, if p ≡ (2q−1)mod(4q) and λ = 2q then as x ranges over GF (p, 2)∗,
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Tr(axλ) takes each element in Zp \ {0} equally often either p − (2q − 1) times or p + 1

times.

Proof:

From Lemma 5.2.2 we know that for a fixed a ∈ GF (p, 2)∗ and for all x ∈ GF (p, 2)∗ the

set {axλ} is given by λ copies of (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1} or λ copies of

cyclic shifts of (i)λ, where 2 < λ < p− 1 such that λ|(p + 1) and i = 0, 1, 2, . . . , λ− 1.

(i) If λ = p+1
2

then from part (i) of Lemma 5.2.7 we know that the elements in the

set (i)λ are from the ζ
p+1
2

+λl+i columns of the matrix representation of GF (p, 2)∗, where

l = 0, 1. From Lemma 4.3.6 we know that the trace of each element of the first column

of the matrix representation of GF (p, 2)∗ (i.e., the column indexed by ζ
p+1
2 ) is 0 and each

of the other columns take each element in Zp \ {0} exactly once. Therefore the trace of

the elements in (i)λ contains each element in Zp \ {0} equally often either 1 time (when

i = 0) or 2 times (when i 6= 0). Since {axλ} contains λ copies of (i)λ, the trace of elements

of {axλ} takes each element in Zp \ {0} equally often either λ times or 2λ times. Since

λ = p+1
2

, as x ranges over GF (p, 2)∗, Tr(axλ) takes each element in Zp \ {0} equally often

either p+1
2

times (i.e., p− (λ− 1)) or (p + 1) times.

(ii) (a) If λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u then from part (i) of Lemma 5.2.9 we know that the

elements of (i)λj
are from ζ

p+1
2

+λj l+i columns of the matrix representation of GF (p, 2)∗,

where j = 1, 2, . . . , u and l = 0, 1, 2, . . . , p+1
λj
− 1. Again from Lemma 4.3.6 we know that

the trace of the elements in the first column of the matrix representation of GF (p, 2)∗

(i.e., the column ζ
p+1
2 ) is 0 and all the other columns take each element in Zp \{0} exactly

once. Therefore the trace of the elements of (i)λj
contains each element in Zp\{0} equally

often either p+1
λj
− 1 times or p+1

λj
times. Since {axλj} contains λj copies of (i)λj

, the trace

of elements of {axλj} takes each element in Zp \ {0} equally often either λj

(
p+1
λj
− 1

)

times or λj

(
p+1
λj

)
times. Thus as x ranges over GF (p, 2)∗, Tr(axλj) takes each element

in Zp \ {0} equally often either (p− (λj − 1)) times (when i = 0) or (p + 1) times (when

i 6= 0).

(b) Similarly, from part (ii) of Lemma 5.2.9, we can prove that as x ranges over GF (p, 2)∗,
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Tr(axλ
ej
j ) takes each element in Zp \ {0} equally often either (p− (λ

ej

j − 1)) times (when

i = 0) or (p + 1) times (when i 6= 0).

(iii) For 1 < q < p−1
2

, if p ≡ (2q − 1)mod(4q) and λ = 2q then from Lemma 5.2.12

we know that for i = 0, 1, 2, . . . , 2q − 1, the elements of (i)2q are completely from the

ζ
p+1
2

+2ql+q+i columns of the matrix representation of GF (p, 2)∗, where i = 0, 1, 2, . . . , 2q−1

and l = 0, 1, 2, . . . , p+1
2q
− 1. Again from Lemma 4.3.6 we know that the trace of the ele-

ments of the first column of the matrix representation of GF (p, 2)∗ (i.e., the column ζ
p+1
2 )

is 0 and all the other columns take each element in Zp \ {0} exactly once. Therefore

the trace of the elements of (i)2q contains each element in Zp \ {0} equally often either

p+1
2q
− 1 times or p+1

2q
times. Since {ax2q} contains 2q copies of (i)2q, the trace of ele-

ments of {ax2q} takes each element in Zp \ {0} equally often either 2q
(

p+1
2q
− 1

)
times

(when i = q) or 2q
(

p+1
2q

)
times (when i 6= q). Thus as x ranges over GF (p, 2)∗, Tr(ax2q)

takes each element in Zp\{0} equally often either (p−(2q−1)) times or (p+1) times.

So far we have studied, for different values of λ, the distribution of Tr(axλ). We will

apply this in the next section to construct two-weight, self-orthogonal codes over Zp.

5.3 Code construction from Tr(axλ)

From Theorem 5.2.14 we studied, for various values of λ, as x ranges over GF (p, 2), the

distribution of Tr(axλ), for a ∈ GF (p, 2).We are now in a position to use this in the

next theorem to construct two-dimensional, two-weight, self-orthogonal codes over Zp for

p > 3.

Theorem 5.3.1. Let p > 3 be a prime and 2 < λ < p− 1 such that λ|(p + 1).

(i) If λ = p+1
2

then the rows of the matrix Hλ = [Tr(axλ)]a,x∈GF (p,2) form a two-dimensional,

two-weight, self-orthogonal code over Zp with the parameters [p2, 2, (p− (λ− 1))(p− 1)].

(ii) If λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u then

(a) the rows of the matrix Hλj
= [Tr(axλj)]a,x∈GF (p,2) form a two-dimensional, two-

weight, self-orthogonal code over Zp with the parameters [p2, 2, (p − (λj − 1))(p − 1)],
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where j = 1, 2, . . . , u.

(b) the rows of the matrix H
λ

ej
j

= [Tr(axλ
ej
j )]a,x∈GF (p,2) form a two-dimensional, two-

weight, self-orthogonal code over Zp with the parameters [p2, 2, (p − (λ
ej

j − 1))(p − 1)] ,

where j = 1, 2, . . . , u.

(iii) For 1 < q < p−1
2

, if p ≡ (2q − 1)(mod4q) and λ = 2q then the rows of the matrix

Hλ = [Tr(axλ)]a,x∈GF (p,2) form a two-dimensional, two-weight, self-orthogonal code over

Zp with the parameters [p2, 2, (p− (2q − 1))(p− 1)].

Proof:

Let

GHλ
=


 Tr(cλ

i ), i = 1, 2, . . . , p2

Tr(ζcλ
i ), i = 1, 2, . . . , p2




2×p2

.

Firstly the two rows of the matrix GHλ
are linearly independent. Let any a0, a1 ∈ Zp and

suppose that, for all i = 1, 2, . . . , p2, a0Tr(cλ
i ) + a1Tr(ζcλ

i ) = 0. From the properties of

the trace map of Theorem 4.3.2, for all i = 1, 2, . . . , p2, we have Tr((a0 + a1ζ)cλ
i ) = 0.

According to the distribution of the trace values over Zp this implies that (a0+a1ζ)cλ
i = 0,

for all i = 1, 2, . . . , p2. However, cλ
i 6= 0 for at least one 1 ≤ i ≤ p2 and hence a0 +a1ζ = 0.

Since 1 and ζ represent linearly independent 2-tuples over Zp, a0 and a1 should be 0.

Therefore two rows in GHλ
are linearly independent.

Now consider all the linear combinations of two rows of GHλ
. For i = 1, 2, . . . , p2 these

linear combinations are given by a0Tr(cλ
i ) + a1Tr(ζcλ

i ) = Tr((a0 + a1ζ)cλ
i ). This implies

that the rows of the matrix Hλ can be generated by the rows of GHλ
. Thus GHλ

is a

generator matrix of Hλ and therefore the length n and the dimension k of the code Hλ

are p2 and 2 respectively. Therefore Hλ is a two-dimensional linear code over Zp.

(i) From part (i) of Theorem 5.2.14, when λ = p+1
2

, every non-zero row of the matrix

Hλ = [Tr(axλ)]a,x∈GF (p,2) has every element in Zp \ {0} equally often either p − (λ − 1)

times or p + 1 times. Since there are p − 1 elements in Zp \ {0}, the Hamming weights

of the codewords of Hλ are (p − (λ − 1))(p − 1) and p2 − 1. Therefore Hλ is a two-

weight code. The minimum Hamming weight of Hλ is (p − (λ − 1))(p − 1). Therefore

Hλ = [Tr(axλ)]a,x∈GF (p,2) is a [p2, 2, (p− (p+1
2
− 1))(p− 1)] code over Zp.
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(ii) (a) From part (ii) (a) of Theorem 5.2.14, when λ = p+1
2

= λe1
1 λe2

2 . . . λeu
u , every

non-zero row of Hλj
= [Tr(axλj)]a,x∈GF (p,2) has every element in Zp \ {0} equally often

either p − (λj − 1) times or (p + 1) times. Since there are (p − 1) elements in Zp \ {0},
the Hamming weights of codewords of Hλj

are (p − (λj − 1))(p − 1) and p2 − 1. There-

fore Hλj
is a two-weight code. The minimum Hamming weight of codewords of Hλj

is

(p− (λj−1))(p−1). Therefore Hλj
= [Tr(axλj)]a,x∈GF (p,2) is a [p2, 2, (p− (λj−1))(p−1)]

code over Zp , where j = 1, 2, . . . , u.

(b) Similarly from part (ii) (b) of Theorem 5.2.14 we can show that H
λ

ej
j

= [Tr(axλ
ej
j )]a,x∈GF (p,2)

is a two-weight code with the parameters [p2, 2, (p − (λ
ej

j − 1))(p − 1)] over Zp, where

j = 1, 2, . . . , u.

(iii) From part (iii) of Theorem 5.2.14, for 1 < q < p−1
2

, if p ≡ (2q − 1)mod(4q) and

λ = 2q then every non-zero row of Hλ = [Tr(axλ)]a,x∈GF (p,2) has every element in Zp \{0}
equally often either p− (2q− 1) times or (p+1) times. Since there are (p− 1) elements in

Zp \ {0}, the Hamming weights of codewords of Hλ are (p− (2q− 1))(p− 1) and (p2− 1).

Therefore Hλ is a two-weight code. The minimum Hamming weight of codewords of Hλ is

(p− (2q− 1))(p− 1). Therefore Hλ = [Tr(axλ)]a,x∈GF (p,2) is a [p2, 2, (p− (2q− 1))(p− 1)]

code over Zp.

Finally the dot product of each codeword of the above codes with itself is either

S = (p + 1)

p−1∑
i=1

i2

=
p

6
(p + 1)(2p2 − 3p + 1)

or

S = (p− (λ− 1))

p−1∑
i=1

i2

=
p

6
(p− (λ− 1))(2p2 − 3p + 1).

Since p > 3 we have S ≡ 0 mod p. From Theorem 4.2.5 we know that a linear code over

Zp, for p > 2, is self-orthogonal if and only if the dot product of each codeword with itself
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is zero. Therefore all the above codes are self-orthogonal codes over Zp for p > 3.

Corollary 5.3.2. Let H∗
λ be the code that can be obtained by deleting the first column of

the matrix Hλ of Theorem 5.3.1. H∗
λ is a [p2 − 1, 2, (p − (λ − 1))(p − 1)] code and the

codewords of H∗
λ are the left-cyclic shifts of the first λ non-initial rows of H∗

λ.

Proof:

Let A∗
λ = [axλ]a,x∈GF (p,2)∗ . From Lemma 5.2.2 we know that the first λ rows of A∗

λ are given

by λ copies of (i)λ, where (i)λ = {ζλh+i | h = 0, 1, 2, . . . , p2−1
λ
−1} and i = 0, 1, 2, . . . , λ−1.

The next λ rows of A∗
λ are given by λ copies of one cyclic shift of (i)λ and in this man-

ner the last λ rows of A∗
λ are given by λ copies of p2−1

λ
− 1 cyclic shifts of (i)λ. Thus

the codewords of H∗
λ that can be obtained by deleting the first column of the matrix

Hλ = [Tr(axλ)]a,x∈GF (p,2) are the left-cyclic shifts of the first λ non-initial rows of H∗
λ.

From Theorem 5.3.1 the parameters of H∗
λ are [p2− 1, 2, (p− (λ− 1))(p− 1)]. Indeed H∗

λ

is a cyclic code.

The following example illustrates the case λ = p+1
2

of Theorem 5.3.1.

Example 5.3.3. Let p = 5 and λ = 3. Then λ|(p + 1) and 2 < λ < p − 1. Consider

the primitive polynomial p(x) = x2 + x + 2 over Z5 and let ζ be a root of p(x). Then

ζ2 = 4ζ + 3 and the elements of GF (5, 2) = Z5[x]/(p(x)) = Z5[ζ] can be written as

{0, 1, ζ, ζ2, . . . , ζ23}. The following table provides us the trace values of these elements

and the trace values of their third powers.
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Element x x = a1ζ + a0 Tr(x) x3 Tr(x3)

0 0ζ + 0 0 0 0

1 0ζ + 1 2 1 2

ζ 1ζ + 0 4 ζ3 0

ζ2 4ζ + 3 2 ζ6 4

ζ3 4ζ + 2 0 ζ9 0

ζ4 3ζ + 2 1 ζ12 3

ζ5 4ζ + 4 4 ζ15 0

ζ6 0ζ + 2 4 ζ18 1

ζ7 2ζ + 0 3 ζ21 0

ζ8 3ζ + 1 4 1 2

ζ9 3ζ + 4 0 ζ3 0

ζ10 1ζ + 4 2 ζ6 4

ζ11 3ζ + 3 3 ζ9 0

ζ12 0ζ + 4 3 ζ12 3

ζ13 4ζ + 0 1 ζ15 0

ζ14 1ζ + 2 3 ζ18 1

ζ15 1ζ + 3 0 ζ21 0

ζ16 2ζ + 3 4 1 2

ζ17 1ζ + 1 1 ζ3 0

ζ18 0ζ + 3 1 ζ6 4

ζ19 3ζ + 0 2 ζ9 0

ζ20 2ζ + 4 1 ζ12 3

ζ21 2ζ + 1 0 ζ15 0

ζ22 4ζ + 1 3 ζ18 1

ζ23 2ζ + 2 2 ζ21 0

By taking a, x ∈ GF (5, 2) = {0, 1, ζ, ζ2, . . . , ζ23}, the matrix A3 = [(ax3)]a,x∈GF (5,2) is

given by
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A3=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0

0 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21

0 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22

0 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23

0 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1

0 ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ

0 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2

0 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3

0 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4

0 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5

0 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6

0 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7

0 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8

0 ζ12 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9

0 ζ13 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10

0 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11

0 ζ15 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9 ζ12

0 ζ16 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10 ζ13

0 ζ17 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11 ζ14

0 ζ18 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15

0 ζ19 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16

0 ζ20 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17

0 ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18 ζ21 1 ζ3 . . . ζ21 1 ζ3 ζ6 ζ9 ζ12 ζ15 ζ18

0 ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19 ζ22 ζ ζ4 . . . ζ22 ζ ζ4 ζ7 ζ10 ζ13 ζ16 ζ19

0 ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20 ζ23 ζ2 ζ5 . . . ζ23 ζ2 ζ5 ζ8 ζ11 ζ14 ζ17 ζ20



25×25

.

The matrix H3 = [Tr(ax3)]a,x∈GF (5,2) is given by
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H3=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0

0 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3

0 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2

0 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2

0 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4

0 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2

0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0

0 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1

0 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4

0 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4

0 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3

0 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4

0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0

0 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2

0 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3

0 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3

0 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1

0 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3

0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0

0 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4

0 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1

0 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1

0 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2

0 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1




25×25

.

The rows of H3 can be generated by

GH3=


 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0

0 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3




2×25

.

By deleting the first column of the matrix H3 we obtain:
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H∗
3=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0

4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3

2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2

0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2

1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4

4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2

4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0

3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1

4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4

0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4

2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3

3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4

3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0

1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2

3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3

0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3

4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1

1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3

1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0

2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4

1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1

0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1 0 2 0 4 0 3 0 1

3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2 3 4 1 3 2 1 4 2

2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1 2 2 4 4 3 3 1 1




25×24

.

Therefore H3 is a linear code over Z5 and its parameters are [25, 2, 12]. The punctured

code H∗
3 , obtained by deleting the first column of H3 is a [24, 2, 12] cyclic code over Z5.

Indeed H∗
3 is a cyclic code. The Hamming weight of each non-zero codeword of H3 is either

12 or 24. Thus H3 is a two-weight code. From Theorem 5.3.1, H3 is a self-orthogonal

code.
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Throughout this chapter, for various values of λ > 2 such that λ|(p + 1), we have

studied the use of the properties of the trace map over GF (p, 2) in the form of Tr(axλ)

and used them to construct two-dimensional, two-weight, cyclic, self-orthogonal codes

over Zp. The next question is whether we can apply the trace map over GF (p, 2) in

similar manner for λ|(p− 1). We devote the next chapter to study this case.
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Chapter 6

Two-Weight and Constant-Weight

Codes from Tr(axλ)

6.1 Introduction

In Chapters 4 and 5 we have individually studied the use of the trace map over the Galois

field GF (p, 2) in the from of Tr(ax2) and Tr(axλ) respectively. In Chapter 5 we have

considered the case λ|(p + 1) and constructed two-weight, self-orthogonal codes over Zp

by using the trace map in the form of Tr(axλ). The main reason to consider the case

λ|(p+1) was that the number of invertible elements of the Galois field GF (p, 2), i.e., p2−1,

needed to be divisible by λ. Since p2 − 1 = (p− 1)(p + 1), we need to also study the case

when λ|(p− 1). Experimental results have provided us, when λ > 2 - even and λ|(p− 1),

with the code Hλ = [Tr(axλ)]a,x∈GF (p,2) a two-weight code over Zp with the parameters

[p2, 2, (p−1)2]. These parameters are the same as that of the code H2 = [Tr(ax2)]a,x∈GF (p,2)

that we have constructed in Chapter 4. Experimental results have also provided us, when

λ > 2-odd and λ|(p− 1), with the code Hλ = [Tr(axλ)]a,x∈GF (p,2), a constant-weight code

over Zp with the parameters [p2, 2, p(p − 1)] and these parameters are the same as that

of the code H = [Tr(ax)]a,x∈GF (p,2) that we have constructed in [65]. The equality of

parameters with already constructed codes and the experimental results motivate us to

study the case λ|(p− 1).

In Section 6.2 we study the case λ > 2-even such that λ|(p−1) for both p ≡ 1(mod 4)
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and p ≡ 3(mod 4). We will prove that the code Hλ = [Tr(axλ)]a,x∈GF (p,2) is a two-weight

code over Zp with the parameters [p2, 2, (p − 1)2]. Section 6.4 is devoted to the study of

the case λ > 2-odd such that λ|(p− 1) for both p ≡ 1( mod 4) and p ≡ 3(mod 4). In this

case we will prove that the code Hλ = [Tr(axλ)]a,x∈GF (p,2) is a constant-weight code over

Zp with the parameters [p2, 2, p(p− 1)].

6.2 Two-weight codes from Tr(axλ) when λ > 2-even

The codes that we constructed in Chapters 4 and 5 are totally dependent on the properties

of the trace map over the Galois field GF (p, 2). In this section we recall Theorem 4.3.3

that was used to identify the elements of the Galois field that have trace zero. We know

that these elements are Ψ = {ζ (p+1)
2

(2k+1)|k = 0, 1, 2, . . . , p − 2}, where ζ is a primitive

element of GF (p, 2). As usual first we need to study, for a ∈ GF (p, 2), the distribution of

Tr(axλ) by changing x over GF (p, 2). From Theorem 4.3.8 of Chapter 4, Tr(ax2) takes

each element in Zp \{0} equally often either p+1 times or p− 1 times and from Theorem

5.2.14 of Chapter 5, for different values of λ, Tr(axλ) takes each element in Zp \ {0}
equally often either p− (λ− 1) times or p + 1 times.

The next couple of lemmas study the distribution of elements of Ψ = {ζ (p+1)
2

(2k+1)|k =

0, 1, 2, . . . , p− 2} in each row of A = [axλ]a,x∈GF (p,2)∗ . Firstly we consider the case λ > 2-

even and λ|(p − 1) for p ≡ 3(mod 4). We can readily check that the minimum value of

such a prime p is 19.

Lemma 6.2.1. Let p ≥ 19 be a prime such that p ≡ 3(mod 4) (i.e.,p+1
2

-even) and

λ > 2-even such that λ|(p − 1). Let (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1}, where i =

0, 1, 2, . . . , λ−1. Let Ψ = {ζ (p+1)
2

(2k+1)|k = 0, 1, 2, . . . , p−2} and (s) = {ζ( p+1
2

)(2s+1+λj)|j =

0, 1, 2, . . . , 2(p−1)
λ

− 1}, where 0 ≤ s ≤ λ
2
− 1. Then

(i) For all s = 0, 1, 2, . . . , λ
2
− 1, (s) ⊂ Ψ.

(ii) Ψ =
⋃̇

(s).

(iii) For each s, there exists an even i such that (s) ⊂ (i)λ.

Proof:

From Lemma 5.2.4 the set Ψ gives the trace zero elements of GF (p, 2)∗.
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(i) Let any α ∈ (s). Then α = ζ
(p+1)

2
(2s+1+λj). Since λ > 2 is even we have 2s + 1 + λj is

odd and therefore 2s + 1 + λj can be written as 2k1 + 1 for k1 = s + λ
2
j. Thus α ∈ Ψ and

hence (s) ⊂ Ψ.

(ii) Now let α ∈ Ψ. Then α = ζ
(p+1)

2
(2k+1). Since λ > 2-even ⇒ λ

2
is an integer. Since 0 ≤

k ≤ p−2, by division algorithm we can write k = λ
2
j +s for some j = 0, 1, 2, . . . , 2(p−1)

λ
−1

and s = 0, 1, 2, . . . , λ
2
− 1. Therefore α ∈ (s) and since (s) are disjoint sets it is clear that

Ψ =
⋃̇

(s).

(iii) Let α ∈ (s). Then α = ζ
(p+1)

2
(2s+1+λj). To prove that ζ

(p+1)
2

(2s+1+λj) ∈ (i)λ for all

j, we need to prove that p+1
2

(2s + 1 + λj) ≡ i(mod λ). That is we need to prove that

p+1
2

(2s + 1 + λj) is in the same equivalence class mod λ for all j. In another words we

need to prove that
(

p+1
2

)
(2s + 1) +

(
p+1
2

)
λj is in the same equivalence class mod λ for

all j. Since
(

p+1
2

)
λj ≡ 0(mod λ), we have

(
p+1
2

)
(2s + 1) is in the same equivalence class

mod λ for all j. Therefore p+1
2

(2s + 1 + λj) is in the same equivalence class mod λ for

all j. i.e., in the equivalence class of p+1
2

(2s + 1) when j = 0. Therefore (s) ⊂ (i)λ for

i ≡ (
p+1
2

)
(2s + 1) mod λ. Since λ and

(
p+1
2

)
are even it is clear that i is even.

Consider the following example to illustrate this result.

Example 6.2.2. Let p = 19 and λ = 6. Then p+1
2

= 10-even and λ|(p − 1). The

sets Ψ = {ζ10(2k+1)|k = 0, 1, 2, . . . , 17}, (i)6 = {ζ6h+i|h = 0, 1, 2, . . . , 59} and (s) =

{ζ10(2s+1+6j)|j = 0, 1, 2, 3, 4, 5}, where i = 0, 1, 2, . . . , 5 and s = 0, 1, 2. Now look at the

full set (s) for each s.

(0) = {ζ10, ζ70, ζ130, ζ190, ζ250, ζ310}.
(1) = {ζ30, ζ90, ζ150, ζ210, ζ270, ζ330}.
(2) = {ζ50, ζ110, ζ170, ζ230, ζ290, ζ350}.

It is clear that all the elements of Ψ are in the above three sets.

Similarly consider the complete set of (i)6 for i = 0, 1, 2, 3, 4, 5 given below.

(0)6 = {1, ζ6, ζ12, ζ18, ζ24, ζ30, ζ36, ζ42, ζ48, ζ54, ζ60, ζ66, ζ72, ζ78, ζ84, ζ90, ζ96, ζ102, ζ108, ζ114, . . .}.
(1)6 = {ζ, ζ7, ζ13, ζ19, ζ25, ζ31, ζ37, ζ43, ζ49, ζ55, ζ61, ζ67, ζ73, ζ79, ζ85, ζ91, ζ97, ζ103, ζ109, ζ115, . . .}.
(2)6 = {ζ2, ζ8, ζ14, ζ20, ζ26, ζ32, ζ38, ζ44, ζ50, ζ56, ζ62, ζ68, ζ74, ζ80, ζ86, ζ92, ζ98, ζ104, ζ110, ζ116, . . .}.
(3)6 = {ζ3, ζ8, ζ15, ζ21, ζ27, ζ33, ζ39, ζ45, ζ51, ζ57, ζ63, ζ69, ζ75, ζ81, ζ87, ζ93, ζ99, ζ105, ζ111, ζ117, . . .}.
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(4)6 = {ζ4, ζ10, ζ16, ζ22, ζ28, ζ34, ζ40, ζ46, ζ52, ζ58, ζ64, ζ70, ζ76, ζ82, ζ88, ζ94, ζ100, ζ106, ζ112, ζ118, . . .}.
(5)6 = {ζ5, ζ11, ζ17, ζ23, ζ29, ζ35, ζ41, ζ47, ζ53, ζ59, ζ65, ζ71, ζ77, ζ83, ζ89, ζ95, ζ101, ζ107, ζ113, ζ119, . . .}.

It is clear that the elements of the sets (0), (1) and (2) are completely listed in the sets

(4)6, (0)6 and (2)6 respectively. i.e., for each 0 ≤ s ≤ 2 there exists an even i, 0 ≤ i ≤ 5

such that (s) ⊂ (i)λ. For example, when s = 0,
(

p+1
2

)
(2s + 1) = p+1

2
= 10 ≡ 4(mod λ).

i.e., (0) ⊂ (4)6.

We are now in a position to study the distribution of elements of Ψ = {ζ( p+1
2

)(2k+1)|k =

0, 1, 2, . . . , p − 2} in each row of Aλ = [axλ]a,x∈GF (p,2)∗ . Let a = ζt0 and x = ζt1 , where

0 ≤ t0, t1 ≤ p2 − 1. Then elements of any given row of A can be written as {ζt0+λt1|t1 =

0, 1, 2, . . . , p2 − 1}. Since λ is even, the powers of ζ in any given row of A are either odd

or even. Therefore we label the rows of A as odd and even rows respectively.

Lemma 6.2.3. Let p ≥ 19 be a prime such that p ≡ 3(mod 4) (i.e.,p+1
2

-even). Let λ > 2-

even and λ|(p−1). Let (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
−1}, where i = 0, 1, 2, . . . , λ−1,

Ψ = {ζ( p+1
2

)(2k+1)|k = 0, 1, 2, . . . , p − 2} and Aλ = [axλ]a,x∈GF (p,2)∗. Then every even row

of Aλ has 2(p − 1) elements from the set Ψ and no elements of Ψ occur in the odd rows

of Aλ.

Proof:

From Lemma 6.2.1 we know that the elements of Ψ are equally distributed over

(0)λ, (2)λ, (4)λ, . . . , (λ − 2)λ giving 2(p−1)
λ

elements per set. All the other sets (i)λ have

no elements from the set Ψ. From Lemma 5.2.2 we know that each row of Aλ contains

λ-copies of (i)λ or λ-copies of a cyclic shift of (i)λ for some i = 0, 1, 2, . . . , λ−1. Therefore

each even row of Aλ contains 2(p − 1) elements from the set Ψ and the odd rows of Aλ

have no elements from Ψ.

Thus far we have studied the distribution of elements of Ψ over the rows of Aλ =

[axλ]a,x∈GF (p,2)∗ . In the next theorem we will apply this property to construct two-

dimensional, two-weight codes over Zp.

Theorem 6.2.4. Let p ≥ 19 be a prime such that p ≡ 3(mod 4)(i.e., p+1
2

-even). Let

λ > 2-even and λ|(p − 1). Let Tr be the trace map over the Galois field GF (p, 2). The
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code Hλ = [Tr(axλ)]a,x∈GF (p,2) is a two-dimensional, two-weight code over Zp with the

parameters [p2, 2, (p− 1)2].

Proof:

Consider the matrix

GHλ
=


 Tr(cλ

i ), i = 1, 2, . . . , p2

Tr(ζcλ
i ), i = 1, 2, . . . , p2




2×p2

,

where cλ
i ∈ GF (p, 2) and ζ is a primitive element of GF (p, 2).

For any a0, a1 ∈ Zp, suppose that a0Tr(cλ
i ) + a1Tr(ζcλ

i ) = 0, for all i = 1, 2, . . . , p2.

From the properties of the trace map, ⇒ Tr((a0 + a1ζ)cλ
i ) = 0, for all i = 1, 2, . . . , p2.

From the distribution of the trace values over Zp, this implies that (a0 + a1ζ)cλ
i = 0, for

all i = 1, 2, . . . , p2. Since cλ
i 6= 0, for at least one i, i = 1, 2, . . . , p2, we have a0 + a1ζ = 0.

Since 1 and ζ represent linearly independent 2-tuples over Zp, a0 and a1 should be 0.

Therefore the rows of GHλ
are linearly independent.

Now consider all the linear combinations of rows of GHλ
. i.e., for all i = 1, 2, . . . , p2,

we have a0Tr(cλ
i ) + a1Tr(ζcλ

i ) = Tr((a0 + a1ζ)cλ
i ). This implies that the rows of H can

be generated by the rows of GHλ
. Thus GHλ

is a generator matrix of Hλ and therefore

the length n and the dimension k of the code Hλ are p2 and 2 respectively. Thus Hλ is a

two-dimensional code.

From Lemma 6.2.3 every even row of Aλ = [axλ]a,x∈GF (p.2)∗ contains 2(p− 1) elements

from Ψ and there are no elements from Ψ in the odd rows of Aλ. From Theorem 4.3.3

the trace of elements of Ψ is zero. Therefore when we take trace of the matrix Aλ, there

will be 2(p − 1) zeros in the even rows and no zeros in the odd rows. Hence in Hλ, the

even rows will contain 2(p − 1) + 1 zeros and the odd rows 1 zero. Thus the Hamming

weight of non-zero codewords of Hλ is either p2 − 2(p − 1) − 1 = p2 − 2p + 1 = (p − 1)2

or p2 − 1. Thus Hλ is a two-weight code over Zp and the minimum Hamming distance is

(p− 1)2. Therefore the parameters of Hλ are [p2, 2, (p− 1)2].

Thus far we have studied the case λ > 2-even and λ|(p − 1) when p ≡ 3(mod 4)

(i.e.,p+1
2

-even), constructing two-dimensional, two-weight codes over Zp with the parame-

ters [p2, 2, (p−1)2]. Next we will do a parallel construction when p ≡ 1(mod 4). (i.e.,p+1
2

-
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odd). In this case we can readily check that the minimum value of such a prime p is

13.

Lemma 6.2.5. Let p ≥ 13 be a prime such that p ≡ 1(mod 4) (i.e., p+1
2

-odd) and

λ > 2-even such that λ|(p − 1). Let (i)λ = {ζλh+i|h = 0, 1, 2, . . . , p2−1
λ

− 1}, where

i = 0, 1, 2, . . . , λ− 1. Let Ψ = {ζ( p+1
2

)(2k+1)|k = 0, 1, 2, . . . , p − 2} and for 0 ≤ s ≤ λ
2
− 1,

let (s) = {ζ p+1
2

(2s+1+λj)|j = 0, 1, 2, . . . , 2(p−1)
λ

− 1}. Then

(i) For all s = 0, 1, 2, . . . , λ
2
− 1, (s) ⊂ Ψ.

(ii) Ψ =
⋃̇

(s).

(iii) For each s, there exists an odd i such that (s) ⊂ (i)λ.

Proof of this lemma is very similar to that of Lemma 6.2.1.

To illustrate this result, consider the following example.

Example 6.2.6. Let p = 13. Then p+1
2

= 7-odd and p − 1 = 12. Let λ = 6. Then

λ|(p− 1) and the sets Ψ = {ζ7(2k+1)|k = 0, 1, 2, . . . , 11}, (i)6 = {ζ6h+i|h = 0, 1, 2, . . . , 27}
and (s) = {ζ7(2s+1+6j)|j = 0, 1, 2, 3}, where i = 0, 1, 2, 3, 4, 5 and s = 0, 1, 2. Now consider

the complete set (s) for each s. i.e.,

(0) = {ζ7, ζ49, ζ91, ζ133}.
(1) = {ζ21, ζ63, ζ105, ζ147}.
(2) = {ζ35, ζ77, ζ119, ζ161}.

It is clear that all the elements of Ψ are in the above three sets.

Similarly, for i = 0, 1, 2, 3, 4, 5, consider the complete set (i)6. i.e.,

(0)6 = {1, ζ6, ζ12, ζ18, ζ24, ζ30, ζ36, ζ42, ζ48, ζ54, ζ60, ζ66, ζ72, ζ78, ζ84, ζ90, ζ96, ζ102, ζ108, ζ114, . . .}.
(1)6 = {ζ, ζ7, ζ13, ζ19, ζ25, ζ31, ζ37, ζ43, ζ49, ζ55, ζ61, ζ67, ζ73, ζ79, ζ85, ζ91, ζ97, ζ103, ζ109, ζ115, . . .}.
(2)6 = {ζ2, ζ8, ζ14, ζ20, ζ26, ζ32, ζ38, ζ44, ζ50, ζ56, ζ62, ζ68, ζ74, ζ80, ζ86, ζ92, ζ98, ζ104, ζ110, ζ116, . . .}.
(3)6 = {ζ3, ζ8, ζ15, ζ21, ζ27, ζ33, ζ39, ζ45, ζ51, ζ57, ζ63, ζ69, ζ75, ζ81, ζ87, ζ93, ζ99, ζ105, ζ111, ζ117, . . .}.
(4)6 = {ζ4, ζ10, ζ16, ζ22, ζ28, ζ34, ζ40, ζ46, ζ52, ζ58, ζ64, ζ70, ζ76, ζ82, ζ88, ζ94, ζ100, ζ106, ζ112, ζ118, . . .}.
(5)6 = {ζ5, ζ11, ζ17, ζ23, ζ29, ζ35, ζ41, ζ47, ζ53, ζ59, ζ65, ζ71, ζ77, ζ83, ζ89, ζ95, ζ101, ζ107, ζ113, ζ119, . . .}.

It is clear that the elements of the sets (0), (1) and (2) are completely listed in the sets

(1)6, (3)6 and (5)6 respectively.
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We now look at the distribution of the elements of Ψ = {ζ( p+1
2

)(2k+1)|k = 0, 1, 2, . . . , p−
2} over the rows of the matrix Aλ = [axλ]a,x∈GF (p,2), for this case. We state the next lemma

without giving the proof as it is similar to that of Lemma 6.2.3.

Lemma 6.2.7. Let p ≥ 13 be a prime such that p ≡ 1(mod 4) (i.e., p+1
2

-odd). Let

λ > 2-even such that λ|(p − 1). Let Ψ = {ζ p+1
2

(2k+1)|k = 0, 1, 2, . . . , p − 2} and Aλ =

[axλ]a,x∈GF (p,2)∗, where GF (p, 2)∗ = {1, ζ, ζ2, . . . , ζp2−2}. Then every odd row of Aλ has

2(p− 1) elements from the set Ψ and no elements of Ψ occur in the even rows of Aλ.

Now we know that the distribution of the elements of Ψ over the rows of Aλ. In the

next theorem this property will be used to construct two-dimensional, two-weight codes

over Zp. Again the proof of this theorem is very similar to that of Theorem 6.2.4 and is

omitted.

Theorem 6.2.8. Let p ≥ 13 be a prime and p+1
2

-odd. Let λ > 2-even and λ|(p− 1). Let

Tr be the trace map over the Galois field GF (p, 2). The code Hλ = [Tr(axλ)]a,x∈GF (p,2) is

a two-weight code over Zp and its parameters are [p2, 2, (p− 1)2].

Thus far we have constructed codes over Zp by using the trace map over the Galois

filed GF (p, 2) in the form of Tr(axλ) for even λ > 2 such that λ|(p − 1). In the next

section we compare this code with the code that we constructed in Chapter 4.

6.3 Comparison of Hλ with H2

In Section 6.2 we constructed the code Hλ over Zp by using the trace map over GF (p, 2)

in the form of Tr(axλ) when λ > 2-even. This code was classified as a two-weight code

with the parameters [p2, 2, (p − 1)2] which are exactly the same as that of the code H2

constructed in Chapter 4 using the trace map over GF (p, 2) in the form of Tr(ax2).

The curiosity now is whether these two codes are equivalent to each other. In Chapter

4 we proved that the code H2 = [Tr(ax2)]a,x∈GF (p,2) is self-orthogonal, for p > 3 and

experimental results show that the code Hλ = [Tr(axλ)]a,x∈GF (p,2) constructed in this

section is not self-orthogonal. Therefore we can conclude that the codes constructed in
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this section are not equivalent to those of in Chapter 4 even though they have the same

parameters.

Consider the following examples.

Example 6.3.1. Let p = 13 and λ = 6. Then λ|(p − 1). Now consider the primitive

polynomial p(x) = x2 + x + 3 over Z13 and let ζ be a root of p(x). Then the elements of

GF (13, 2) = Z13[x]/(p(x)) = Z13[ζ] can be written as {0, 1, ζ, ζ2, . . . , ζ167}. The following

matrix gives us the code H6 = [Tr(ax6)]a,x∈GF (13,2).




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 2 9 5 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 . . .

0 12 0 12 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 . . .

0 10 8 4 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 . . .

0 5 5 11 0 11 8 5 1 1 10 0 10 12 1 8 8 2 0 2 5 8 12 12 3 0 . . .

0 1 5 7 3 8 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 . . .

0 2 11 10 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 . . .

0 9 5 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 . . .

0 0 12 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 . . .

0 8 4 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 . . .

0 5 11 0 11 8 5 1 1 10 0 10 12 1 8 8 2 0 2 5 8 12 12 3 0 3 . . .

0 5 7 3 8 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 1 . . .

0 11 10 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 . . .

0 5 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 5 . . .

0 12 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5 . . .

0 4 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 7 . . .

0 11 0 11 8 5 1 1 10 0 10 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1 . . .

0 7 3 8 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 1 11 . . .

0 10 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0 . . .

0 2 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 5 4 . . .

0 4 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5 4 . . .

0 5 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 7 9 . . .

0 0 11 8 5 1 1 10 0 10 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1 12 . . .

0 3 8 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 1 11 9 . . .

0 10 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0 6 . . .

0 10 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 5 4 2 . . .

0 9 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5 4 12 . . .

0 10 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 7 9 10 . . .

0 11 8 5 1 1 10 0 10 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1 12 5 . . .

0 8 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 1 11 9 1 . . .

0 9 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0 6 2 . . .

0 1 6 3 7 1 3 2 8 9 11 4 8 11 3 12 7 10 6 12 10 11 5 4 2 9 . . .

0 7 7 5 0 5 6 7 4 4 1 0 1 9 4 6 6 8 0 8 7 11 5 4 12 0 . . .

0 4 7 2 12 6 1 2 6 4 3 5 9 8 3 9 6 11 1 7 12 11 7 9 10 8 . . .

0 8 5 1 1 10 0 10 12 1 8 8 2 0 2 5 8 12 12 3 0 3 1 12 5 5 . . .

0 10 7 8 1 4 11 12 2 4 12 8 6 10 5 3 6 5 12 9 2 1 11 9 1 5 . . .

0 0 9 3 10 2 2 7 0 7 11 2 3 3 4 0 4 10 3 11 11 6 0 6 2 11 . . .

.
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

169×169

.

Let H∗
6 be the matrix obtained by deleting the first column of the matrix H6. It is clear

that each row of H∗
6 can be formed by using 6 copies of the first 28 elements of each row.

Clearly the matrix H6 can be generated by using all linear combinations of the 2nd and 3rd
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rows of H6. Further H6 is a two-weight code over Z13 with the parameters [169, 2, 144] and

the punctured code H∗
6 is a [168, 2, 144] code and its codewords are left-cyclic shifts of each

of the first 6 non-zero codewords. Indeed H∗
6 is a cyclic code. H6 is not a self-orthogonal

code.

Now we will compare the code H6 = [Tr(ax6)]a,x∈GF (13,2) with the code

H2 = [Tr(ax2)]a,x∈GF (13,2) given in the next example.

Example 6.3.2. Let p = 13 and consider the primitive polynomial p(x) = x2 +x+3 over

Z13 and let ζ be a root of p(x). Then the elements of GF (13, 2) = Z13[x]/(p(x)) = Z13[ζ]

can be written as {0, 1, ζ, ζ2, . . . , ζ167}. The following matrix gives us the code H2 =

[Tr(ax2)]a,x∈GF (13,2).




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 2 10 1 9 8 5 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 . . .

0 12 5 2 0 5 11 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 . . .

0 10 1 9 8 5 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 . . .

0 5 2 0 5 11 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 . . .

0 1 9 8 5 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 . . .

0 2 0 5 11 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 . . .

0 9 8 5 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 . . .

0 0 5 11 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 . . .

0 8 5 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 . . .

0 5 11 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 . . .

0 5 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 . . .

0 11 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 . . .

0 5 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 . . .

0 12 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 . . .

0 4 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 . . .

0 11 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 . . .

0 7 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 . . .

0 10 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 . . .

0 2 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 . . .

0 4 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 . . .

0 5 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 . . .

0 0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 . . .

0 3 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 . . .

0 10 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 . . .

0 10 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 8 . . .

0 9 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 4 . . .

0 10 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 8 6 . . .

0 11 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 4 12 . . .

0 8 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 8 6 2 . . .

0 9 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 4 12 0 . . .

0 1 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 8 6 2 9 . . .

0 7 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 4 12 0 4 . . .

0 4 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 8 6 2 9 4 . . .

0 8 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 4 12 0 4 1 . . .

0 10 6 7 7 3 2 8 7 12 1 1 6 4 3 1 11 2 2 12 8 6 2 9 4 4 . . .

0 0 7 5 9 5 1 3 0 1 10 5 10 2 6 0 2 7 10 7 4 12 0 4 1 7 . . .

.
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

169×169

.
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Let H∗
2 be the matrix obtained by deleting the first column of the matrix H2. It is clear

that each row of H∗
2 can be formed by using 2 copies of the first 84 elements of each row.

It is also clear that the matrix H2 can be generated by using all linear combinations of the

2nd and 3rd rows of H2. Further H2 is a two-weight code over Z13 with the parameters

[169, 2, 144] and the punctured code H∗
2 is a [168, 2, 144] code and its codewords are left-

cyclic shifts of each of the first 2 non-zero codewords. Indeed H∗
2 is a cyclic code. H2 is

a self-orthogonal code, and consequently H6 and H2 are not equivalent codes.

Thus far we have considered the case Tr(axλ) for even λ > 2 such that λ|(p− 1). In

the next section we study the case odd λ > 2 such that λ|(p− 1).

6.4 Constant-weight codes from Tr(axλ) when λ > 2-

odd

In Section 6.2 we studied the codes constructed by using the trace map over the Galois field

GF (p, 2) in the form of Tr(axλ), for λ > 2-even such that λ|(p−1) when p ≡ 1(mod 4) and

p ≡ 3(mod 4). Similarly in this section we consider the case λ > 2-odd such that λ|(p−1)

when p ≡ 1(mod 4) and p ≡ 3(mod 4). As usual, first we will study the distribution of

trace zero elements which are in Ψ = {ζ p+1
2

(2k+1)|k = 0, 1, 2, . . . , p − 2} over the rows of

A = [axλ]a,x∈GF (p,2)∗ . Then we will apply this result to construct codes over Zp and we

will prove that these codes are constant weight codes with the parameters [p2, 2, p(p−1)].

Lemma 6.4.1. Let p ≥ 7 be prime and λ > 2-odd such that λ|(p − 1). Let (i)λ =

{ζλh+i|h = 0, 1, 2, . . . , p2−1
λ
− 1}, where i = 0, 1, 2, . . . , λ − 1. Let Ψ = {ζ p+1

2
(2k+1)|k =

0, 1, 2, . . . , p− 2} and for 0 ≤ s ≤ λ− 1 let (s) = {ζ p+1
2

(2s+1+2λj)|j = 0, 1, 2, . . . , (p−1)
λ
− 1}.

Then

(i) For all s = 0, 1, 2, . . . , λ− 1, (s) ⊂ Ψ.

(ii) Ψ =
⋃̇

(s).

(ii) For each s, there exists an i such that (s) ⊂ (i)λ

Proof:

Proof of part (i) and (ii) are very similar to that of Lemma 6.2.1

120



(iii) Let α ∈ (s). Then α = ζ
(p+1)

2
(2s+1+2λj). To prove that ζ

(p+1)
2

(2s+1+2λj) ∈ (i)λ for all

j, we need to prove that p+1
2

(2s + 1 + 2λj) ≡ i(mod λ). That is we need to prove that

p+1
2

(2s + 1 + 2λj) is in the same equivalence class mod λ for all j. In another words we

need to prove that
(

p+1
2

)
(2s + 1) +

(
p+1
2

)
2λj is in the same equivalence class mod λ for

all j. Since
(

p+1
2

)
2λj ≡ 0(mod λ), we have

(
p+1
2

)
(2s+1) is in the same equivalence class

mod λ for all j. Therefore p+1
2

(2s + 1 + λj) is in the same equivalence class mod λ for

all j. i.e., in the equivalence class of p+1
2

(2s + 1) when j = 0. Therefore (s) ⊂ (i)λ for

i ≡ (
p+1
2

)
(2s + 1) mod λ.

The next example illustrates this result.

Example 6.4.2. Let p = 11. Then p+1
2

= 6-even and p − 1 = 10. Let λ = 5. Then

λ|(p − 1) and the sets Ψ = {ζ6(2k+1)|k = 0, 1, 2, . . . , 9}, (i)5 = {ζ5h+i|h = 0, 1, 2, . . . , 23}
and (s) = {ζ6(2s+1+10j)|j = 0, 1}, where i = 0, 1, 2, 3, 4 and s = 0, 1, 2, 3, 4. For each s, the

complete set (s) is given below.

(0) = {ζ6, ζ66}.
(1) = {ζ18, ζ78}.
(2) = {ζ30, ζ90}.
(3) = {ζ42, ζ102}.
(4) = {ζ54, ζ114}.

It is clear that all the elements of Ψ are in the above five sets.

Similarly consider, for each i, the complete set (i)5.

(0)5 = {1, ζ5, ζ10, ζ15, ζ20, ζ25, ζ30, ζ35, ζ40, ζ45, ζ50, ζ55, ζ60, ζ65, ζ70, ζ75, ζ80, ζ85, ζ90, ζ95, . . .}.
(1)5 = {ζ, ζ6, ζ11, ζ16, ζ21, ζ26, ζ31, ζ36, ζ41, ζ46, ζ51, ζ56, ζ61, ζ66, ζ71, ζ76, ζ81, ζ86, ζ91, ζ96, . . .}.
(2)5 = {ζ2, ζ7, ζ12, ζ17, ζ22, ζ27, ζ32, ζ37, ζ42, ζ47, ζ52, ζ57, ζ62, ζ67, ζ72, ζ77, ζ82, ζ87, ζ92, ζ97, . . .}.
(3)5 = {ζ3, ζ8, ζ13, ζ18, ζ23, ζ28, ζ33, ζ38, ζ43, ζ48, ζ53, ζ58, ζ63, ζ68, ζ73, ζ78, ζ83, ζ88, ζ93, ζ98, . . .}.
(4)5 = {ζ4, ζ9, ζ14, ζ19, ζ24, ζ29, ζ34, ζ39, ζ44, ζ49, ζ54, ζ59, ζ64, ζ69, ζ74, ζ79, ζ84, ζ89, ζ94, ζ99, . . .}.

When s = 0,
(

p+1
2

)
(2s + 1) = 6 ≡ 1(mod 5). Therefore (0) ⊂ (1)5.

When s = 1,
(

p+1
2

)
(2s + 1) = 18 ≡ 3(mod 5). Therefore (1) ⊂ (3)5.

Similarly (2) ⊂ (0)5,(3) ⊂ (2)5 and (4) ⊂ (4)5
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We are now in a position to study the distribution of the trace zero elements Ψ =

{ζ p+1
2

(2k+1)|k = 0, 1, 2, . . . , p− 2} over the rows of Aλ = [axλ]a,x∈GF (p,2)∗ .

Lemma 6.4.3. Let p ≥ 7 be prime and λ > 2-odd such that λ|(p − 1). Let Ψ =

{ζ p+1
2

(2k+1)|k = 0, 1, 2, . . . , p−2} and Aλ = [axλ]a,x∈GF (p,2)∗. Then each row of Aλ contains

(p− 1) elements from Ψ.

Proof:

From Lemma 6.4.1 we know that, for all i = 0, 1, 2, . . . λ−1, the elements of Ψ are equally

distributed over (i)λ giving (p−1)
λ

elements per set. From Lemma 5.2.2 we also know that

each row of Aλ contains λ-copies of (i)λ or λ-copies of a cyclic shift of (i)λ for some

i = 0, 1, 2, . . . , λ− 1. Therefore each row of the matrix Aλ contain (p− 1) elements from

the set Ψ.

Having studied the distribution of the elements of Ψ over the rows of Aλ, we now use

this property to construct two-dimensional, constant-weight codes over Zp.

Theorem 6.4.4. Let p ≥ 7 be a prime such that p ≡ 3(mod 4) (i.e., p+1
2

-even) and

λ > 2-odd such that λ|(p − 1). Let Tr be the trace map over the Galois field GF (p, 2).

The code Hλ = [Tr(axλ)]a,x∈GF (p,2) is a constant-weight code over Zp with the parameters

[p2, 2, p(p− 1)].

Proof:

Consider that matrix

GHλ
=


 Tr(cλ

i ), i = 1, 2, . . . , p2

Tr(ζcλ
i ), i = 1, 2, . . . , p2




2×p2

.

Very similar to the proof of Theorem 6.2.4 we can show that the two rows of GHλ
are

linearly independent and hence GHλ
is a generator matrix of Hλ. Therefore the length

n and the dimension k of the code Hλ are p2 and 2 respectively. Thus Hλ is a two-

dimensional code.

From Lemma 6.4.3 we know that each row of the matrix Aλ = [axλ]a,x∈GF (p,2)∗ con-

tains (p − 1) elements which are from the set Ψ = {ζ p+1
2

(2k+1)|k = 0, 1, 2, . . . , p − 2}.
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From Theorem 4.3.3 we know that the trace of each of these elements is zero. Therefore

there are (p − 1) + 1 = p zeros in each row of the matrix Hλ and the Hamming weight

of each codeword is p2 − p = p(p − 1). Thus Hλ is a constant-weight code over Zp, the

minimum Hamming distance between the codewords is p(p − 1), and the parameters of

Hλ are [p2, 2, p(p− 1)].

Thus far in this section we have constructed codes over Zp by using the trace map over

the Galois filed GF (p, 2) in the form of Tr(axλ) for odd λ > 2 such that λ|(p− 1). In the

next section we compare this code with the code constructed in [65].

6.5 Comparison of Hλ with H

In the previous section we constructed the code Hλ over Zp by using the trace map over

GF (p, 2) in the form of Tr(axλ) when λ > 2-odd. We classified this code as a constant-

weight code with the parameters [p2, 2, p(p − 1)]. In [65], the trace map over the Galois

field GF (p,m) was used in the form of Tr(ax) to construct constant-weight codes with the

parameters [pm,m, pm−1(p−1)]. In the case of m = 2, the code H = [Tr(ax)]a,x∈GF (p,2) has

the parameters [p2, 2, p(p−1)] which are exactly the same as that of the codes constructed

in the previous section. q-ary linear constant weight codes can be considered as simplex

codes since every pair of distinct codewords are the same distance apart [53]. Therefore

H and Hλ are simplex codes. Further every non-zero codeword of H = [Tr(ax)]a,x∈GF (p,2)

contain each element of Zp equally often p times and the dot product of every non-zero

codeword of H is given by

S = p

p−1∑
i=1

i2

=
p2

6
(2p2 − 3p + 1).

Since p > 3 we have S ≡ 0 mod p. From Theorem 4.2.5 a linear code over Zp, for

p > 2, is self-orthogonal if and only if the dot product of each codeword with itself is

zero. Therefore the above code H = [Tr(ax)]a,x∈GF (p,2) is a self-orthogonal code over Zp.

As in Section 6.3 again the curiosity is whether these two codes are equivalent to each
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other. Experimental results show that the code Hλ = [Tr(axλ)]a,x∈GF (p,2) constructed in

this section is not a self-orthogonal code. The reason is that the non-zero elements of

Zp are not equally distributed over the rows of Hλ unlike in H (see examples 6.5.1 and

6.5.2). Therefore the code constructed in this section is not equivalent to those in [65]

even though they have the same parameters.

Consider the following examples.

Example 6.5.1. Let p = 7 and λ = 3. Then λ|(p − 1). Now consider the primitive

polynomial p(x) = x2 + x + 3 over Z7 and let ζ be a root of p(x). Then ζ2 = 6ζ + 4 and

the elements of GF (7, 2) = Z7[x]/(p(x)) = Z7[ζ] can be written as {0, 1, ζ, ζ2, . . . , ζ47}.
The following matrix gives us the code H3 = [Tr(ax3)]a,x∈GF (7,2).
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H3=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 . . .

0 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 . . .

0 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 . . .

0 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 . . .

0 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 . . .

0 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 . . .

0 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 . . .

0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 . . .

0 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 . . .

0 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 . . .

0 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 . . .

0 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 . . .

0 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 . . .

0 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 . . .

0 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 . . .

0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 . . .

0 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 . . .

0 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 . . .

0 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 . . .

0 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 . . .

0 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 . . .

0 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 . . .

0 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 . . .

0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 . . .

0 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 . . .

0 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 . . .

0 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 . . .

0 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 . . .

0 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 . . .

0 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 . . .

0 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 . . .

0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 . . .

0 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 . . .

0 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 . . .

0 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 . . .

0 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 . . .

0 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 . . .

0 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 . . .

0 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 . . .

0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 . . .

0 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 . . .

0 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 . . .

0 3 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 . . .

0 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 . . .

0 0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 . . .

0 6 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6 2 1 3 4 0 4 4 1 5 6 4 3 . . .

0 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 0 1 1 . . .

0 2 2 4 6 3 2 5 0 5 5 3 1 4 5 2 0 2 2 4 6 3 2 5 0 5 5 3 1 4 . . .



49×49

.

Let H∗
3 be the matrix obtained by deleting the first column of the matrix H3. It is

clear that each row of H∗
3 can be formed by using 3 copies of the first 16 elements of each

row. It is also clear that the matrix H3 can be generated by using all linear combinations

of the 2nd and 3rd rows of H3. Further H3 is a constant-weight code over Z7 with the

parameters [49, 2, 42] and the punctured code H∗
3 is a [48, 2, 42] code and its codewords are

the left-cyclic shifts of elements of each of the first 3 non-zero rows of H∗
3 . Indeed H∗

3 is
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a cyclic code.

We now compare the code H3 = [Tr(ax3)]a,x∈GF (7,2) with the code H = [Tr(ax)]a,x∈GF (7,2)

given in the next example.

Example 6.5.2. Let p = 7 and consider the primitive polynomial p(x) = x2 + x + 3

over Z7 and let ζ be a root of p(x). Then ζ2 = 6ζ + 4 and the elements of GF (7, 2) =

Z7[x]/(p(x)) = Z7[ζ] can be written as {0, 1, ζ, ζ2, . . . , ζ47}. The following matrix gives us

the code H = [Tr(ax)]a,x∈GF (7,2).
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H=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 . . .

0 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 . . .

0 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 . . .

0 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 . . .

0 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 . . .

0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 . . .

0 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 . . .

0 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 . . .

0 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 . . .

0 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 . . .

0 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 . . .

0 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 . . .

0 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 . . .

0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 . . .

0 2 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 . . .

0 4 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 . . .

0 4 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 . . .

0 5 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 . . .

0 4 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 . . .

0 2 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 . . .

0 0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 . . .

0 1 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 . . .

0 6 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 . . .

0 5 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 . . .

0 5 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 . . .

0 1 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 . . .

0 5 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 . . .

0 6 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 . . .

0 0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 . . .

0 3 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 . . .

0 4 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 . . .

0 1 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 . . .

0 1 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 . . .

0 3 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 . . .

0 1 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 . . .

0 4 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 . . .

0 0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 . . .

0 2 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 . . .

0 5 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 . . .

0 3 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 . . .

0 3 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 . . .

0 2 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 . . .

0 3 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 . . .

0 5 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 . . .

0 0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 . . .

0 6 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 . . .

0 1 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 . . .

0 2 2 6 2 1 0 4 3 6 6 4 6 3 0 5 2 4 4 5 4 2 0 1 6 5 5 1 5 6 . . .



49×49

.

The matrix H can be generated by using all linear combinations of the 2nd and 3rd

rows of H. Further H is a constant-weight code over Z7 with the parameters [49, 2, 42].

Let H∗ be the code obtained by deleting the first column of H. The punctured code H∗ is

a [48, 2, 42] constant-weight, cyclic code over Z7.
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Chapter 7

Conclusion

Throughout the thesis the major tool was the use of the trace maps Tr over the Galois

field GF (p,m) and Galois ring GR(pe1
1 ,m), the trace-like map T over the ring R(n,m) =

GR(pe1
1 ,m)×GR(pe2

2 , m)× . . .×GR(pek
k ,m) and more generally the weighted-trace map

Tw over the ring R(d, n) = GR(pe1
1 ,m1) × GR(pe2

2 ,m2) × . . . × GR(pek
k ,mk) to construct

Cocyclic Butson Hadamard matrices, linear and non-linear codes. In Chapter 3 the

weighted-trace map Tw over the ring R(d, n) = GF (p1, e1)×GF (p2, e2)× . . .×GF (pk, ek)

was used to construct mutually unbiased bases of odd integer dimension d. However we

did not study the use of the weighted-trace map Tw over the ring R(d, n) = GR(pe1
1 ,m1)×

GR(pe2
2 ,m2)×. . .×GR(pek

k ,mk). This is a possible venue for research in mutually unbiased

bases. In Chapters 4, 5 and 6 the trace map over the Galois field GF (p, 2) was used in the

form of Tr(ax2) and Tr(axλ) to construct two-weight and constant-weight codes over Zp.

We noticed that these were two-dimensional codes. We may get higher dimensional two-

weight and constant-weight codes if we use the trace map in the similar manner over the

Galois field GF (p,m). If we can finalise this research it may give further direction to carry

out research by using the trace map over the Galois ring GR(ps,m) and more generally the

weighted-trace map over the ring R(d, n) = GR(pe1
1 ,m1)×GR(pe2

2 ,m2)×. . .×GR(pek
k , mk).
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