389,293 research outputs found

    The Triangle Closure is a Polyhedron

    Full text link
    Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, Kannan and Schrijver who showed that the split closure is a polyhedron. Although some fairly general results were obtained by Andersen, Louveaux and Weismantel [ An analysis of mixed integer linear sets based on lattice point free convex sets, Math. Oper. Res. 35 (2010), 233--256] and Averkov [On finitely generated closures in the theory of cutting planes, Discrete Optimization 9 (2012), no. 4, 209--215], some basic questions have remained unresolved. For example, maximal lattice-free triangles are the natural family to study beyond the family of splits and it has been a standing open problem to decide whether the triangle closure is a polyhedron. In this paper, we show that when the number of integer variables m=2m=2 the triangle closure is indeed a polyhedron and its number of facets can be bounded by a polynomial in the size of the input data. The techniques of this proof are also used to give a refinement of necessary conditions for valid inequalities being facet-defining due to Cornu\'ejols and Margot [On the facets of mixed integer programs with two integer variables and two constraints, Mathematical Programming 120 (2009), 429--456] and obtain polynomial complexity results about the mixed integer hull.Comment: 39 pages; made self-contained by merging material from arXiv:1107.5068v

    Ranking Sets of Objects: The Complexity of Avoiding Impossibility Results

    Get PDF
    The problem of lifting a preference order on a set of objects to a preference order on a family of subsets of this set is a fundamental problem with a wide variety of applications in AI. The process is often guided by axioms postulating properties the lifted order should have. Well-known impossibility results by Kannai and Peleg and by Barber\`a and Pattanaik tell us that some desirable axioms - namely dominance and (strict) independence - are not jointly satisfiable for any linear order on the objects if all non-empty sets of objects are to be ordered. On the other hand, if not all non-empty sets of objects are to be ordered, the axioms are jointly satisfiable for all linear orders on the objects for some families of sets. Such families are very important for applications as they allow for the use of lifted orders, for example, in combinatorial voting. In this paper, we determine the computational complexity of recognizing such families. We show that it is Π2p\Pi_2^p-complete to decide for a given family of subsets whether dominance and independence or dominance and strict independence are jointly satisfiable for all linear orders on the objects if the lifted order needs to be total. Furthermore, we show that the problem remains coNP-complete if the lifted order can be incomplete. Additionally, we show that the complexity of these problem can increase exponentially if the family of sets is not given explicitly but via a succinct domain restriction. Finally, we show that it is NP-complete to decide for family of subsets whether dominance and independence or dominance and strict independence are jointly satisfiable for at least one linear orders on the objects

    Beyond the Existential Theory of the Reals

    Full text link
    We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by B\"{u}rgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow

    Counting Subgraphs in Somewhere Dense Graphs

    Get PDF
    We study the problems of counting copies and induced copies of a small pattern graph HH in a large host graph GG. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns HH. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)⋅∣G∣O(1)f(H)\cdot |G|^{O(1)} for some computable function ff. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes G\mathcal{G} as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: (1) Counting kk-matchings in a graph G∈GG\in\mathcal{G} is fixed-parameter tractable if and only if G\mathcal{G} is nowhere dense. (2) Counting kk-independent sets in a graph G∈GG\in\mathcal{G} is fixed-parameter tractable if and only if G\mathcal{G} is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if G\mathcal{G} is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting kk-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in FF-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting kk-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19).Comment: 35 pages, 3 figures, 4 tables, abstract shortened due to ArXiv requirement

    Counting Subgraphs in Somewhere Dense Graphs

    Get PDF
    We study the problems of counting copies and induced copies of a small pattern graph H in a large host graph G. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns H. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)?|G|^O(1) for some computable function f. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes ? as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: - Counting k-matchings in a graph G ? ? is fixed-parameter tractable if and only if ? is nowhere dense. - Counting k-independent sets in a graph G ? ? is fixed-parameter tractable if and only if ? is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if ? is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting k-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in F-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19). At the same time our proofs are much simpler: using structural characterisations of somewhere dense graphs, we show that a colourful version of a recent breakthrough technique for analysing pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed somewhere dense class of graphs, yielding a unified view of our current understanding of the complexity of subgraph counting

    Efficient approximate unitary t-designs from partially invertible universal sets and their application to quantum speedup

    Full text link
    At its core a tt-design is a method for sampling from a set of unitaries in a way which mimics sampling randomly from the Haar measure on the unitary group, with applications across quantum information processing and physics. We construct new families of quantum circuits on nn-qubits giving rise to Δ\varepsilon-approximate unitary tt-designs efficiently in O(n3t12)O(n^3t^{12}) depth. These quantum circuits are based on a relaxation of technical requirements in previous constructions. In particular, the construction of circuits which give efficient approximate tt-designs by Brandao, Harrow, and Horodecki (F.G.S.L Brandao, A.W Harrow, and M. Horodecki, Commun. Math. Phys. (2016).) required choosing gates from ensembles which contained inverses for all elements, and that the entries of the unitaries are algebraic. We reduce these requirements, to sets that contain elements without inverses in the set, and non-algebraic entries, which we dub partially invertible universal sets. We then adapt this circuit construction to the framework of measurement based quantum computation(MBQC) and give new explicit examples of nn-qubit graph states with fixed assignments of measurements (graph gadgets) giving rise to unitary tt-designs based on partially invertible universal sets, in a natural way. We further show that these graph gadgets demonstrate a quantum speedup, up to standard complexity theoretic conjectures. We provide numerical and analytical evidence that almost any assignment of fixed measurement angles on an nn-qubit cluster state give efficient tt-designs and demonstrate a quantum speedup.Comment: 25 pages,7 figures. Comments are welcome. Some typos corrected in newest version. new References added.Proofs unchanged. Results unchange

    Descriptive Set Theory and Applications

    Get PDF
    The systematic study of Polish spaces within the scope of Descriptive Set Theory furnishes the working mathematician with powerful techniques and illuminating insights. In this thesis, we start with a concise recapitulation of some classical aspects of Descriptive Set Theory which is followed by a succint review of topological groups, measures and some of their associated algebras.The main application of these techniques contained in this thesis is the study of two families of closed subsets of a locally compact Polish groupG, namely U(G) - closed sets of uniqueness - and U0(G) - closed sets of extended uniqueness. We locate the descriptive set theoretic complexityof these families, proving in particular that U(G) is \Pi_1^1-complete whenever G/\overline{[G,G]} is non-discrete, thereby extending the existing literature regarding the abelian case. En route, we establish some preservation results concerning sets of (extended) uniqueness and their operator theoretic counterparts. These results constitute a pivotal part in the arguments used and entail alternative proofs regarding the computation of the complexity of U(G) and U0(G) in some classes of the abelian case.We study U(G) as a calibrated \Pi_1^1 \sigma-ideal of F(G) - for G amenable - and prove some criteria concerning necessary conditions for the inexistence of a Borel basis for U(G). These criteria allow us to retrieve information about G after examination of its subgroups or quotients. Furthermore, a sufficient condition for the inexistence of a Borel basis for U(G) is proven for the case when G is a product of compact (abelian or not) Polish groupssatisfying certain conditions.\ua0Finally, we study objects associated with the point spectrum of linear bounded operators T\in L(X) acting on a separable Banach space X. We provide a characterization of reflexivity for Banach spaces with an unconditional basis : indeed such space X is reflexive if and only if for all closed subspaces Y\subset X;Z\subset X^{\ast} and T\in 2 L(Y); S\in 2 L(Z) it holds that the point spectra \sigma_p(T); \sigma_p(S) are Borel. We study the complexity of sets prescribed by eigenvalues and prove a stability criterion for Jamison sequences
    • 

    corecore