
Thesis for the Degree of Doctor of Philosophy

Descriptive Set Theory and
Applications

João Paulos

Department of Mathematical Sciences
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden 2021

1



Descriptive Set Theory and Applications
João Paulos
ISBN: 978-91-7905-529-5

c© João Paulos, 2021

Doktorsavhandlingar vid Chalmers tekniska högskola
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Descriptive Set Theory and Applications

João Paulos

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

The systematic study of Polish spaces within the scope of Descriptive Set
Theory furnishes the working mathematician with powerful techniques
and illuminating insights. In this thesis, we start with a concise reca-
pitulation of some classical aspects of Descriptive Set Theory which is
followed by a succinct review of topological groups, measures and some of
their associated algebras.
The main application of these techniques contained in this thesis is the
study of two families of closed subsets of a locally compact Polish group
G, namely U(G) - closed sets of uniqueness - and U0(G) - closed sets of
extended uniqueness. We locate the descriptive set theoretic complexity
of these families, proving in particular that U(G) is Π1

1-complete when-
ever G/[G,G] is non-discrete, thereby extending the existing literature
regarding the abelian case. En route, we establish some preservation re-
sults concerning sets of (extended) uniqueness and their operator theoretic
counterparts. These results constitute a pivotal part in the arguments
used and entail alternative proofs regarding the computation of the com-
plexity of U(G) and U0(G) in some classes of the abelian case.
We study U(G) as a calibrated Π1

1 σ-ideal of F(G) - for G amenable - and
prove some criteria concerning necessary conditions for the inexistence of
a Borel basis for U(G). These criteria allow us to retrieve information
about G after examination of its subgroups or quotients. Furthermore, a
sufficient condition for the inexistence of a Borel basis for U(G) is proven
for the case when G is a product of compact (abelian or not) Polish groups
satisfying certain conditions.
Finally, we study objects associated with the point spectrum of linear
bounded operators T ∈ L(X) acting on a separable Banach space X. We
provide a characterization of reflexivity for Banach spaces with an un-
conditional basis : indeed such space X is reflexive if and only if for all
closed subspaces Y ⊆ X,Z ⊆ X∗ and T ∈ L(Y ), S ∈ L(Z) it holds that
the point spectra σp(T ), σp(S) are Borel. We study the complexity of
sets prescribed by eigenvalues and prove a stability criterion for Jamison
sequences.

Keywords : Descriptive Set Theory, Harmonic Analysis, Thin Sets, Sets
of Uniqueness, Operator U-sets, Operator U0-sets, Fourier Algebra, Point Spec-
trum, Reflexivity, Jamison Sequences
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1 Preamble

1.1 A background for Descriptive Set Theory

The mathematical landscape of the late 1800’s and early 1900’s was inexorably
shaped by the dawn of revolutions which brought metamathematical fertility to
the soil. From the ideas of Cantor - that not only introduced one but many
completed infinities - to the logicism1 project of Frege - sponsored by Russell
and Hilbert, eventually driven to pessimism by Gödel - the foundations of math-
ematics were at stake. From the intuitionism2 and constructivism3 of Brouwer
and Kleene to the innumerous ideas emerging from tangential areas concerning
ontological and epistemological aspects of mathematics, philosophy of language
and philosophy of science in general, this was a time for skepticism and attempts
towards a robust axiomatization of mathematical truth. Within this state of af-
fairs, Lebesgue, Borel and Baire were studying regularity properties of subsets
of real numbers, aiming to provide a reasonable framework to study the ab-
stract idea of a function, introduced by Riemann and Dirichlet. In particular,
Lebesgue was concerned with definability issues (cf. [51]), i.e. how to decide
when such objects are permissible to exist, based on which expressions define
them. It was indeed a mistake in [51], detected by Suslin, that sparked the birth
of what is nowadays called (classical) Descriptive Set Theory. From a modern
point of view, Descriptive Set Theory can be defined as the systematic study of
Polish spaces (i.e. completely metrizable and separable topological spaces) and
their properties. In the early days, several regularity properties were proven to
hold for the set of Borel subsets of a Polish space X (for instance, in ZFC the
Continuum Hypothesis holds automatically for those sets) - that is stratified as
follows :

(i) Σ0
1 = {open sets of X} and Σ0

α = {
⋃
nAn : An ∈ Π0

β(n), β(n) < α}, for
all 1 ≤ α < ω1

(ii) Π0
α = ¬Σ0

α, for all 1 ≤ α < ω1

(iii) ∆0
α = Σ0

α ∩Π0
α, for all 1 ≤ α < ω1

We start with elementary sets, that ought to exist - these are the open sets,
which are essential for the working mathematician and perhaps not too hard

1”The logicist project consists in attempting to reduce mathematics to logic...”, in Stanford
Encyclopedia of Philosophy

2”Intuitionism is based on the idea that mathematics is a creation of the mind. The truth
of a mathematical statement can only be conceived via a mental construction that proves it to
be true (...).This view on mathematics has far reaching implications for the daily practice of
mathematics, one of its consequences being that the principle of the excluded middle, (A∨¬A),
is not longer valid.”, in Stanford Encyclopedia of Philosophy

3”Constructive mathematics is distinguished from its traditional counterpart, classical
mathematics, by the strict interpretation of the phrase ’there exists’ as ’we can construct’”.,
in Stanford Encyclopedia of Philosophy
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to be tamed by our intuition - at least in separable metric spaces. We accept
countable unions and taking complements as admissible operations available
to us in order to generate new sets. It is clear that through this process, we
generate all Borel sets. Surely these sets can be quite complicated but at least,
from an heuristic perspective, their right to exist and their constructivist status
quo is hardly challenged by most of mathematicians. Considering projections
as an additional available tool to construct objects, we get the analytic sets.
Lebesgue erroneously claimed in [51] that a projection of a Borel subset of
the plane onto the real line is again a Borel set. Suslin detected the mistake,
establishing the non redundancy of projections. The properties of analytic sets
were then extensively studied in Moscow and Warsaw, led respectively by Suslin,
Lusin and Sierpinski. The projective hierarchy on X is defined as follows :

(i) Σ1
1 = {A ⊆ X : A = π(B), B ⊆ X2, B Borel} and Π1

1 = ¬Σ1
1

(ii) Σ1
n+1 = {A ⊆ X : A = π(B), B ⊆ X2, B ∈ Π1

n} and Π1
n+1 = ¬Σ1

n+1

The study of these hierarchies - where one keeps generating new sets which are,
in some vague sense, more complex than the pre-existing ones - is a quintessential
topic of research in Descriptive Set Theory. This meritorious interest is certainly
justified at the level of the set theorist. In fact, the study of regularity properties
of these new projective sets revealed to be a much harder task than with the
case of Borel sets. And there was a very fundamental reason for this : indeed
much of those properties for projective sets - provable in ZFC for Borel sets -
strongly rely on extra set theoretic assumptions, being independent statements
within the standard axioms accepted by most of the mathematical community.
As it turned out, several combinatorial principles and regularity properties no
longer hold automatically for some of these sets, as it was the case with the Borel
hierarchy.4 As a consequence, the study of these hierarchies was inevitably of
interest for those who study choice principles and weaker/alternative axioms (to
those of ZFC). Perhaps, it is worth to highlight how much permeable every other
branch of mathematics is to the ramifications that come from starting with even
just slightly different axioms. Unsurprisingly, this catalyses further interest for
any working mathematician. If truth is painted by words through social prac-
tices, then the paintbrush was embodied by large cardinal axioms and the study
of determinacy of infinite games. Throughout the years, Descriptive Set Theory
established itself as an active and important part of Logic and Set Theory with
a remarkably strong affinity for interdisciplinary efforts ranging from Harmonic
Analysis to Dynamical Systems, from Group Theory to Computer Science.

We notify the reader that in the remaining sections of this thesis, we will drop
the bold face notation for the Borel (and projective) hierarchy - we use it here
in order to distinguish those hierarchies from the (hyper)arithmetical setting,
denoted in the remaining of this section with the light face notation.

4In this thesis, we merely mention some examples such as the Perfect Set Property, Property
of Baire (Section 3.3) or Borel determinacy (Section 3.4).
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Conceivably, the more scrutinous reader could raise some objections against
the argument that open sets ought to exist as elementary particles just because
they are ubiquitous in the life of the analyst. In order to provide plausibility
to the idea, we try to unify the Borel and the projective hierarchies within a
bigger picture. This leads us to a small detour in logic and recursion theory.
The latter was heavily influenced by Kleene and Mostowski who developed a
deep body of work remarkably reminiscent of many aspects of the classical de-
scriptive set theory framework. In fact, the analogies are so strong that when
Addison formalized them in a rigorous way, the marriage between recursion the-
ory and descriptive set theory was successfully consummated in what is called
effective descriptive set theory. Through an admittedly shallow and rather in-
formal overview of these matters, we attempt nevertheless to advocate for the
naturality of the classical hierarchies. The reader is referred to [62] for an in
depth treatment of the topic, a reference that we shall follow closely.

Without any pretension to provoke any radical constructivist or ultrafinitist,
it is perhaps not too controversial to accept the idea that functions which can
be computed by a Turing machine should be, intuitively, legit mathematical
objects. Let’s consider the case of functions with tuples of positive integers
as input arguments and with a positive integer as output. Surely, few people
would contest the legitimacy of simple functions such as the successor func-
tion S(n) = n + 1, the constant function c(n1, ..., nk) = c or projections like
pi(x1, ..., xk) = xi. Moreover, it seems likely that almost all skeptics would
accept that the composition of two simple functions should yield a simple func-
tion. If we have g(x) and h(u, n, x) as allowed entities, we may think about
defining f by primitive recursion :{

f(0, x) = g(x)

f(n+ 1, x) = h(f(n, x), n, x)

Finally, given g(n, x) one considers the minimization procedure to define f(x) as
the least natural number such that g(n, x) = 0. To the elements of the smallest
class which contains all simple functions S, c, pi and is closed under composition,
primitive recursion and minimization, we call recursive (or computable) func-
tions. It is well known that the class of recursive functions coincides with the
class of functions which are possible to be computed via a Turing machine. In
turn, this provides some favourable evidence towards the Church-Turing thesis
which claims that every function which is not obnoxious to the spirit of the most
conservative one is in fact Turing computable. A set is said to be recursive (or
decidable) if its characteristic function is recursive. In other words, if there is
an effective algorithm to decide the membership of the set. A famous example
of an undecidable membership problem, essentially by virtue of a diagonal ar-
gument, is the so called Turing’s Halting Problem. Now let’s analyse the choice
of open sets as simple sets under this lens. Consider the following :

U =
⋃
n

(an, bn), with an, bn ∈ Q

8



An idea for a method to determine whether or not x ∈ U is to choose a sequence
of rationals qi → x with |x−qi| < 2−i and search for n and i such that an+2−i <
x < bn − 2−i. If x ∈ U and if we can search for the intervals in a computable
way, then the process stops. However, if x /∈ U , the process does not stop. In
general, whenever this happens we say that a set is semi-recursive (or semi-
decidable). Motivated by this observation, let X = X1 × ...×Xn be a product
space, with each Xi being a Polish space endowed with a recursive presentation,
i.e. a dense countable set {ri} for which the relations d(ri, rj) ≤ m

k+1 and
d(ri, rj) <

m
k+1 are recursive. One can then endow the product space X with

a recursive presentation and appropriately codify the basic open neighborhoods
(cf. [62], Section 3B). A set G ⊆ X is said to be semi-recursive if :

G =
⋃
n

N(X, ε(n)), where n 7→ ε(n) is a recursive enumeration

In other words, a set is called semi-recursive if it is a recursive union of basic
neighborhoods. It turns out that a set P ⊆ ωk is recursive if and only if both
P and ωk \ P are semi-recursive (cf. [62], Theorem 3C.2). We use the notation
P ∈ ∃ωΓ as usual to indicate that P (x)⇔ ∃n : Q(x, n) with Q ∈ Γ and similarly
with ∃ωω . We can then define the effective versions of the classical hierarchies :

(i) Σ0
1 = {semi-recursive sets} and Σ0

n+1 = ∃ω¬Σ0
n

(ii) Π0
n = ¬Σ0

n

(iii) ∆0
n = Σ0

n ∩ Π0
n, so that if X = ωk the class ∆0

1 coincides with the class
of recursive sets. Sometimes, in this context the class ∆0

0 is defined to be
the class of primitive recursive sets, i.e. sets which membership can be
decided without minimization.

Moreover, we similarly define higher hierarchies :

(i) Σ1
1 = ∃ωωΠ0

1 and Σ1
n+1 = ∃ωω¬Σ1

n

(ii) Π1
n = ¬Σ1

n

(iii) ∆1
n = Σ1

n ∩Π1
n

All these constructions share analogous closure properties with the classical hi-
erarchies. In order to state the big analogy in a rigorous way, we introduce the
notation for relativization : with each pointclass Γ and each z ∈ Z we associate
Γ(z) by declaring that P ⊆ X is in Γ(z) if there is some Q ⊆ Z × X in Γ
such that P (x) ⇔ Q(z, x). We can now state the correspondence between the
effective and the classical hierarchies ([62], Theorem 3E.4) :

Let Γ denote the classes Σ0
n, Σ1

n, Π0
n or Π1

n and Γ denote the correspondent
effective classes. Then, P ⊆ X is in Γ if and only if P ∈ Γ(ε) for some ε ∈ ωω.

Another related idea - arguably hinting towards a more formalist or logicist
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flavour - for a criterion that classifies objects according to their simplicity would
be to look at the complexity of the formulas used to define them. A structure
U is defined by U = ({Ai}i∈I , {fj}j∈J , {Rk}k∈K , {cl}l∈L) where each Ai is a
non-empty set, fj are fuctions from some cartesian product Ai1 × ... × Aip to
some An , Rk are relations on some cartesian product of elements in {Ai}i∈I
and each cl is an element of some Ai. For instance, the structure of second order
arithmetic :

A2 = (ω, ωω,+,×, ap, 0, 1)

with ap: ωω × ω → ω given by ap(α, n) = α(n). We then associate a formal
language LU to a structure U, providing an alphabet of symbols and a grammar,
which consists on a list of rules which determines the well-formed formulae in
LU. We can then talk about a formula being satisfied in a language. In a sense,
it can be argued that this furnishes our syntax with the vitality of meaning.
The rules of satisfaction are meant to be self-evident and can be understood as
to translate statements from LU to natural language. We will use the symbol |=
to indicate satisfaction. For a concise introduction, the reader is refererred to
[62] (Section 8A). In this context, we say that a set A ⊆ ωk× (ωω)n is definable
in A2 if there is a formula ϕ(m1, ...,mk, f1, ..., fn) such that :

A(m1, ...,mk, f1, ..., fn)⇔ A2 |= ϕ[m1, ...,mk, f1, ...fn]

For A ⊆ ωk × (ωω)n, with k, n ∈ ω, we define the arithmetical hierarchy (if A
is definable in A2 without quantifying over elements of ωω) and the analytical
hierarchy (for A definable in A2) :

(i) A ∈ ∆0
0 if A is definable in A2 by a formula with only bounded quantifiers5

(ii) A ∈ Σ0
n if A is definable in A2 by ∃m1∀m2...Qmnϕ, where ϕ has only

bounded quantifiers and Q = ∃ if n is odd and Q = ∀, otherwise

(iii) A ∈ Π0
n if A is definable in A2 by ∀m1∃m2...Qmnϕ, where ϕ has only

bounded quantifiers and Q = ∃ if n is even and Q = ∀, otherwise

(iv) More generally, ∆0
n = Σ0

n ∩Π0
n

If we quantify over elements in ωω, we get the analytical hierarchy :

(i) Σ1
0 = Σ0

1 and Π1
0 = Π0

1

(ii) A ∈ Σ1
n if A is definable in A2 by ∃f1∀f2...Qfnϕ, where ϕ has only quan-

tifiers over ω and Q = ∃ if n is odd and Q = ∀, otherwise

(iii) A ∈ Π1
n if A is definable in A2 by ∀f1∃f2...Qfnϕ, where ϕ has only quan-

tifiers over ω and Q = ∃ if n is even and Q = ∀, otherwise

(iv) ∆1
n = Σ1

n ∩Π1
n

5In other words, when we restrict the range of the quantified variable under ∀ or ∃
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The correspondence between these and the classical hierarchies is then given by
the following fact (cf. [28]) :

Let A ⊆ (ωω)k. Then, A ∈ Σ0
n if and only if A ∈ Σ0

n(α), for some α ∈ ωω.
Similarly for Π0

n. Regarding projective and analytical sets, A ∈ Σ1
n if and only

if A ∈ Σ1
n(α), for some α ∈ ωω. Similarly for Π1

n.

In this thesis, in Section 3, we present a synthesis of some fundamental results
and examples from classical Descriptive Set Theory. In Section 5, we investi-
gate some applications of this methods to the study of closed sets of uniqueness
in locally compact groups. In Section 6, under this lens, we study the point
spectra of operators.

1.2 A brief overview on sets of uniqueness

Thin sets have been a central object of study for Harmonic Analysis. Among
those, sets of uniqueness constitute a particularly important topic of interest
with a long and illustrious history, honoured by fruitful interdisciplinary collab-
orations and witnessed by the development and usage of techniques whose range
of applicability goes way beyond the study of Analysis related objects. In his
Habilitationsschrift, Riemann suggested the problem of determining whether or
not a representation of a function by a trigonometric series, whenever it exists,
is unique. In modern language this amounts to ask whether or not the empty
set is a set of uniqueness. Working on this problem, Cantor was led to study
ordinal numbers and consequently to inaugurate the field of Set Theory, ignit-
ing a profound change of paradigm within the mathematical community. A set
E ⊂ T is said to be a set of uniqueness if :

∞∑
n=−∞

cne
inx = 0 off E, implies that cn = 0 for all n ∈ Z

Other exceptional sets arise naturally in relation with sets of uniqueness, for
instance sets of extended uniqueness. Indeed, a set E ⊆ T is said to be a set of
extended uniqueness if :

∞∑
n=−∞

µ̂(n)einx = 0 off E, implies that µ̂(n) = 0 for all n ∈ Z

where µ is a Borel measure on T and µ̂(n) its Fourier-Stieltjes coefficients.
Clearly, all sets of uniqueness are sets of extended uniqueness.

Lebesgue, Bernstein and Young strengthened Cantor’s results and eventually
proved that every countable set of T is a set of uniqueness. The structure of
sets of uniqueness was extensively studied during the first three decades of the
20th century, most notably by the Russian and Polish schools. Some of the
early landmark successes of the subject include Bari’s theorem - which guaran-
tees that a countable union of closed sets of uniqueness is still a set of uniqueness
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- and Salem-Zygmund theorem - establishing a bridge between number-theoretic
properties and sets of uniqueness, fully characterizing a certain type of the lat-
ter - as well as rather counter-intuitive examples, such as Menshov’s example of
a null set which is not a set of uniqueness or Bari’s and Rajchman’s construc-
tions of uncountable perfect sets of uniqueness. Despite of the early successes,
a characterization of the set of sets of uniqueness in terms of a definable subset
or even in terms of a measure theoretic or topological qualitative description,
was consistently elusive. There were plenty of difficulties which seemed tech-
nically unsurpassable. However, in the 1950’s the subject regained a vigorous
interest by virtue of a new functional analytic flavoured framework initiated by
Piatetski-Shapiro which reformulated the language of the area, naturally refo-
cusing efforts to study the family of closed sets of uniqueness. One important
accomplishment of his works was establishing the existence of (closed) sets of
extended uniqueness which are not (closed) sets of uniquess.

In the early 60’s, the notion of (closed) set of uniqueness is extended to abelian
locally compact groups by Herz and in the late 70’s, to general locally compact
groups by Bożejko within the framework of Fourier algebras, previously intro-
duced by Eymard. Curiously enough, and despite the fact that one can trace
back the origins of Set Theory to the early investigations on sets of uniqueness,
both subjects remained relatively isolated from each other until the 80’s. At this
point, the incorporation of descriptive set-theoretic tools in the study of sets of
uniqueness not only sharpened the understanding of the subject, providing new
insights to classical results from a more abstract perspective, but also led to
the solution of old open problems and to the development of powerful methods.
The successful merging of set theoretic techniques with a modern functional
analytic framework to approach (and generalize) classical problems arising from
Analysis related contexts was led notably by Debs, Saint Raymond, Kechris,
Louveau and Woodin. For a comprehensive introduction to this angle on sets
of uniqueness (for T), the reader is referred to [47].

In this thesis, in Section 4 we recall the theory involving groups, measures and
algebras on groups which is required to introduce the Fourier algebra of a locally
compact group G. In Section 5, we carefully define sets of (extended) unique-
ness in the general setting of such groups as well as their operator-theoretic
counterpart as defined in [74]. We prove new results on preservation properties
of closed sets of uniqueness of G, extend previous descriptive set-theoretic com-
plexity classifications and establish criteria for the non existence of Borel bases
for the set of closed sets of uniqueness under certain assumptions on G.

1.3 Papers included in this thesis

In what follows, we provide a brief summary of each paper whose content is
contained in this thesis. Any reference of a result by a number (eg. Th. X.YY)
is with respect to this thesis.

12



• Paulos J., Descriptive set theoretic aspects of closed sets of unique-
ness in the non abelian setting - submitted

Henceforth, G is a locally compact group. We prove some results concerning
the preservation of (operator) M0-sets under certain inverse images and finite
products. Moreover, we locate the descriptive set theoretic complexity of U(G)
and U0(G) under further assumptions on the group G.
In [74], the notion of closed set of (extended) uniqueness is related with its
operator theoretic counterpart. Using operator theoretic flavoured techniques,
several functorial results were established. In particular, concerning finite prod-
ucts one can extract the following :

(Cor. 5.17) Let Gi be second countable and Ei ⊆ Gi closed subsets, for
i ∈ {1, 2}. Then, if either E1 or E2 is a U -set it follows that so is the product
E1×E2. On the other hand, if both E1 and E2 are M -sets, so is their product.

We prove that the analogous result still holds for U0-sets :

(Th. 5.18) Let (Xi, µi) and (Yi, νi) be standard measure spaces and κi ⊆ Xi×Yi
be ω-closed sets for i ∈ {1, 2}. The set ρ(κ1 × κ2) is an operator M0-set if and
only if both κ1 and κ2 are operator M0-sets. Here, the map ρ is defined as
follows :

ρ : (X1 × Y1)× (X2 × Y2)→ (X1 ×X2)× (Y1 × Y2)

((x1, y1), (x2, y2)) 7→ ((x1, x2), (y1, y2))

As a consequence, we can conclude that :

(Cor. 5.19) Let Gi be second countable groups and Ei ⊆ Gi closed subsets.

(a) If both E1 and E2 are M0-sets, so is E1 × E2

(b) If either E1 or E2 is a U0-set, so is E1 × E2

Concerning inverse images, the work developed in [74] allows to extract the fol-
lowing :

(Cor. 5.21) : Let G be second countable, H ⊆ G be a closed normal sub-
group and E ⊆ G/H a closed subset. Then, E is a U -set if and only if q−1(E)
- where q denotes the quotient map - is a U -set.

In [80], the analogous result for U0-sets is proven for abelian groups. We prove
partial generalizations of the result for U0-sets for some non-necessarily abelian
groups. In particular, we prove that :

(Th. 5.24) : Let G be amenable, H ⊆ G a closed normal subgroup and
E ⊆ G/H a closed subset. If q−1(E) is a M0-set, then so is E.
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A closed normal subgroup H ⊆ G is said to have property |l|2 if for every proper
compact K ⊆ G/H there exists some θ ∈ Cc(G) ∩ A(G) such that φ(|θ|) = c1
and φ(|θ|2) = c2 for some positive real constants on a neighbourhood of K.
Here, φ(f)([x]) is defined to be the integral

∫
H
f(xh)dh. Under the assumption

of this property (easily seen to hold, for instance, for Z ⊆ R) we have the fol-
lowing :

(Th. 5.28) : Let H ⊆ G be a closed normal subgroup with property |l|2
and such that G/H is second countable. Let E ⊆ G/H be a compact subset. If
E is a M0-set, then so is q−1(E).

Solovay and Kaufman proved that U(T) and U0(T) are Π1
1-complete. The reader

is referred to [47] for a proof (alternatively, cf. Theorem 5.41 and Theorem
5.43). In [80], it was proven that U(G) and U0(G) are Π1

1-complete whenever
G is abelian, second countable and non-discrete. Using an entirely different
approach, after noting that :

(Th. 5.38 and Th. 5.39) : U(G) and U0(G) are always coanalytic if G
is second countable (not necessarily abelian).

We rely on functorial properties and provide a direct proof of the following
descriptive complexities :

(i) (Th. 5.44) : U(G) is Π1
1-complete if G is a connected Lie group (not

necessarily abelian).

(ii) (Th. 5.45) : U0(G) is Π1
1-complete if G is a connected and abelian Lie

group.

Finally, using the results of [80], we easily establish more generally that :

(Th. 5.46) : Let G be a locally compact Polish group such that G/[G,G]
is non-discrete. Then, U(G) is Π1

1-complete.

For the sake of completeness, we also include the following observation (which
does not appear in any other draft) concerning a generalization of a famous
result due to Bari :

(Th. 5.36) : Under the negation of the CH and assumption of MA(κ), suppose
that {Eα}α<κ is a family of closed sets of uniqueness of T. Then,

⋃
α<κEα is a

set of uniqueness.

In [17] it was proven that U(T) does not have a Borel basis and in [56] this
result was extended for general second countable non-discrete locally compact
abelian groups G. We provide some criteria for the inexistence of a Borel basis
for U(G) when G is not necessarily abelian. Henceforth, G is assumed to be
locally compact and we prove the following results :
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(Th. 5.56) : Let G be amenable and second countable and H ⊆ G a countable
closed subgroup such that :

(a) The quotient map q : G→ G/H is a closed map

(b) There is no Borel basis for U(G/H)

Then, U(G) does not have a Σ1
1 pre-basis. In particular, if G is compact it

follows that U(G) is Π1
1-complete.

(Th. 5.60) : Let G be amenable and H ⊆ G be an open subgroup such
that U(H) does not have Borel basis. Then, U(G) does not have a Borel basis
and in particular, if G is compact then U(G) is Π1

1-complete.

We prove that if G is Polish and amenable, then U(G) is calibrated. In particu-
lar, this holds for whenever G is compact - a fact we use in order to establish a
sufficient condition for the inexistence of Borel basis for U(G) for certain prod-
uct groups G :

(Th. 5.62) : Let G be a Polish amenable group. Then, U(G) is a calibrated
coanalytic σ-ideal of F(G).

(Th. 5.67) : Suppose G is a product of the form G1 × ... × Gn with each
Gi compact, second countable and such that :

(a) For every i ∈ [n] there is a closed set Ei ⊆ Gi such that Ei /∈ U(Gi)
loc and

a Gδ-set Fi ⊆ Ei which is dense in Ei and such that Fi ∈ U(Gi)
int.

(b) There is some N ∈ [n] such that for every M -set E ⊆ GN , F(E) ∩ U(GN )
is not Borel

Then, U(G) is Π1
1-complete and does not have a Borel basis.

Open question : By [56], we know that U(G) does not have a Borel basis
whenever G is second countable, abelian and non-discrete. Can we generalize
this fact for a larger class of locally compact groups ? A natural candidate is the
class of (infinite) compact groups as they contain an infinite abelian subgroup
by a result of Zelmanov. However, if G is connected this subgroup is necessarily
non open and it is not clear for the author how to deal with this case. Another
natural case to consider is the class of Lie groups or totally disconnected Lie
groups, as structural descriptions such as the Gleason-Yamabe theorem appear
to be particularly relevant. However, the author was unsuccessful in his attempts
to extend these inexistence results to these larger classes.

• Paulos J., On reflexivity and point spectrum - to appear in Real
Analysis Exchange
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We prove a characterization of reflexivity for Banach spaces with unconditional
basis (for instance, this includes all Hilbert spaces) and we locate the descrip-
tive complexity of certain sets associated with the point spectrum of operators
acting on separable Banach spaces. In particular, we prove that :

(Th. 6.10) : Let X be a Banach space with an unconditional basis. Then, X
is reflexive if and only if for all closed subspaces Y ⊆ X, Z ⊆ X∗ and operators
T ∈ L(Y ), T ′ ∈ L(Z) it holds that σp(T ) and σp(T

′) are Borel.

Open question : Can we improve the previous result by virtue of consider-
ing only X instead of X and its continuous dual X∗ ? Can we prove some
similar characterization of reflexivity for spaces without unconditional basis ?

Let X be a separable Banach space and fix some T ∈ L(X). We study the
map ΓT : C → F(X) which sends λ to ker(T − λ1) and provide some upper
bounds for the descriptive complexity of sets arising naturally within this con-
text. In particular, we prove that :

(Th. 6.15) : Let X be a reflexive and separable Banach space and fix some
T ∈ L(X). Then, the set KT = {ker(T − λ1) : λ ∈ C} is Borel in the Effros-
Borel space of F(X).

• Paulos J., Stability of Jamison sequences under certain perturba-
tions, NWEJM vol. 5, 89-99 (2019)

An increasing sequence (nk) of positive integers is said to be a Jamison se-
quence if whenever T ∈ L(X) - with X a separable Banach space - is such that
supk ||Tnk || <∞, then the unimodular point spectrum σp(T ) ∩ T is countable.
We prove the following stability criterion :

(Th. 6.28) : For increasing sequences of positive integers (nk) and (tk) de-
fine :

(rk) tk
nk

:= (|tk − [
tk
nk

]nk|)

where [.] denotes the closest integer function. Suppose that (tk) is (non) Jami-
son. If one of the following conditions hold, (nk) is also (non) Jamison :

(i) supk( tknk ) <∞ and supk(rk) tk
nk

<∞

(ii) supk(nktk ) <∞ and supk(rk)nk
tk

<∞
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2 Terminology

The terminology and notation adopted throughout this thesis, bearing in mind
what is the literature’s jargon, is mostly standard. Nevertheless, and hoping to
clarify any potential ambiguities, we include this short section which contains
certain definitions which may sporadically appear without previous context.
Moreover, we declare that unless otherwise stated, we work within ZFC.

We start with a combinatorial tool : let A be any non-empty set and An be
the set of finite sequences of elements in A with length n ∈ N, i.e. the set of
functions from the ordinal n to the set A. Naturally, if n = 0 then A0 has a
single element : the empty sequence ∅. In other words, the empty set is the
initial object in the category of sets and functions. We denote by A<ω the set
of all finite sequences of elements in A, i.e. :

A<ω :=
⋃
n∈N

An

Whenever referring to the set of natural numbers we will use - in different
contexts and in an univocal way - both ω and N. Whenever (xn) ∈ AN and
m ∈ N, by x|m we refer to the element (x0, ..., xm−1) ∈ Am. Given t ∈ Ak and
s ∈ Am, with k ≤ m, we say that s extends t - denoted by t ⊆ s - if s|k = t. We
will denote the usual concatenation of two sequences s and t by s a t.

Definition 2.1. Let A be any non-empty set. A tree T on A is a subset
T ⊆ A<ω such that if t ∈ T and s ⊆ t, then s ∈ T . An infinite branch of
T is a sequence x ∈ AN such that x|n ∈ T for every n ∈ N and the set of all
infinite branches of T is called the body T , denoted by [T ]. A tree T is said to
be pruned if for every s ∈ T there is a proper extension t ∈ T of s.

Remark 2.2. Let A be any non-empty set and R be an entire binary relation
on it, i.e. such that for every x ∈ A, there is some y ∈ A with xRy. Assume
for a moment that every non-empty pruned tree has an infinite branch. Define
a tree T on A by declaring that (a0, ..., am) ∈ T if and only if akRak+1 for
every 0 ≤ k < m. Then, since R is entire it follows that T is pruned and
by assumption, it has an infinite branch. This means that there is a sequence
(an) ∈ AN such that anRan+1 for every n ≥ 0. The latter statement - i.e. given
any non-empty set A and entire binary relation R on it, there is a sequence (an)
such that anRan+1 - is known as the Axiom of Dependent Choice (DC). It is a
weak form of the Axiom of Choice, easily seen to be equivalent (within ZF) to
the assertion that every non-empty pruned tree has an infinite branch. It turns
out that the DC is equivalent (within ZF) to the Baire category theorem for
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complete metric spaces ([7]) and strictly stronger than the Axiom of Countable
Choice ([39], Theorem 8.12).

If T is a tree and p ∈ T , let Tp := {s : p a s ∈ T} which is also a tree. If T is
a tree on a product of two non-empty sets A1 × A2 and x ∈ AN

1 , we define the
section tree on A2 as follows :

T (x) := {s ∈ A<ω2 : s ∈ Ak2 and (x|k, s) ∈ T}

It is furthermore worth to point out that there is a bijection between pruned
trees on A and closed subsets of AN given by T 7→ [T ], whose inverse is given
by F 7→ {x|n : x ∈ F, n ∈ N} (cf. [45], Proposition 2.4).

We finish this short digression on trees by mentioning how we will denote open
basic sets in the product topology of discrete spaces. For (xn) ∈ AN, let :

Σ(x|n) := {x0} × ...× {xn−1} ×A×A× ...

We define analogously any open basic set induced by an element s ∈ A<ω.

Again, for the sake of clarity, we proceed by recalling that an algebra A over C
(or R) endowed with a submultiplicative norm with respect to which it becomes
a complete normed space is called a Banach algebra. If, furthermore, A has an
isometric involution ∗ : a 7→ a∗ then it is said to be a ∗-Banach algebra and
finally, if the C∗-equation holds - i.e. ||a∗a|| = ||a||2 for all a ∈ A - A is said to
be a C∗-algebra.

As usual, given a topological space X we denote the set of complex-valued
continuous functions on X by C(X). We often consider C(X) equipped with
pointwise multiplication and complex conjugation as involution. The subset of
bounded continuous functions is denoted by Cb(X) and when endowed with the
supremum norm ||f ||∞ := supx∈X{|f(x)|} it becomes a C∗-algebra. The sub-
set of continuous functions with compact support is denoted by Cc(X) and the
subset of continuous functions that vanish at infinity by C0(X). We recall that
Cc(X) is a dense subalgebra of C0(X).

Given a Banach space X, the space of continuous linear functionals - itself
a Banach space - will be denoted by X∗. The weak topology on X is the
coarsest topology on X for which all functionals in X∗ are continuous and the
weak∗-topology (or w∗-topology) on X∗ is the coarsest topology for which all
evaluation functionals (i.e. such that ϕ 7→ ϕ(x) for some x ∈ X) are continuous.
Arguably, one of the most useful well-known facts about the latter topology is
the Banach-Alaoglu theorem which states that the closed unit ball B1(X∗) is
weakly∗-compact.

Given a bounded linear operator T : X → Y between Banach spaces X and Y ,
the adjoint operator T ∗ : Y ∗ → X∗ is defined by T ∗(ϕ) := ϕ ◦ T .
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For a commutative Banach algebra A, the set of algebra homomorphisms from
A onto C is denoted by σ(A) and the Gelfand transform Γ : A → C(σ(A)),
where σ(A) is endowed with the weak∗-topology, is defined by :

Γ : a 7→ â, such that â(ϕ) = ϕ(a) for a ∈ A, ϕ ∈ σ(A)

The relative weak∗-topology on σ(A) is also referred to as the Gelfand topology.
It is a well-known fact that σ(A) is then a locally compact Hausdorff space,
compact if A is unital (i.e., if A has an identity). Another standard fact about
Banach algebras is the acclaimed Gelfand duality : if A is a commutative C∗-
algebra then Γ is an isometric isomorphism onto C0(σ(A)).

Remark 2.3. Let CHaus be the category of compact Hausdorff spaces and con-
tinuous functions and C∗com be the category of unital commutative C∗-algebras
and ∗-homomorphisms. Then, the functors sending X to C(X) and A to
σ(A) induce a duality between CHaus and C∗com. If instead we consider the
subcategory C∗com,nu of non-unital commutative C∗-algebras and the category
CHaus∗ of pointed compact Hausdorff spaces, similarly one has a duality be-
tween C∗com,nu and CHaus∗, providing clear justification for the terminology of
the latter theorem.

3 Elements of Descriptive Set Theory

The aim of this section is to introduce elementary notions in Descriptive Set
Theory while providing a not so narrow, yet not so comprehensive overview of
the field - particularly its classical aspects.

3.1 Borel and Projective hierarchies

Throughout this section, and unless otherwise stated, X is a Polish space - i.e.
a completely metrizable second countable topological space. We recall that a
topological space is said to be zero-dimensional if it has a basis consisting of
clopen sets.6 As usual, the Borel σ-algebra of any topological space X is the
σ-algebra generated by the open subsets of X and it will be denoted by B(X).
A measurable space (X,Σ) is said to be a standard Borel space if there is a
Polish topology T on X such that Σ coincides with the σ-algebra generated by
T .

Remark 3.1. Every separable metrizable space is homeomorphic to a subspace
of the Hilbert cube IN. Indeed, consider such space (X, d) with d ≤ 1 and
{xn} ⊆ X a countable dense set. It is then the case that the assignment
x 7→ (d(x, xn))n∈N is a homeomorphism onto its image. It is a well-known fact
that a subspace of a Polish space is Polish if and only if it is Gδ (cf. [45],

6It is well known that if X is separable and metrizable, then X is zero-dimensional if and
only if its Lebesgue covering dimension is zero.
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Theorem 3.11). Hence, up to homeomorphism Polish spaces are precisely the
Gδ subspaces of IN. Furthermore, all Polish groups (i.e. topological groups
whose topology is Polish) are isomorphic to a closed subgroup of H(IN), the
group of homeomorphisms of IN (cf. [45], Theorem 9.18).

Definition 3.2. We define, via transfinite recursion for all 1 ≤ α < ω1, the
Borel hierarchy of sets of a topological space X :

Σ0
1 = {U : U ⊆ X is open} and Π0

1 = {F : F ⊆ X is closed}

Σ0
α = {

⋃
n

An : An ∈ Π0
β(n), β(n) < α} and Π0

α = {X \A : A ∈ Σ0
α}

Remark 3.3. Note that the Borel hierarchy does indeed provide an ordered
stratification of B(X) for a metric space X. Indeed, it is immediate that :

B(X) =
⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α

and that if β < α, then Σ0
β ⊆ Σ0

α and Σ0
β ⊆ Π0

α (and similarly for Π0
β). Since

there are c many open sets in any separable infinite metric space X, it is then
clear that in that case |B(X)| = c. Consequently, one can provide a simple
proof of the existence of Lebesgue measurable sets of R which are not Borel.
Indeed, since the Lebesgue measure is complete it follows that every subset of
the Cantor set is Lebesgue measurable. However, there are 2c such subsets.

Moreover, if X is uncountable we need all ω1 steps to exhaust all Borel sets :

Theorem 3.4. Let X be an uncountable Polish space. Then, for every α < ω1

one has a strict inclusion Σ0
α ( Σ0

α+1.

Proof. The reader can find a proof in [77] (Corollary 3.6.8).

Remark 3.5. Let X be any topological space and define Ord(X) to be the
least ordinal α such that Σ0

α = B(X). Note that if X is a discrete space, then
Ord(X) = 1 and that Ord(Q) = 2. If one assumes the Continuum Hypothesis,
then for every α ≤ ω1 there is a separable metric space X such that Ord(X) =
α (cf. [60], Corollary 10.4). This shows how important the assumptions in
Theorem 3.4 are.

Definition 3.6. Let X be a Polish space. We define the Projective hierarchy
as follows :

Σ1
1 = {π(B) : B ∈ B(X ×X)} and Π1

1 = {X \A : A ∈ Σ1
1}

Σ1
n+1 = {π(B) : B ⊆ X ×X, B ∈ Π1

n} and Π1
n+1 = {X \A : A ∈ Σ1

n+1}

Proposition 3.7. Let X be a Polish space and A ⊆ X. Then, the following
are equivalent :

(i) A ∈ Σ1
1
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(ii) There is a Polish space Y and some B ∈ B(X × Y ) such that πX(B) = A

(iii) There is a continuous function f : ωω → X such that f(ωω) = A

(iv) There is a closed subset C ⊆ X × ωω such that πX(C) = A

(v) For every uncountable Polish space Y there is a Gδ set G ⊆ X × Y such
that πX(G) = A

If A satisfies any of the above conditions, then A is said to be analytic. If X \A
is analytic, then A is said to be coanalytic.

Proof. The reader can find a proof in [77] (Proposition 4.1.1).

Remark 3.8. Let X be a Polish space and A ⊆ X. Then, A ∈ Σ1
1 if and only if

A is the continuous image of a Polish space. On one hand, if A is analytic then
A is the continuous image of ωω which is a Polish space. On the other hand,
suppose that there is some Polish space Y and a continuous function f : Y → X
such that f(Y ) = A. By Theorem 7.9 in [45], there is a continuous surjective
function g : ωω → Y and thus, h = f ◦ g : ωω → X is a continuous function
such that h(ωω) = A. This is a quite commonly used definition of analytic set.

Historically speaking, the idea of analytic sets emerged from a famous mistake
detected by Lusin. Indeed, in [51] Lebesgue erroneously claimed that the pro-
jection of a Borel set of R2 onto R is still a Borel set. In truth, this is not
always the case. We end this section with two classical results and a central
definition which are related with this issue. The following result establishes the
non-redundancy of the Projective hierarchy :

Theorem 3.9. Let X be an uncountable Polish space. Then, B(X) ( Σ1
1 and

Σ1
n ( Σ1

n+1 for all n.

Proof. The reader can find a proof in [45] (Theorems 14.2 and 37.7).

The class of Borel sets of a Polish space coincides with the class of sets which
are simultaneously analytic and coanalytic :

Theorem 3.10. Let X be a Polish space. Then, B(X) = Σ1
1 ∩Π1

1.

Proof. It is enough to prove that if A,B ⊆ X are two disjoint analytic sets,
then they can be separated by a Borel set - i.e. there is a Borel set C such that
A ⊆ C and C ∩ B = ∅. Let f, g : ωω → X be continuous functions such that
f(ωω) = A and g(ωω) = B and assume, towards a contradiction, that A and B
can’t be separated by a Borel set. Note that if A =

⋃
nAn and B =

⋃
mBm

with An and Bm separated for each n,m by a Borel set Rn,m, then A and B
are separated by

⋃
n

⋂
mRn,m. Hence, we can define recursively x(n), y(n) ∈ N

such that f(Σ(x|n)) and g(Σ(y|n)) are not separated by a Borel set. However,
since A and B are disjoint, there are disjoint open neighbourhoods U and V of
f(x) and g(y) respectively which separate f(Σ(x|N)) and g(Σ(y|N)) for large
enough N , which is a contradiction.
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A commonly used technique to identify sets which are not Borel relies on the
concept of pointclass completeness. Due to the scope of this thesis, we will
restrict our focus to the pointclass of (co)analytic sets :

Definition 3.11. Let X be a Polish space and A ⊆ X. Then, A is said to
be Σ1

1-hard if for every zero dimensional Polish space Z and B ⊆ Z which is
analytic, there is a continuous function f : Z → X such that B = f−1(A).
If furthermore A ∈ Σ1

1, then A is said to be Σ1
1-complete. The definitions of

Π1
1-hardness and Π1

1-completeness are entirely analogous.

We note that if A ⊆ X is Σ1
1-hard, then A it is not Borel. Indeed, by Theorem 3.9

there is some B ⊆ ωω which is analytic and not Borel. Since A is Σ1
1-hard then

there is a continuous function f : ωω → X such that f−1(A) = B. However,
since Borel sets are preserved under the pre-image of continuous functions we
can conclude that A is not Borel. Similarly, if A is Π1

1-hard then A is not Borel.
Note as well that if X and Y are Polish spaces, A ⊆ X is Σ1

1-hard and B ⊆ Y
is such that there is a continuous function f : X → Y with A = f−1(B), then
B is also Σ1

1-hard. Similarly with Π1
1-hardness.

3.2 A few examples

In this section we provide a few examples of Polish spaces and (co)analytic sets.
We focus mainly on two standard examples : the set of well-founded trees WF
which constitutes an elementary, though important, example of a Π1

1-complete
set and the space F(X) of closed subsets of a space X which is central in further
sections of this text. On our way, we comment very briefly on some applications
to the study of Banach spaces.

3.2.1 Two standard examples

Our first example is the archetype of a Π1
1-complete set. Recall that a tree T is

said to be well-founded if and only if [T ] = ∅. We consider the set Tr ⊆ 2ω
<ω

of trees on ω, after identifying each tree with its characteristic map. It is easily
verified that Tr is a Gδ subset of 2ω

<ω

and thus, a Polish space. Then :

WF := {T ∈ Tr : [T ] = ∅} and IL := Tr \WF

Now consider the following set E ⊆ 2ω
<ω × ωω :

E = {(T, β) : T ∈ Tr and there is some n such that T (β|n) = 0}

It is easily shown that E is Borel and thus, noting that :

WF = {T ∈ Tr : (T, β) ∈ E, for all β ∈ ωω} := ∀ω
ω

E

it follows from Theorem 3.26 that WF ∈ Π1
1.

It is a well-known fact that every zero dimensional Polish space is homeomor-
phic to a closed subspace of ωω (cf. [45], Theorem 7.8). Hence, if X is a zero
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dimensional Polish space there is a homeomorphism ϕ : X → [T ], where T ∈ Tr
is some pruned tree. Let A ⊆ X, ι : [T ] ↪→ ωω be the inclusion map and
f : ωω → [T ] be a continuous function whose restriction to [T ] is the identity
- such map is guaranteed to exist (cf. [45], Proposition 2.8). Then, setting
B = f−1(ϕ(A)) it is clear that ψ := ϕ−1 ◦ f : ωω → X and φ := ι ◦ϕ : X → ωω

are continuous functions such that ψ−1(A) = B and φ−1(B) = A. Hence, in
order to prove that WF is Π1

1-complete it suffices to show that for any coan-
alytic subset C ⊆ ωω we can find a continuous function f : ωω → Tr such
that f−1(WF ) = C. When it comes to (co)analytic subsets of ωω one has the
following useful characterization :

Proposition 3.12. Let C ⊆ ωω. Then, C is coanalytic if and only if there is a
tree on ω × ω such that α ∈ C if and only if T (α) is well-founded.

Proof. The reader can find a proof in [45] (Proposition 25.2).

Remark 3.13. In [42] it was proven that every bounded analytic set C ⊆ C can
be realized as the point spectrum C = σp(T ) of some bounded linear operator
T acting on a separable Banach space, which may depend on C. In [44], this
characterization was refined and it was proven that such T can be chosen to
act on c0, regardless of our choice of C. In other words (and since the point
spectrum of an operator acting on a separable Banach space is always analytic
- cf. Proposition 6.1), bounded analytic subsets of the complex plane coincide
with the point spectrum sets of linear bounded operators acting on c0.

Consider now any coanalytic subset C ⊆ ωω and let T be as in Proposition 3.12.
Define f : ωω → Tr by f(α) = T (α). It is clear that f is a continuous function
with f−1(WF ) = C and thus, we can conclude that :

Theorem 3.14. The set WF ⊆ Tr is Π1
1-complete.

For our second example, let X be a topological space. Let F(X) and K(X)
denote respectively the set of closed and compact subsets of X. On F(X) we
consider the σ-algebra generated by the family of sets of the form :

{F ∈ F(X) : F ∩ U 6= ∅}, for open subsets U ⊆ X

The set F(X) endowed with this σ-algebra is often called the Effros space of
F(X). On K(X), consider the topology generated by sets of the form :

{K ∈ K(X) : K ⊆ U} and {K ∈ K(X) : K ∩ U 6= ∅}, for open subsets U ⊆ X

This topology on K(X) is often referred to as the Vietoris topology.
Recall that if (X, d) is a metric space (with d ≤ 1) one defines the Hausdorff
metric dH on K(X) as follows : if K,L ∈ K(X) are both non-empty, then :

dH(K,L) = max{max
x∈K

d(x, L),max
x∈L

d(x,K)}

Moreover, if K and L are both empty, then dH(K,L) = 0 and if exactly one
of K and L is empty, then dH(K,L) = 1. It is well known that the Hausdorff
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metric is compatible with the Vietoris topology (cf. [77], Proposition 2.4.14).
If X is separable with a countable dense set D, then so is K(X) by considering
the countable dense subset {K ∈ K(X) : K ⊆ D, K is finite}. Moreover, if X
is Polish we have the following :

Theorem 3.15. If X is completely metrizable, so is K(X) with the Vietoris
topology. In particular, if X is Polish so is K(X).

Proof. The reader can find a proof in [45] (Theorem 4.25).

Similarly, if X is Polish we are still in a safe setting regarding F(X) :

Theorem 3.16. Let X be a Polish space. Then, the Effros space on F(X) is
a standard Borel space.

Proof. The reader can find a proof in [45] (Theorem 12.6).

Remark 3.17. For a separable metric space X, F(X) is a standard Borel space
if and only if X is the union of a Polish space and a Kσ (cf. [72]).

Let X be a locally compact Polish space and define the Fell topology on F(X)
by considering the following sets as basic open sets :

{F ∈ F(X) : F ∩K = ∅, F ∩ U1 6= ∅, ..., F ∩ Un 6= ∅}

where K ∈ K(X) and Ui ⊆ X are open sets. It follows that the Borel σ-
algebra induced by the Fell topology on F(X) coincides with the Effros space.
If furthermore X is compact and thus K(X) = F(X) as sets, we have that our
previous definitions are put together as follows :

Theorem 3.18. Let X be a compact Polish space. Then, the Vietoris topology
on K(X) induces the Effros space.

Proof. The reader can find a proof in [77] (pp. 96-7).

Another important topology one can consider on F(X)\{∅}, for any metric space
(X, d), is the so called Wijsman topology. This is the weak topology generated
by {ϕx : x ∈ X}, where ϕx : F(X) \ {∅} → R is given by ϕx(F ) := d(x, F ).

Theorem 3.19. Let X be a Polish space with a compatible complete metric d.
Then, F(X) \ {∅} endowed with the Wijsman topology with respect to d is a
Polish space. Moreover, it induces the Effros space on F(X) \ {∅}.
Proof. The reader can find a proof in [5] (Theorem 4.3).

Remark 3.20. One can consider the extended Wijsman topology on F(X) by
considering a local base at ∅ to be constituted by sets of the form (for some
fixed x0 ∈ X) :

{∅} ∪ {F ∈ F(X) : d(x0, F ) > n, n ∈ N>0}

The extended Wijsman topology on F(X) is the subspace topology it inherits
from the one-point compactification of F(X) \ {∅} - after identifying the point
at infinity with {∅}. We conclude that if X is Polish, then F(X) with the
extended Wijsman topology is also Polish (cf. [5], Theorem 4.4).
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3.2.2 Other examples and some applications

In this section we aim to provide, through rather general lines, different settings
where descriptive set theoretic methods have found their use.

Let X be a separable (real) Banach space and consider :

Subs(X) = {Y ⊆ X : Y is a closed linear subspace} ⊆ F(X)

The Kuratowski-Ryll-Nardzewski theorem states that if X is Polish then there
is a sequence of Borel functions dn : F(X)→ X such that for every non-empty
closed set F , then {dn(F )} is dense in F (cf. [45], Theorem 12.13). Let then
(dn) be such a sequence and note that :

F ∈ Subs(X)⇔ 0 ∈ F and ∀m,n ∈ N∀p, q ∈ Q : (pdn(F ) + qdm(F ) ∈ F )

Therefore, Subs(X) is a Borel set in F(X). Note that for complex Banach
spaces, one simply considers Q + iQ instead of Q.

It is a standard result that every (non-empty) compact metrizable space is
a quotient of the Cantor space C. Hence, and since B1(X∗) is weak∗-compact,
there is a surjective continuous function f : C → B1(X∗). Now for each x ∈ X,
let fx ∈ C(C) be defined by fx(y) := f(y)(x). It follows that the assignment
x 7→ fx is an isometric isomorphism and thus, every separable Banach space is
isometrically isomorphic to a closed subspace of C(C). As such, we can study
separable Banach spaces as elements of Subs(C(C)) - a standard Borel space.
If X is a separable Banach space, we follow [11] and let 〈X〉 denote the equiv-
alence class {Y ∈ Subs(C(C)) : Y ≈ X} induced by isomorphism ≈ of Banach
spaces. We can thus encode information about separable Banach spaces in a
canonical way via c : Subs(C(C)) → Subs(C(C))/ ≈, such that X 7→ 〈X〉. It
turns out that within this setting, ≈ and other natural relations are not Borel :

Theorem 3.21. The isomorphism relation ≈ and the relation {(X,Z) : ∃Y ∈
Subs(C(C)) : Z ≈ X ⊕ Y } are analytic and non-Borel in Subs(C(C))2.

Proof. The reader can find a proof in [11] (Theorem 2.3).

Recall that a Banach space is said to be universal if it contains an isomorphic
copy of every separable Banach space, like C(C). In [11], the following powerful
criterion is proved :

Theorem 3.22. Let A be an analytic family of separable Banach spaces which
is stable under isomorphism, contains all reflexive separable spaces. Then, A
contains a space which is universal for all separable Banach spaces.

Proof. The reader can find a proof in [11] (Theorem 3.2).

Let X be a separable Banach space and A be the family of separable Banach
spaces which have an isomorphic copy in X. By Theorem 3.21 this is an analytic
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family and thus, by Theorem 3.22, it follows that X is universal if and only if
it contains a copy of every reflexive separable space, i.e. universal for reflexive
(separable) spaces. This outstanding result was firstly proved in [12]. In fact,
more can be said by choosing different analytic families :

Theorem 3.23. Let X be a separable Banach space. Then :

(i) Every reflexive separable space has an isomorphic copy in X if and only if
X is universal.

(ii) Every reflexive separable space is isomorphic to a subspace of a quotient
of X if and only if X contains an isomorphic copy of `1.

(iii) Every reflexive separable space is isomorphic to a quotient of X if and only
if X an isomorphic complemented copy of `1.

Proof. The reader can find a proof in [11] (Corollary 3.4).

It follows, once again by Theorem 3.22 that the family Ref ⊆ Subs(C(C)) of
reflexive separable spaces is not analytic and thus, not Borel. Matter of fact, it
can be proven that Ref is actually Π1

1-complete (cf. [11], Lemma 2.4).

We finish this section with a few more examples, this time concerning contin-
uous functions f ∈ C([0, 1]). For more considerations on reflexive (separable)
Banach spaces and other examples of complete sets, the reader is referred to the
appended papers. In these papers, examples and applications concerning closed
sets of uniqueness, point spectra and reflexivity are discussed.

Theorem 3.24. For any f ∈ C([0, 1]), let ND(f) be the set of points in [0, 1]
where f is not differentiable. Then, the following sets are Π1

1-complete :

(i) {f ∈ C([0, 1]) : ND(f) ∈ F}, where F is a family of countable subsets of
[0, 1] containing ∅.

(ii) NDIFF = {f ∈ C([0, 1]) : f is nowhere differentiable}

Proof. The reader can find a proof of (i) in [30] and a proof of (ii) in [58].

Note that it follows from Theorem 3.24 that the set of continuous functions on
the unit interval which are differentiable everywhere is coanalytic complete, a
result originally proven in [59]. From the next example, one can deduce the
classical result on the existence of continuous functions on T with divergent
Fourier series :

Theorem 3.25. The set of continuous functions on [0, 1] with everywhere con-
vergent Fourier series is Π1

1-complete in C([0, 1]).

Proof. The reader can find a proof in [45] (Theorem 33.13).
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3.3 A few properties

In this section, for the sake of completeness, we present a short compilation of
well known properties of (co)analytic. For any subset B ⊆ X×Y of an arbitrary
product of sets we define :

∃YB = {x ∈ X : (x, y) ∈ B, for some y ∈ Y }

∀YB = {x ∈ X : (x, y) ∈ B, for all y ∈ Y }

Proposition 3.26. For a Polish space X, the following statements are true :

(i) For every 1 ≤ α < ω1, the classes Σ0
α and Π0

α are closed under finite
unions and finite intersections. Moreover, the classes Σ0

α are closed under
countable unions and the classes Π0

α are closed under countable intersec-
tions. All the classes Σ0

α and Π0
α are closed under pre-images of continuous

functions.

(ii) For every n, the classes Σ1
n and Π1

n are closed under countable unions,
countable intersections and pre-images of Borel functions. Moreover, the
classes Σ1

n are closed under ∃Y and the classes Π1
n are closed under ∀Y ,

for any Polish space Y .

Proof. The statement (i) is trivial. For a proof of the statement (ii), the reader
can check [77] (Proposition 4.1.7).

As noted previously, it is not the case that arbitrary continuous images of Borel
sets remain Borel. However, one has the following :

Theorem 3.27. Let X,Y be Polish spaces and f : X → Y be a Borel function
which is countable-to-one. Then, if B ⊆ X is Borel so is f(B) ⊆ Y .

Proof. The reader can find a proof in [77] (Theorem 4.12.4).

Given two topological spaces X,Y , we say that (X,B(X)) and (Y,B(Y )) are
Borel isomorphic if there is a bijective function f : X → Y such that f and f−1

are Borel functions. It turns out, perhaps surprisingly, that the cardinality of a
Polish space is an invariant :

Theorem 3.28. Let X and Y be standard Borel spaces. Then, X and Y are
Borel isomorphic if and only if |X| = |Y |. In particular, any two uncountable
standard Borel spaces are isomorphic.

Proof. The reader can find a proof in [45] (Theorem 15.6).

Next, we recall three important regularity properties :

Definition 3.29. Let X be a Polish space and A ⊆ X. Then :

(i) A has the Perfect Set Property (PSP) if A is either countable or contains
a non-empty perfect set.
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(ii) A has the Baire Property (BP) if there is an open set U ⊆ X such that
the symmetric difference A∆U is meager.

(iii) A is universally measurable if it is µ-measurable with respect to any σ-
finite Borel measure µ on X.

Remark 3.30. Recall that every complete metrizable space without isolated
points contains a homeomorphic copy of the Cantor set and thus, it is uncount-
able (cf. [77], Proposition 2.6.1). Therefore, the Continuum Hypothesis holds
for the class of subsets of a Polish space with the PSP. It is also a well known
fact that any separable metric space X can be decomposed as X = Y tZ, with
Y countable and Z closed and without isolated points (cf. [77], Proposition
2.6.2). Thus, every Gδ subset of a Polish space has the PSP - in particular any
closed subset of a Polish space which is not countable, has the cardinality c.
This result can be generalized as follows (cf. [78], Theorem 3.6) : Let X be a
metric space of cardinality α and weigth β ≥ ℵ0. Then, the number of closed
subsets of X of cardinality γ is :

(i) αγ , if γ ≤ β

(ii) 2β , if γ = α

(iii) 0, if X is complete and β < γ < α

This contrasts with what happens with non metrizable spaces. For instance,
the closed subsets of βN are either finite or of size 2c.

Theorem 3.31. Let X be a Polish space. The following statements are true :

(i) All analytic subsets of X have the PSP.

(ii) All analytic subsets of X have the BP.

(iii) All analytic subsets of X are universally measurable. In particular, all
analytic subsets of R are Lebesgue measurable.

Proof. The reader can find a proof of statements (i) and (ii) in [77] (respectively,
Theorems 4.3.5 and 4.3.2) and of statement (iii) in [45] (Theorem 21.10).

Recall that B ⊆ R is said to be a Bernstein set if it intersects each uncountable
closed set but contains none of them. It can be shown via a transfinite recursion
argument that R is indeed an union of c many pairwise disjoint Bernstein sets.
It follows from the definition that if B is a Bernstein set, then B is not Lebesgue
measurable and that B does not have the BP.

Remark 3.32. It follows immediately from Theorem 3.31 that all coanalytic
sets also have the BP and are universally measurable. However, the issue with
the PSP is more delicate. Indeed, the question of whether or not all coanalytic
sets have the PSP is independent from ZFC : assuming V = L, there is an
uncountable coanalytic set which does not contain any perfect set (cf. [33])
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and, on the other hand, assuming the Σ1
1-determinacy all coanalytic sets have

the PSP (see section 3.4). Note as well that Theorem 3.31 establishes that the
CH holds for analytic subsets of a Polish space. Within ZFC one can prove that
uncountable coanalytic sets either have cardinality ℵ1 or c (cf. [77], Theorem
4.3.18). Interestingly enough, if E is an analytic equivalence relation on a Polish
space with uncountably many equivalence classes, then this number is either ℵ1

or c. This is known as Burgess theorem (cf. [77], Theorem 5.13.4). On the other
hand, if E is a coanalytic equivalence relation, then the number of equivalence
classes is either countable or c. This is known as Silver’s theorem (cf. [77],
Theorem 5.13.11).

Remark 3.33. Let A ⊆ X be a subset with the BP. Then A is, up to a
meager set, just like an open set. The Baire property appears naturally in many
contexts. In order to provide a perhaps less obvious context for this property,
consider the following : for a set X, let [X]ℵ0 be the set of subsets of X with
cardinality ℵ0. We consider [N]ℵ0 endowed with the Ellentuck topology. This
is the topology which has the following sets as basic open sets, for a ∈ Pfin(N)
and A ∈ P(N) \ Pfin(N) :

[a,A] = {S ∈ [N]ℵ0 : a ⊆ S ⊆ a ∪A}, with max(a) < min(A)

Then, X ⊆ [N]ℵ0 is said to be completely Ramsey if for every such a,A there is
some B ⊆ A with either [a,B] ⊆ X or [a,B] ⊆ [N]ℵ0 \X. It turns out that X
is completely Ramsey if and only if it has the Baire property in the Ellentuck
topology (cf. [45], Theorem 19.14). As a consequence, an infinitary analog
of Ramsey’s theorem7 - usually referred to as Galvin-Prikry theorem - can be
easily proven (cf. [45], Theorem 19.11) : if [N]ℵ0 =

⋃n
i=1 Pi is a partition with

each Pi Borel, then there exists an infinite subset H of N such that [H]ℵ0 ⊆ Pk
for some k ≤ n. A different context where the Baire property is relevant will be
mentioned in section 3.5.

We finish this section with some brief comments on ranks. In turn, this provides
yet another method to identify sets which are not Borel.
A rank ϕ on a set S is simply a function from S into ω1. We can associate with
ϕ a relation ≤ϕ on S as follows :

x ≤ϕ y if and only if ϕ(x) ≤ ϕ(y)

If S is a strict subset of another set X, we simply declare ϕ(x) = ω1 whenever
x /∈ S. This extends ≤ϕ to a relation ≤∗ϕ on X as follows :

x ≤∗ϕ y ⇔ x ∈ S and ϕ(x) ≤ ϕ(y)

Naturally we can consider <∗ϕ on X as follows :

x <∗ϕ y ⇔ x ∈ S and ϕ(x) < ϕ(y)

7For any set X, let [X]n = {A ⊆ X : |A| = n}. Then, if [N]n =
⋃n

i=1 Pi is a partition,
there is an infinite H ⊆ N such that [H]n ⊆ Pk for some k ≤ n.
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Definition 3.34. Let X be a Polish space and P ⊆ X be coanalytic. A
coanalytic rank (or Π1

1-rank) on P is a rank ϕ such that the relations x ≤∗ϕ y
and x <∗ϕ y are both coanalytic subsets of X2.

As a central example, consider X = Tr and P = WF . For a tree T ∈ WF and
s ∈ ω<ω we define recursively the height of s in T as follows :

h(s, T ) = 0, if s /∈ T

h(s, T ) = sup{h(t, T ) + 1 : s ( t}, if s ∈ T

The height of T is defined as h(T ) := h(∅, T ). Note that since T ∈ WF , then
h(T ) < ω1. It follows that h is a coanalytic rank on WF (cf. [47], Lemma V.I.2).

Let X be a Polish space and ≺ be a binary relation on X. We say that ≺
is well-founded if there is no sequence {xn} ⊆ X such that for all n one has
that xn+1 ≺ xn. If ≺ is well-founded we can define recursively - similarly to our
definition of height of a well-founded tree - the length lh of ≺ as follows :

lh(x,≺) = 1, if there is no y such that y ≺ x

lh(x,≺) = sup{lh(y,≺) + 1 : y ≺ x}, otherwise

The length of ≺ is then defined as lh(≺) = sup{lh(x,≺) + 1 : x ∈ X}. An
important property of lh is that if X is a Polish space and ≺ is a well-founded
analytic relation, then lh(≺) < ω1 (cf. [47], Theorem V.I.6).

Remark 3.35. The previous statement about the length of well-founded rela-
tions can be generalized as follows (cf. [45], Theorem 31.5) : let X be a Polish
space, A ⊆ X and Y any discrete space. Then, A is said to be Y -Suslin if there
is a closed set F ⊆ X × Y N such that A = πX(F ). In particular, N-Suslin sets
are just analytic sets. If κ is an infinite ordinal and ≺ is a well-founded κ-Suslin
relation on X, then lh(≺) < κ+.

Theorem 3.36. Every coanalytic set admits a coanalytic rank. Moreover, let ϕ
be a coanalytic rank on some coanalytic subset P of a Polish space X and suppose
that Q ⊆ P . Then, if Q is analytic one has that sup{ϕ(x) : x ∈ Q} < ω1.

Proof. The fact that every Π1
1 set admits a Π1

1-rank follows easily from the fact
that WF is Π1

1-complete and that the height h is a Π1
1-rank on WF . In order

to prove the second part of the theorem, consider the relation :

x ≺ y ⇔ x ∈ Q and y ∈ Q and ϕ(x) < ϕ(y)

This is clearly a well-founded relation on X and, since ϕ is a Π1
1-rank and Q is

analytic, it follows from the definition that ≺ is analytic. Consequently, ≺ has
a countable length and we are done.

Theorem 3.36 is usually referred to as the Boundedness Theorem. It provides
a method to identify non Borel sets by means of finding a Π1

1-rank which is
unbounded on a given set.
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3.4 Games

In this section we briefly consider infinite games and some of their immediate
relations with (co)analytic sets. The framework is the following : we consider
an arbitrary discrete space A, a non-empty pruned tree T ⊆ A<ω (which defines
the legal positions of the game) and a subset X ⊆ [T ] (payoff set). The game
G(T,X) is played as follows : there are two players, P1 and P2 (we usually
assume that P1 starts the game), which take turns playing ai ∈ A such that
(a0, a1, ..., an) ∈ T for every n. In the end, we say that P1 wins G(T,X) if and
only if (an) ∈ X.
A strategy for P1 is then a non-empty pruned subtree σ ⊆ T such that :

(i) If (a0, ..., a2j) ∈ σ, then for all a2j+1 ∈ A such that (a0, ..., a2j , a2j+1) ∈ T ,
we have that (a0, ..., a2j , a2j+1) ∈ σ

(ii) If (a0, ..., a2j−1) ∈ σ, there is an unique a2j ∈ A such that (a0, ..., a2j−1, a2j) ∈
σ

In other words, a strategy for P1 is a rule which tells at each point what P1
should play in response to P2. Appropriately, we say that σ is a winning strategy
if and only if [σ] ⊆ X - i.e. no matter what P2 plays, if P1 follows σ then it is
guaranteed to win the game. We define (winning) strategy for P2 in an entirely
analogous way. We say that a game G(T,X) is determined if one of the players
has a winning strategy.

Remark 3.37. Consider T = ω<ω. It is clear that there are 2ℵ0 strategies
for each player. Let {σα}α∈I and {τα}α∈I be the set of strategies, respectively
for P1 and P2, indexed by some well-ordered set I with cardinality 2ℵ0 . Pick
p0 ∈ [τ0] and q0 ∈ [σ0] such that p0 6= q0. For α ∈ I suppose we picked for every
β < α elements pβ ∈ [τβ ] and qβ ∈ [σβ ] such that pβ 6= qβ . Then, pick some
pα /∈ {qβ}β<α and qα /∈ {pβ}β<α ∪ {pα} such that pα ∈ [τα] and qα ∈ [σα]. Set
P = {pα} and Q = {qα}. Then, G(ω<ω, P ) is not determined : indeed, suppose
towards a contradiction that P1 has a winning strategy, say σγ . Since qγ ∈ Q
and by definition Q ∩ P = ∅, it follows that [σγ ] ( P . Similarly, P2 does not
have any winning strategy either.

It follows from Remark 3.37 that at least within ZFC, there are undetermined
games. It is consistent with ZF that all games are determined and we shall
laconically comment on this issue in the end of this section. In contrast, open
and closed games (i.e. infinite games whose payoff set is open or closed) are
always determined :

Theorem 3.38. Suppose that T is a non-empty pruned tree on an arbitrary set
A and that X ⊆ [T ] is either closed or open. Then, G(T,X) is determined.

Proof. Suppose that X is closed and that P2 does not have a winning strategy.
A position p = (a0, ..., a2n−1) ∈ T with P1 to play next is said to be a non-losing
position for P1 if P2 does not have a winning strategy for the game onwards,
i.e. for the game G(Tp, Xp). Clearly, ∅ is a non-losing position for P1 and for
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every non-losing position p, there is some a2n ∈ Tp such that for any a2n+1

with (a2n, a2n+1) ∈ Tp, then p a (a2n, a2n+1) is also a non-losing position for
P1. This produces a strategy for P1 which we claim to be a winning strategy.
Indeed, let (an) be a run of this game where P1 followed this strategy and
suppose, towards a contradiction, that (an) /∈ X. Since X is closed, there is
some k such that Σ((a0, ..., a2k−1)) ∩ [T ] ⊆ [T ] \ X. In turn, this implies that
(a0, ..., a2k−1) is losing for P1 which is a contradiction. If, on the other hand X
is open, the argument is entirely similar (switching the roles of the players).

Remark 3.39. We note that, due to the single-valuedness condition in the
definition of strategy, the proof of Theorem 3.38 relies on the Axiom of Choice.
Using the notion of quasistrategy instead, the argument used in Theorem 3.38
provides a proof for the analogous result - without appealing to the Axiom of
Choice (cf. [45], p. 139). On the other hand, given any set X such that ∅ /∈ X,
consider the tree T on X ∪ (

⋃
X) given by (a0) ∈ T if and only if a0 6= ∅,

(a0, a1) ∈ T if and only if a1 ∈ a0 and (a0, a1, ..., an) ∈ T if and only if a1 = an,
for all n ≥ 1. Then, if Theorem 3.38 holds it follows that G(T, ∅) is determined
and thus, there is a choice function. Hence, in ZF the statement that closed
games are determined (as in Theorem 3.38) is actually equivalent to the Axiom
of Choice.

After determinacy was established by Gale-Stewart for closed and open payoff
sets in [27], Wolfe proved in [82] that games with a Σ0

2 payoff set are deter-
mined and Davis proved in [16] that Σ0

3 payoff sets are also determined. Finally,
Martin proved in [55] (and later heavily simplified in [54]) that Borel sets are
determined. This determinacy result also has metamathematical interest for at
least a couple of reasons : in [26], Friedman showed that there is a model of ZF
minus the Axiom of Replacement (and where the Axiom of Choice holds) where
Borel determinacy fails. Hence, in any proof of Borel determinacy the Axiom
of Replacement is needed. In any proof of Borel determinacy, it is needed to
use sets of very high type : for instance, in order to prove that Borel sets are
determined in {0, 1} one needs to use Pα(N) - the αth-iterated power set of N -
for all α < ω1. Furthermore, Borel determinacy is in a sense an optimal result :
indeed, the statement that all analytic sets are determined is independent from
ZFC and constitutes an alternative axiom usually referred to as Σ1

1-determinacy.

In order to sketch Martin’s inductive argument for Borel determinacy, we shall
need the concept of a covering. Let T be a non-empty pruned tree on an arbi-
trary set A. A covering of T is a triple (T̃ , π, ϕ) such that :

(i) T̃ is a non-empty pruned tree on some set Ã.

(ii) π : T̃ → T is a monotone and length preserving function which extends to
a continuous function π : [T̃ ]→ [T ].

(iii) ϕ maps strategies for P1 (P2) in T̃ into strategies for P1 (P2) in T in such
way that ϕ(σ̃)|n depends only on σ̃|n.

32



(iv) If σ̃ is a strategy in T̃ and x ∈ [ϕ(σ̃)], then there is some x̃ ∈ [σ̃] such that
π(x̃) = x.

(v) Moreover, for each k ∈ N we say that (T̃ , π, ϕ) is a k-covering if T |2k = T̃ |2k
and π|T̃2k

is the identity.

Note that it follows from condition (iv) that if (T̃ , π, ϕ) is a covering of T and
X ⊆ [T ], then a winning strategy σ̃ for P1 in G(T,X) is mapped to a winning
strategy ϕ(σ̃) for P1 in G(T̃ , π−1(X)). Similarly for P2. We say that (T̃ , π, ϕ)
unravels X ⊆ [T ] if π−1(X) is clopen in [T̃ ]. Hence, it follows by Theorem 3.38
that if (T̃ , π, ϕ) unravels G(T,X) then G(T,X) is determined.
Endowed with this terminology, in order to prove Martin’s result on the deter-
minacy of Borel sets it is thus sufficient to prove that for every game G(T,X)
with X Borel, there is a covering of T which unravels X. In order to enable an
inductive argument, something stronger is proved for the base case :

Theorem 3.40. Let T be a non-empty pruned tree and X ⊆ [T ] be closed. For
each k ∈ N there is a k-covering of T that unravels X.

Proof. The reader can find a proof in [45] (Lemma 20.7).

A final piece of machinery is needed in the shape of the following result which
asserts the existence of inverse limits :

Theorem 3.41. Let k ∈ N and (Ti+1, πi+1, ϕi+1) be a k + 1-covering of Ti,
for i ≥ 0. Then, there is a pruned tree T∞ and maps π∞,i, ϕ∞,i such that
(T∞,i, π∞,i, ϕ∞,i) is a (k+ i)-covering of Ti and moreover, πi+1 ◦π∞,i+1 = π∞,i
and ϕi+1 ◦ ϕ∞,i+1 = ϕ∞,i.

Proof. The reader can find a proof in [45] (Lemma 20.8).

Assuming Theorems 3.40 and 3.41, we can establish the following :

Theorem 3.42. Let T be a non-empty pruned tree on an arbitrary set A. If
X ⊆ [T ] is Borel, then for each k ∈ T there is a k-covering which unravels X.
In particular, G(T,X) is determined.

Proof. Since X is Borel, then X ∈ Σ0
α for some 1 ≤ α < ω1. We prove the

result by induction : the base case of α = 1 follows from Theorem 3.40 and the
observation that if a k-covering unravels X then it also unravels [T ] \ X. We
fix some k and suppose that there is always some k-covering which unravels X
if X ∈ Π0

β , for all β < α. We represent our payoff set as X =
⋃
n∈NXn, with

Xn ∈ Π0
βn

for βn < α. Let (T1, π1, ϕ1) be a k-covering of T0 = T unravelling
X0 and define (Tn+1, πn+1, ϕn+1) by recursion to be a (k + n)-covering of Tn
which unravels π−1

n ◦ ... ◦ π−1
1 (Xn). Let (T∞, π∞,n, ϕ∞,n) to be as in Theorem

3.41. Since π−1
∞,0(X) is open in [T∞], let (T̃ , π, φ) be a k-covering of T∞ that

unravels π−1
∞,0(X). It follows that (T̃ , π∞,0 ◦ π, ϕ∞,0 ◦ ϕ) is a k-covering of T

that unravels X as we wanted.
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Remark 3.43. Let Γ be a class of sets of ωω. A statement of the following
type is usually referred to as Γ-determinacy :

For every A ∈ Γ, the game G(ω<ω, A) is determined

If Σ1
1-determinacy holds, then coanalytic sets have the PSP (see Remark 3.32) :

(i) First note that if Γ is a pointclass of subsets of ωω closed under continuous
preimages, then all sets A ∈ Γ are determined if and only if all sets ωω \A with
A ∈ Γ are determined. In particular, under the Σ1

1-determinacy all coanalytic
subsets of ωω are also determined : suppose that A ∈ Π1

1 and define f : ωω → ωω

by f(x)(n) := x(n+ 1). Since f is continuous, the game G(ω<ω, ωω \f−1(A)) is
determined. Suppose then that τ is a winning strategy for P2. It is then easy
to verify that σ defined by σ(s) = τ(0 a s) for all s ∈ ω<ω is a winning strategy
for P1 on G(ω<ω, A). The case is analogous if we switch the players.

(ii) Given a non-empty Polish space X with a compatible complete metric d, fix
a countable basis {Vn} and a payoff set A ⊆ X. We then define the following
game : P1 starts by choosing two basic open sets with disjoint closure and di-
ameter less than 1 and P2 picks one of them. In the next turn, P1 picks again
two basic open sets with smaller diameter and still disjoint closure which are
contained in the one picked by P2 and the process iterates. In other words, at
the nth-turn P1 picks a pair (Vn0 ,Vn1 ) with diam(Vni ) < 1

2n and Vn0 ∩Vn1 = ∅ for
i ∈ {0, 1} and P2 responds with in ∈ {0, 1}. In the next turn, P1 picks another

pair with the additional restriction that Vn+1
0 ∪ Vn+1

1 ⊆ Vnin and so on. This

uniquely defines an element x ∈
⋂
n Vnin and we say that P1 wins the game if

and only if x ∈ A. Naturally, we can translate this game into the setting of
games in ω<ω by means of simply using enumerations since {Vn} is countable.
Let’s denote this game by G∗(A). It turns out that P1 has a winning strategy
for G∗(A) if and only if A contains a Cantor set and P2 has a winning strategy
for G∗(A) if and only if A is countable (cf. [45], Theorem 21.1).

(iii) Now assume that the Σ1
1-determinacy holds and consider any (non-empty)

Polish space X and an uncountable coanalytic subset A ⊆ X. By Theorem 3.28,
let ϕ : X → ωω be a Borel isomorphism and thus, it follows from (i) that under
the Σ1

1-determinacy the game G∗(ϕ(A)) is determined. It follows then from (ii)
that ϕ(A) contains a Cantor set and thus we can conclude that so does A as we
wanted.

Remark 3.44. A more radical statement about determinacy is the Axiom of
Determinacy (AD) :

For every subset A, the game G(ω<ω, A) is determined

This statement can be seen as the natural extension of a standard rule of propo-
sitional logic to infinitary logic since it can be restated as :

¬∃a0∀a1...(an) ∈ A⇔ ∀a0∃a1...¬(an) ∈ A
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Moreover, note that by Remark 3.37, the AD is incompatible with the Axiom
of Choice. For the sake of completeness the author feels compelled to include
two somewhat lengthy observations concerning the AD. In [63], Mycielski and
Steinhaus - who had introduced the AD - proved that under ZF+AD, all subsets
of R are Lebesgue measurable. Without going too deep into the details, we
sketch the idea. Fix some ε > 0 and for each n ∈ N consider the collection
{Gnk}k∈N of all finite unions Gnk of intervals with rational endpoints such that
µ∗(Gnk ) < ε

22n+1 , where µ∗ denotes the Lebesgue outer measure. We assume,
without loss of generality, that we fix some arbitrary subset S ⊆ [0, 1] and for
each x := (xn) ∈ ωω let f(x) :=

∑
n

xn
2n+1 ∈ R. We play the following game : at

each turn, P1 picks some ai ∈ N and afterwards P2 responds by picking another
bi ∈ N so that at the end of the game we have a play (a0, b0, a1, b1, ...). We
declare that P1 wins the game if and only if each ai ∈ {0, 1}, f((ai)) ∈ S and
f((ai)) /∈

⋃
nG

n
bn

. Under the AD this game is determined and as a consequence,
the following statement holds :

if S ⊆ R is such that every measurable N ⊆ S is null, then S is null

We note that this is false in ZFC as a Bernstein set provides a counter-example.
However, in ZF+AD this implies that every subset of R is Lebesgue measurable.
As a final note, we point out that an universe where the existence of sets is
declared by ZF and every subset of R is Lebesgue measurable (LM) turns out
to be a quite bizarre place :

(ZF+LM) implies that |R| < |R/Q|

In other words, there is an equivalence relation on R with more than c equiva-
lence classes. The reader can read more about this type of paradoxical divisions
in [81].

We end this section with an useful result, usually referred to as Wadge’s Lemma.
It is a consequence of Borel determinacy, with self-contained interest, that we
shall use in Section 5. In order to prove Wadge’s Lemma it is convenient to
introduce the setting for a Wadge game. We start with two fixed subsets A,B ⊆
ωω which define the game GW (A,B) under the following rules : there are two
players, P1 and P2 respectively picking natural numbers x(i) ∈ ω and y(i) ∈ ω at
each turn. P2 wins GW (A,B) if and only if (x(i)) ∈ A and (y(i)) ∈ B. Within
this context, we will use the standard notation A ≤W B in order to indicate
that there is a continuous function f : ωω → ωω such that A = f−1(B). It
is worth to note that in the literature, this type of game is also referred to as
a Lipschitz game - denoted GL(A,B). Whenever that is the case, GW (A,B)
is usually defined under slightly different rules, with P2 having the ability of
passing a move and not picking a positive integer on its turn.

Theorem 3.45. Let A,B ⊆ ωω be Borel subsets. Then, either A ≤W B or
B ≤W ωω \A.

Proof. By Theorem 3.42, the game GW (A,B) is determined and thus, either
P2 or P1 has a winning strategy. Suppose that P2 has a winning strategy and
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note that we can view it as a length preserving monotone map ϕ : ω<ω → ω<ω.
In turn, this induces a continuous map f : ωω → ωω such that x ∈ A if and
only if f(x) ∈ B, i.e. A ≤W B. Analogously, if P1 has a winning strategy we
conclude that B ≤W ωω \A.

Remark 3.46. The notation ≤W is rather suggestive. Indeed, for Borel sets
A,B ⊆ ωω we define the following equivalence relation :

A ≡W B ⇔ A ≤W B and B ≤W A

Its classes, called Wadge degrees, are denoted by [A]W . The so called coarse
Wadge classes are then defined as A∗ := [A]W ∪ [ωω \A]W and we shall denote
the set of these by WADGE∗B . Finally, if we define A∗ ≤∗ B∗ to mean that either
A ≤W B or A ≤W ωω \B holds, it follows from Theorem 3.45 that ≤∗ is a linear
ordering in WADGE∗B . Furthermore, one can prove that (WADGE∗B ,≤∗) is in
fact a well-ordering (cf. [45], Theorem 21.15).

3.5 Ideals and bases

This section contains a very brief overview of some techniques concerning the
study of ideals of closed and compact subsets of Polish spaces. These techniques
can be extremely powerful and general, finding their usefulness in interdisci-
plinary efforts where descriptive set theoretic approaches reveal to be fruitful.
As an example, the application of these techniques in the study of closed sets
of uniqueness turned out to enable a deeper insight on the topic. Throughout
this section, X will be a non-empty Polish space.

Definition 3.47. A collection I ⊆ F(X) is called a σ-ideal if :

(i) K ∈ I, L ⊆ K and L ∈ F(X) imply that L ∈ I (I is hereditary)

(ii) {Kn} ⊆ I and K :=
⋃
nKn ∈ F(X) imply that K ∈ I

We often consider σ-ideals in K(X) whose definition is entirely analogous.

Let A ⊆ X. Clearly, F(A) := {F ∈ F(X) : F ⊆ A} is a σ-ideal and likewise,
Imeag = {F ∈ F(X) : F is meager} is also easily verified to be a σ-ideal. A
slightly more sophisticated example of a σ-ideal is as follows : consider a subset
M ⊆ P (X) of Borel probability measures and define :

IM = {F ∈ F(X) : ∀µ ∈M : µ(F ) = 0}

In particular, letting M be the set of Rajchman measures on an abelian lo-
cally compact group G this means that the set U0(G) of closed sets of extended
uniqueness of G (cf. section 5) is a σ-ideal. It turns out that the set U(G)
of closed sets of uniqueness of an amenable locally compact group G is also a
σ-ideal, though this is not a trivial result (cf. section 5). When G = T, this is a
consequence of Bari’s Theorem (cf. [4]) which asserts that the countable union
of closed sets of uniqueness of T is still a set of uniqueness of T.

One has the following, perhaps surprising, dichotomy result :
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Theorem 3.48. Suppose that I is Π1
1 σ-ideal of K(X). Then, either I is Gδ

or I is Π1
1-complete.

Proof. The reader can find a proof in [45] (Theorem 33.3).

In order to illustrate Theorem 3.48, suppose that A ⊆ X is Π1
1. It is not hard

to verify that K(A) = {K ∈ K(X) : K ⊆ A} and Kω(A) = {K ∈ K(X) :
K ⊆ A and K is countable} are both Π1

1 σ-ideals. It follows immediately by
Theorem 3.48 that if A is not Gδ, then K(A) is Π1

1-complete. Furthermore,
an application of Baire’s Category Theorem and Theorem 3.48 shows that if A
contains a Cantor set, then Kω(A) is also Π1

1-complete.

Definition 3.49. Let C ⊆ F(X) be an arbitrary collection. Then :

(i) Cext = {A ⊆ X : A is covered by countably many elements in C}

(ii) If C is hereditary, then :

Cloc = {C ∈ F(X) : ∃V ⊆ X open : V ∩ C 6= ∅ and V ∩ C ∈ C}
{C ∈ F(X) : ∃V ⊆ X open : V ∩ C 6= ∅ and V ∩ C ∈ Cext}

(iii) Cperf = F \ Cloc and Cσ = F(X) ∩ Cext

(iv) If C is a σ-ideal, we define Cint = {A ⊆ X : F(A) ⊆ C}

We can now formulate the useful definition of (pre)basis :

Definition 3.50. Let I ⊆ F(X) be a σ-ideal. A subset B ⊆ I is said to be a
basis if B is hereditary and Bσ = I. If B is not necessarily hereditary, we say
that B is a pre-basis. A basis B for a σ-ideal I on F(X) is said to be non-trivial
in E ⊆ X if there is some F ∈ F(E) such that F ∈ I \B.

Note that it follows immediately from the definition that if A ⊆ X is not
Borel, then F(A) does not have a Borel basis. On the other hand, Fω(X) has
{∅} ∪ {{x} : x ∈ X} as a Borel basis.

Definition 3.51. Let I be a σ-ideal on F(X). Then :

(i) I is said to have the covering property if I int ∩ Σ1
1 ⊆ Iext

(ii) I is said to be calibrated if whenever G is a Gδ in I int, {Fn} ⊆ I and
F :=

⋃
n Fn ∪G ∈ F(X) then F ∈ I

One can motivate the definition of calibrated σ-ideal as asserting a certain inner
approximation property by Π0

2-sets :

Proposition 3.52. Let I be a σ-ideal of K(X). Then, I is calibrated if and
only if I int ∩Π0

2 is a σ-ideal of Π0
2 sets.

Proof. The reader can find a proof in [48] (Proposition 3.2.1).
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Note that while IM is calibrated, if X is perfect then Imeag is not.

For the sake of completeness we end this section with important results con-
cerning the covering property. These results will be of crucial importance when
applied to the context of sets of uniqueness.

Theorem 3.53. Let I ⊆ F(X) be an arbitrary collection. If A ⊆ X is Σ1
1 and

A /∈ Iext, then A contains a Gδ set which is not in Iext.

Proof. The reader can find a proof in [76] (Theorem 1).

Theorem 3.54. Let I and J be σ-ideals in F(X). If I is calibrated with a
basis B which is non-trivial for every closed set E /∈ J , then every Gδ set in
Iint is in J ext.

Proof. The reader can find a proof in [57] (Theorem 3.8).

As an important corollary of Theorems 3.53 and 3.54 we immediately obtain
the following result (cf. [57] and [17]) :

Theorem 3.55. Let I be a σ-ideal in F(X) such that :

(i) I is calibrated

(ii) I has a basis which is non-trivial in each closed set E /∈ I

Then, I has the covering property.

4 Groups and algebras

The aim of this section is to define several Banach algebras which are associated
with a locally compact group and state some of their properties. En route, we
briefly visit classic results about groups such as the Pontryagin duality, the
Riesz-Markov-Kakutani representation theorem and the existence of the Haar
measure for locally compact groups.

4.1 Groups and measures

4.1.1 Groups

Recall that a topological group G is a set endowed with a group structure and
a topology which makes the group product and group inverse continuous oper-
ations on G × G and G respectively. We assume, by default, that topological
groups are Hausdorff. Indeed, a T0 topological group is automatically regular
and in particular, Hausdorff (cf. [19], Theorem 3.1).

For f : G→ C and g ∈ G we define :

Lg(f)(h) := f(g−1h), for all h ∈ G

f̃(h) := f(h−1) and f̌(h) := f(h−1), for all h ∈ G
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For a locally compact abelian group G let Ĝ be the set of characters, i.e. the
set of continuous homomorphisms χ : G→ T. Then, Ĝ endowed with pointwise
multiplication and with the topology of uniform convergence on compact sets,
is again a locally compact abelian group - usually called the (Pontryagin) dual
group ofG. In fact, we have the following result usually referred to as Pontryagin
duality :

Theorem 4.1. Let G be a locally compact abelian group. Then, the assignment
x 7→ αx where αx(χ) := χ(x) for all χ ∈ Ĝ, is an isomorphism of topological
groups between G and the dual group of Ĝ.

Proof. The reader can find a proof in [61] (Theorem 23).

Remark 4.2. Note that Theorem 4.1 establishes indeed a duality. In other
words, the category of locally compact abelian groups is equivalent to its op-
posite category via the functor which sends G to Ĝ and f : G1 → G2 to
f ] : G∗2 → G∗1 such that f ](ϕ) := ϕ ◦ f .

A bounded linear operator T acting on a Hilbert space H is said to be unitary if
T ∗T = TT ∗ = 1 or, equivalently, if T is surjective and preserves inner products.
The set of unitary operators acting on H is denoted by U(H).

Let G be a locally compact group. A continuous unitary representation of
G is a pair (π,H(π)) with H(π) a Hilbert space and a homomorphism π : G→
U(H(π)) such that :

∀ξ, η ∈ H(π) : ϕξ,η : x 7→ 〈π(x)ξ, η〉 is continuous

In other words, π : G→ U(H(π)) is continuous with respect to the WOT. Since
the WOT and SOT coincide on U(H(π)), this is equivalent to require that :

∀ξ ∈ H(π) : x 7→ π(x)ξ is continuous

We say that two representations π, σ of G are unitarily equivalent if there is an
unitary map U : H(π)→ H(σ) such that Uπ(x) = σ(x)U for all x ∈ G.

Definition 4.3. The left regular representation λG : G → U(L2(G)) of G is
defined as follows :

x 7→ (λG(x)(f)(y) := f(x−1y)), f ∈ L2(G), y ∈ G

4.1.2 Measures

Now we forget about the group structure of G and will instead consider an arbi-
trary locally compact Hausdorff space X. Recall that a positive Borel measure
µ on X is said to be regular if for all E ∈ B(X) the following holds :

µ(E) = inf{µ(U) : E ⊆ U , U open}
= sup{µ(K) : K ⊆ E, K compact}

A complex Borel measure µ is said to be regular if |µ| is regular.
A Radon measure µ on X is a positive Borel measure on X such that :
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(i) µ is inner regular, i.e. for all open sets U ⊆ X we have that µ(U) =
sup{µ(K) : K ⊆ U , K compact}

(ii) µ is outer regular, i.e. for all Borel sets E ⊆ X we have that µ(E) =
inf{µ(V) : E ⊆ V, V open}

(iii) µ(K) <∞, for every compact K ⊆ X

As usual, we consider the space of all regular complex Borel measures on X
- henceforth denoted by M(X) - endowed with the total variation norm, i.e.
||µ|| = |µ|(X) for µ ∈M(X).

Recall that we have a relation of duality between M(X) and C0(X) which
is captured by Riesz-Markov-Kakutani theorem. It is worth to note that this
result of cornerstone importance allows us to look at measures through a more
functional analytic lens.

Theorem 4.4. Let X be a locally compact Hausdorff space. Then, every
bounded linear functional Ψ ∈ C0(X)∗ is of the form

Ψ(f) = Ψµ(f) :=

∫
X

f(x)dµ(x), for all f ∈ C0(X)

for an unique regular complex Borel measure µ. Moreover, the assignment
µ 7→ Ψµ is a surjective isometry and in particular, a bijection between posi-
tive measures and positive linear functionals on Cc(X).

Proof. The reader can find a proof in [70] (Theorems 2.14 and 6.19).

Remark 4.5. If X is compact (and Hausdorff), then Theorem 4.4 admits a
rather elegant proof (cf. [34]). Indeed, for compact Hausdorff spaces we can
consider the natural transformation (ιX) where ιX : M(X) → C(X)∗ is such
that ιX : µ 7→ Ψµ and the following diagram commutes :

M(X) M(Y )

C(X)∗ C(Y )∗

α∗

ιX ιY

α]]

where if α : X → Y is a map, then α∗(µ) := µ ◦ α−1, α](g) := g ◦ α and
α]](Ψ) := Ψ ◦ α].
Note that every compact space X is a continuous image of an extremally dis-
connected space : indeed, the Stone-Čech compactification of a discrete is an
extremally disconnected space and one can consider the extension of the map
1 : Xd → X, where Xd is simply X equipped with the discrete topology. For
compact extremally disconnected spaces Z, it is easy to verify that the assign-
ment M(Z) 3 µ 7→ Ψµ ∈ C(Z)∗ is surjective (cf. Lemma 1 in [34]) and hence,
choosing α := 1 : β(Xd) → X in the above diagram we conclude that ιX is
surjective as required.
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4.1.3 Lp(G) and M(G)

Let G be a locally compact group. A Borel measure µ on G is said to be
left-invariant if µ(xE) = µ(E) for every x ∈ G and E ⊆ G, Borel set.

Theorem 4.6. Let G be a locally compact group. Then, there exists a non-zero
left-invariant Radon measure µ on G. If µ and ν are two such measures, then
there is positive real constant c such that µ = cν.

Proof. We merely sketch the idea of the argument given in [19] for the existence
of such measure. For the uniqueness (up to a constant) of such measure, the
reader can find a proof in [19] (Theorem 7.32).
Let C+

c (G) denote the set of non-zero functions f : G → R which take non-
negative values and fix some ω ∈ C+

c (G). For any f, ϕ ∈ C+
c (G), define :

(f : ϕ) := inf{
n∑
i=1

ci : f ≤
n∑
i=1

ciLgi(ϕ), some ci ≥ 0, gi ∈ G}

Furthermore, for any f, ϕ ∈ C+
c (G) we also define :

µϕ(f) :=
(f : ϕ)

ω : ϕ

Then, by Lemma 7.22 in [19] one has that µϕ is subadditive and positively ho-
mogeneous, monotone non-decreasing, µϕ(f) > 0, µϕ(Lg(f)) = µϕ(f) for all
g ∈ G and 1

(ω:f) ≤ µϕ(f) ≤ (f : ω).

Moreover, by Lemma 7.23 in [19], for every ε > 0 and f1, f2 ∈ C+
c (G) there

exists an open neighborhood V of the identity such that whenever ϕ ∈ C+
c (G)

with supp(ϕ) ⊆ V, then µϕ(f1) + µϕ(f2) ≤ µϕ(f1 + f2) + ε.
We now consider intervals of the form I(f) := [ 1

(ω:f) , (f : ω)] so that by Ty-

chonoff theorem, the following is compact :

I =
∏

f∈C+
c (G)

I(f)

For any open neighborhood V of the identity, let FV be the set of all points
(µϕ(f))f∈C+

c (G) ∈ I such that supp(ϕ) ⊆ V. By compactness, there is a point :

(µ(f))f∈C+
c (G) ∈

⋂
V
FV

It follows (from Lemma 7.22 and Lemma 7.23 in [19]) that µ(Lg(f)) = µ(f) for
all g ∈ G, µ(f1 + f2) = µ(f1) + µ(f2), µ(λf) = λµ(f) and µ(f) > 0, for λ > 0
and f1, f2 ∈ C+

c (G). We set µ(0) := 0 and appeal to Theorem 4.4 to conclude
the argument.

Definition 4.7. The non-zero left-invariant Radon measure µ on G given by
Theorem 4.6 is called the Haar measure on G.
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Remark 4.8. The existence of Haar measures for compact groups (cf. [19])
and for locally compact abelian groups (cf. [35]) can be established through the
existence of certain fixed points. More generally, a simple proof of the existence
of Haar measures for amenable groups is given in [36].
For the case of compact groups, we can use a version of the Ryll-Nardzewski
fixed point theorem. A statement of Ryll-Nardzewski theorem, as given in [19]
(Theorem 5.23) is as follows : Suppose that S is a semigroup of continuous
linear operators on a Hausdorff locally convex topological linear space E and
that K ⊆ E is a non-empty compact convex subset. Assume that S(K) ⊆ K for
every S ∈ S and that whenever k1 6= k2, then 0 /∈ {S(k1 − k2) : S ∈ S}. Then,
there exists some k ∈ K such that S(k) = k for every S ∈ S. One can then verify
that the conditions for the previous statement hold in the case E = M(G) and
K = P (G) - the set of probability measures on G - with respect to the weak∗-
topology and S = {T ∗g : g ∈ G}, where T ∗g is the adjoint of Tg : C(G) → C(G)
defined by Tg(f)(h) = f(gh) (Corollary 5.25 in [19]).
For the case of locally compact abelian groups, we can use the following version
of the Markov-Kakutani fixed point theorem (as given in [35]) : Let K be a
non-empty compact convex subset of a Hausdorff topological space and let F
be a commuting family of continuous affine mappings of K into itself. Then,
there is a point k ∈ K such that T (k) = k for all T ∈ F . In this case, K
is specified to be a certain subset of positive linear functionals on Cc(G) and
similarly as in the compact case, we let F = {Tg : Cc(G)∗ → Cc(G)∗ : g ∈ G}
such that Tg(Ψ)(f) = Ψ(fg), where fg(x) := f(a+ x).

Definition 4.9. For 1 ≤ p < ∞, the Lebesgue space Lp(G) is defined to be
space of (equivalence classes) Borel measurable functions f on G such that

||f ||p := (
∫
G
|f(x)|pdµ)

1
p is finite, where µ is the Haar measure. If p = ∞,

then L∞(G) is the space of µ-essentially bounded functions endowed with the
supremum norm.

Recall that Lebesgue spaces Lp(G) are Banach spaces and that Cc(G) is dense
in each Lp(G) with 1 ≤ p < ∞. In case p = 2, then L2(G) is furthermore a
Hilbert space with inner product given by :

〈f, g〉 =

∫
G

f(x)g(x)dµ(x)

In case p = 1, the convolution f ∗ g of functions defined as :

(f ∗ g)(x) :=

∫
G

f(y)g(y−1x)dx

makes L1(G) a Banach ∗-algebra under the involution :

f∗(x) := ∆G(x−1)f(x−1)

where y 7→ ∆G(y) is the unimodular function, i.e. for every Borel set E ⊂ G
and y ∈ G, µ(Ey) = ∆G(y)µ(E), where µ is the Haar measure on G. Note that
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the existence of such function follows from the uniqueness (up to a constant) of
the Haar measure.

If µ, ν ∈M(G) one defines the convolution µ ∗ ν ∈M(G) as follows :∫
G

ϕ(x)d(µ ∗ ν)(x) =

∫
G

∫
G

ϕ(xy)dµ(x)dν(y), for all ϕ ∈ Cc(G)

Furthermore, one defines an involution on M(G) in the following way :

µ ∈M(G), then µ∗(E) := µ(E−1)

Definition 4.10. The set M(G) of regular complex Borel measures equipped
with the total variation norm, convolution of measures and involution µ∗ be-
comes a Banach ∗-algebra usually called the measure algebra of G.

Note that L1(G) embeds as a closed 2-sided ideal in M(G) :

f 7→ µf , with µf (E) :=

∫
E

f(x)dµ(x)

We finish this section with a few remarks on L1(G) whenever G is a locally
compact abelian group. Henceforth, unless otherwise stated, in the context of
integration with locally compact groups, dx will refer to the Haar measure.

Definition 4.11. Let G be a locally compact abelian group and f ∈ L1(G).

The Fourier transform f̂ of f is the map f̂ : Ĝ→ C given by :

f̂(χ) =

∫
G

f(x)χ(x)dx

The Fourier transform extends to M(G) as follows :

µ̂ : Ĝ→ C, given by µ̂(χ) =

∫
G

χ(x)dµ(x)

It is worth to point out that f 7→ f̂ is an injective ∗-homomorphism of L1(G)
into C0(Ĝ) and that the image of L1(G) under the Fourier transform is dense
in C0(Ĝ) (cf. [41], Theorem 1.5.14).

Remark 4.12. The Fourier transform L1(G) → C0(Ĝ) coincides with the
Gelfand transform L1(G) → C0(σ(L1(G))). Indeed, on one hand there is a
bijection between Ĝ and σ(L1(G)) given by : (cf. [40], Theorem 2.7.2)

Ĝ 3 α 7→ (ϕα : f 7→
∫
G

f(x)α(x)dx), for f ∈ L1(G)

On the other hand, the Gelfand topology and the compact open topology coin-
cide (cf. [40], Theorem 2.7.5).
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4.2 Group algebras

4.2.1 C∗(G), C∗r (G) and V N(G)

Let A be a normed ∗-algebra. A ∗-representation of A is a pair (π,H(π)),
with H(π) a Hilbert space and π : A → L(H(π)) a homomorphism such that
π(a∗) = π(a)∗ for all a ∈ A. The representation is said to be non-degenerate if
the subspace {ξ ∈ H(π) : π(a)ξ = 0, for all a ∈ A} is trivial.

Let G be a locally compact group. Then, every unitary representation π of
G determines a non-degenerate ∗-representation π̃ of L1(G) on H(π) as :

〈π̃(f)ξ, η〉 =

∫
G

f(x)〈π(x)ξ, η〉dx, for all f ∈ L1(G), ξ, η ∈ H(π)

In particular, note that if π = λG, then 〈λ̃G(f)ξ, η〉 = 〈f ∗ ξ, η〉.8

In general, for a locally compact group G and an unitary representation π on
H(π), the assignment x 7→ ϕχ,η(x) = 〈π(x)ξ, η〉 is called a coefficient function.

A representation π is said to be irreducible if {0} and H(π) are the only closed
π-invariant subspaces of H(π) (i.e. the only closed subspaces E such that for
all x ∈ G, π(x)ξ ∈ E whenever ξ ∈ E). Let R be the set of unitary (equivalence
classes) of irreducible representations of G. Then, for f ∈ L1(G), it turns out
that the following is a C∗-norm on L1(G) :

||f ||∗ := sup{||π̃(f)|| : π ∈ R}

Definition 4.13. Let G be a locally compact group. The group C∗-algebra of
G is defined to be the completion of L1(G) under the ||.||∗ norm and denoted
by C∗(G).

Another norm on the Banach ∗-algebra L1(G) which satisfies the C∗-condition
is given by :

||f ||r := ||λG(f)||

Definition 4.14. Let G be a locally compact group. The reduced C∗-algebra
of G is defined to be the completion of L1(G) under the ||.||r norm and denoted
by C∗r (G).

Remark 4.15. Note that if G is a locally compact abelian group, then the
Fourier transform extends to an isomorphism between C∗r (G) and C0(Ĝ).

The way the norm ||.||∗ was defined on L1(G) is such that every representation
π of L1(G) extends uniquely to a representation of C∗(G). Moreover, note that
since λG extends to a surjective ∗-homomorphism of C∗(G) onto C∗r (G), then
C∗r (G) is a quotient of C∗(G). When G is amenable, C∗r (G) and C∗(G) coincide.

8We often write, by slight abuse of notation, λG (or just λ) instead of λ̃G. Whenever the
context is clear, we also often just write π instead of π̃.
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Definition 4.16. Let E ⊆ L∞(G) be a linear subspace containing the constant
functions. A mean on E is an element m ∈ E∗ satisfying ||m|| = 1. If E is
left translation invariant, then a mean on E is called left invariant if for every
x ∈ G and f ∈ E, then m(Lx(f)) = m(f). A locally compact group is said to
be amenable if there is a left invariant mean on L∞(G). 9

In the theorem that follows, we list some well-known preservation properties on
amenable groups :

Theorem 4.17. The following statements hold true :

(i) Let G be a locally compact group and N ⊆ G be a closed normal subgroup.
If N and G/N are amenable then so is G.

(ii) Let G be a locally compact amenable group. Then, every closed subgroup
of G is amenable.

(iii) Let G and H be locally compact groups and ϕ : G → H be a continuous
homomorphism with dense range. Then, if G is amenable so is H. In
particular, quotients of amenable groups are amenable.

Example 4.18. We provide a short list of classes of (non)amenable groups :

(a) Every finite group is amenable : f 7→ |G|−1
∑
g∈G f(g) defines an invar-

ian mean on L∞(G).

(b) Every compact group is amenable : Let µ be the normalized Haar mea-
sure on G. Then, 〈m, f〉 :=

∫
G
f(x)dµ(x), for f ∈ L∞(G) defines an invariant

mean.

(c) Every abelian group is amenable : We appeal to Day’s fixed point theo-
rem, as stated in [41] (Theorem 1.8.7) : G is amenable if and only if whenever
G acts affinely on a non-empty convex compact set K of a separated locally
convex vector space E and the action G × E 3 (g, x) 7→ g.x ∈ E is separately
continuous, then there is some x ∈ E such that g.x = x for all g ∈ G. It follows
from Markov-Kakutani fixed point theorem (cf. Remark 4.8) that if G is abelian
then the assumptions of Day’s fixed point theorem hold.

(d) F2 is not amenable : Let a and b be the free generators of F2 and let
the set of reduced words starting with a, a−1, b and b−1 be respectively denoted
by Sa, Sa−1 , Sb and Sb−1 . Let C = {1, b, b2, ...} and note that :

F2 =Sa t Sa−1 t (Sb \ C) t (Sb−1 ∪ C)

=Sa t aSa−1

=b−1(Sb \ C) t (Sb−1 ∪ C)

9’Amenable groups admit approximately 1010
10

different characterizations’, in [15].
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Assume, towards a contradiction that F2 is amenable and thus, by invariance
of m we have that :

1 = m(1) =m(χSa) +m(χSa−1 ) +m(χSb\C) +m(χSb−1∪C)

=m(χSa) +m(aχSa−1 ) +m(b−1χSb\C) +m(χSb1∪C)

=2m(1) = 2

which is a contradiction.

e) It follows from (d) and from Theorem 4.17 that every group which con-
tains F2 as a closed subgroup is not amenable. Examples include SL(n,C) and
GL(n,C).

Let S and T be two sets of representations of a C∗-algebra. We say that S
is weakly contained in T , denoted by S ≺ T , if

⋂
τT ker(τ) ⊆

⋂
σ∈S ker(σ).

Let G be a locally compact group, R be the set of unitary equivalence classes
of irreducible representations of G and Rr be the set of all π ∈ R such that
π ≺ λG. Note that if 1 ≺ λG then π ≺ λG for every π ∈ R and we have that
R = Rr. A well-known characterization of amenability is as follows (cf. [41],
Theorem 1.8.18) : G is amenable if and only if the trivial representation of G
is weakly contained in λG. In particular, this characterization entails that :

Theorem 4.19. Let G be an amenable group. Then, C∗(G) and C∗r (G) coin-
cide.

Remark 4.20. Let G be an étale locally compact groupoid. By Corollary 5.6.17
in [15], if G is amenable then C∗(G) = C∗r (G), where C∗(G) and C∗r (G) are
respectively the full groupoid C∗-algebra and the reduced groupoid C∗-algebra.

Definition 4.21. Let G be a locally compact group. The von Neumann group

algebra of G, denoted by V N(G), is defined to be V N(G) = C∗r (G)
w∗

.

Remark 4.22. If G is a locally compact abelian group, V N(G) = L∞(Ĝ). This
can be seen as a consequence of what is developed in the next subsection, as in
this setting the Fourier algebra A(G) of G is isomorphic to L1(Ĝ) (cf. Remark
4.29) and is the predual of V N(G) (cf. Theorem 4.27).

4.2.2 B(G) and A(G)

Throughout this section, G is a locally compact group unless otherwise stated.
The aim of this section is to introduce the Fourier-Stieltjes algebra of G - B(G)
- and the Fourier algebra of G - A(G). We will mainly follow [41] which in turn
follows [24] closely, where these algebras were introduced.

Let B(G) be the collection of all coefficient functions G 3 x 7→ 〈π(x)ξ, η〉 ∈ C,
where π is a continuous unitary representation of G and ξ, η ∈ H(π).
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By Proposition 2.1 and 1.19 in [24], B(G) is identified with the Banach dual of
C∗(G) via the pairing :

〈f, u〉 =

∫
G

f(x)u(x)dx, for f ∈ L1(G), u ∈ B(G)

Consequently, if u(.) = 〈π(.)ξ, η〉 then 〈g, u〉 = 〈π(g)ξ, η〉, for all g ∈ C∗(G).
The norm on B(G) is given by :

||u|| = sup{|
∫
G

f(x)u(x)dx| : f ∈ L1(G), ||f ||∗ ≤ 1}

It turns out that B(G) equipped with this norm and pointwise multiplication,
is an unital commutative Banach algebra (cf. [41], Theorem 2.1.11).

Definition 4.23. B(G) is called the Fourier-Stieltjes algebra of G.

Remark 4.24. If G is a locally compact abelian group, then B(G) is isomet-
rically isomorphic to M(Ĝ). Indeed, by Bochner’s theorem (cf. [41], Theorem
1.5.19) and Lemma 2.1.4 in [41], for any u ∈ B(Ĝ) there is an element µ ∈M(G)
such that u(χ) = µ̂(χ) for every χ ∈ Ĝ. Furthermore, one can use the Fourier
inversion formula to prove that ||u|| = ||µ|| (cf. [41], Remark 2.1.15). It follows
that the Fourier transform provides an isometric isomorphism between M(G)
and B(Ĝ) and the initial statement follows from Pontryagin duality (Theorem
4.1).

Consider the closure of the linear span of B(G) ∩ Cc(G). This ideal of B(G)
admits various characterizations (cf. [41], Proposition 2.3.3) and will be denoted
by A(G).

Definition 4.25. A(G) as a subalgebra of B(G) is called the Fourier algebra
of G.

Theorem 4.26. Let G be a locally compact group. For each x ∈ G let :

ϕx : A(G)→ C be such that ϕx(u) = u(x)

Then, the assignment x 7→ ϕx is a homeomorphism between G and σ(A(G)).
Morever, A(G) is a regular algebra of functions on G.

Proof. The reader can find a proof in [41] (Theorem 2.3.8).

A fundamental property of A(G) is that it is the pre-dual of V N(G). In order
to state this rigorously, we recall that λG (or sometimes - when no notational
confusion arise - simply λ) also denotes the representation of M(G) in L(L2(G))
prescribed by :

µ 7→ µ(g) := µ ∗ g, i.e. λ(µ)(g)(t) :=

∫
G

g(s−1t)dµ(s)
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Theorem 4.27. Let G be a locally compact group. For any ϕ ∈ A(G)∗ there is
an unique operator Tϕ ∈ V N(G) such that the assignment ϕ 7→ Tϕ is a surjective
linear isometry and a homeomorphism with respect to the w∗-topology on A(G)∗

and the ultraweak topology on V N(G). Moreover, if µ ∈M(G) and ϕµ ∈ A(G)∗

is such that 〈ϕµ, u〉 =
∫
G
u(x)dµ(x) for all u ∈ A(G), then Tϕµ = λG(µ).

Proof. The reader can find a proof in [41] (Theorem 2.3.9).

Another, quite concrete, characterization of A(G) as a set is as follows :

Theorem 4.28. A(G) is precisely the set of all functions of the form f ∗ g̃, with
f, g ∈ L2(G).

Proof. The reader can find a proof in [41] (Theorem 2.4.3).

It follows from Theorem 4.28 that A(G) coincides with the coefficient functions
of λG. Indeed, note that :

(f ∗ g̃)(x) =

∫
G

f(xy)g(y)dy = 〈λG(x−1)f, g〉

Remark 4.29. If G is a locally compact abelian group, then A(G) can be
identified with L1(Ĝ) via the Fourier transform. Indeed, let u = ξ ∗ η̌ ∈ A(Ĝ)
with ξ, η ∈ L2(Ĝ). By Plancherel theorem (cf. [41], Theorem 1.5.15) there are

f, g ∈ L2(G) such that f̂ = ξ and ĝ = η. Thus, f̂ ǧ = u and we conclude that

A(Ĝ) ⊆ L̂1(G). On the other, since the image of the Fourier transform is dense

one has that L̂1(G) ⊆ A(Ĝ). Finally, we note that (cf. [41], Remark 2.1.15) for

µ ∈M(G), then ||µ̂||B(G) = ||µ|| and consequently, ||f̂ ||A(G) = ||f ||1.

Let u ∈ B(G) and T ∈ V N(G). We define an operator u.T ∈ V N(G) via the
following relation :

〈u.T, v〉 = 〈T, uv〉, for all v ∈ A(G)

Note that if T = λG(µ), for some µ ∈ M(G), then for any u ∈ B(G) one has
that u.λG(µ) coincides with λG(uµ) (cf. [41], Remark 2.5.2).

Proposition 4.30. Let T ∈ V N(G) and a ∈ G. Then, the following conditions
are equivalent :

(i) The operator λG(a) is the w∗-limit in V N(G) of operators of the form v.T ,
where v ∈ A(G).

(ii) For every neighbourhood V of a in G, there exists some v ∈ A(G) such
that supp(v) ⊆ V and 〈T, v〉 6= 0.

(iii) If u ∈ A(G) is such that u.T = 0, then u(a) = 0.

Proof. The reader can find a proof in [41] (Proposition 2.5.3).
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Definition 4.31. Let T ∈ V N(G). Then, the set of elements in G which satisfy
any of the equivalent conditions of Proposition 4.30 is called the support of T
and denoted by supp(T ).

Remark 4.32. If µ ∈M(G), then supp(λG(µ)) = supp(µ) (cf. [24], Remarque
4.7).

Lemma 4.33. Let T ∈ V N(G). Then, T 6= 0 if and only if supp(T ) 6= ∅.

Proof. If T = 0, it is clear that supp(T ) = ∅. For the converse, the reader can
find a proof in [41] (Lemma 2.5.5).

We finish the section with a powerful result relating A(G) with A(H), whenever
H is a closed subgroup of G. This is sometimes referred to as Herz restriction
theorem :

Theorem 4.34. Let G be a locally compact group and H a closed subgroup of
G. Then, for every u ∈ A(H) there is some v ∈ A(G) such that v|H = u and
||v||A(G) = ||u||A(H).

Proof. The reader can find a proof in [41] (Theorem 2.6.4).

5 Sets of uniqueness

This section is devoted to the study of sets of uniqueness. We start with a
somewhat crude overview of the topic, firstly focusing on the classical case
(concerning the group G = T) and thereafter considering the general case of
locally compact groups G. For a comprehensive account of the matter in the
classical setting, the reader is referred to [47]. The main goal of this section is
to apply descriptive set-theoretic methods to the study of the set of closed sets
of uniqueness of a locally compact group G and in this context, new results are
presented. On the way, we present some properties of this family of closed sets
of G and briefly explore operator-theoretic connections, mainly following [74].

5.1 Definitions

5.1.1 Classical case : T

Consider a trigonometric series, i.e. a formal expression of the form :∑
n∈Z

cne
inx, cn ∈ C, x ∈ T

A rather natural question to ask is whether or not it is the case that whenever
two trigonometric series

∑
n cne

inx and
∑
n dne

inx converge everywhere to the
same value, then cn = dn for all n ∈ Z, i.e. they are the same series. This
motivates the following :
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Definition 5.1. A set E ⊆ T is said to be a set of uniqueness if whenever a
trigonometric series

∑
n cne

inx converges to zero outside E, then all cn = 0. A
set which is not a set of uniqueness is said to be a set of multiplicity.

If instead one considers trigonometric series whose coefficients arise from Borel
measures on T, one has the following :

Definition 5.2. Let µ be a Borel measure on T and µ̂(n) its Fourier-Stieltjes
coefficients. A set E ⊆ T is said to be a set of extended uniqueness if for every
trigonometric series of the form

∑
n µ̂(n)einx which converges to zero outside

E, then µ̂(n) = 0 for all n ∈ Z. A set which is not a set of extended uniqueness
is said to be a set of restricted multiplicity.

Remark 5.3. Note that every set of uniqueness is itself a set of extended
uniqueness. However, the converse is false. This is due to Piatetski-Shapiro (cf.
[66]) and the reader is referred to [47] (Corollary 16 - VII.3).

Example 5.4. We provide a short list of examples of sets of uniqueness and
multiplicity :

(a) The empty set is a set of uniqueness (cf. [47], Theorem 7 - I.3). In fact,
every set E ⊆ T which does not contain a perfect set is a set of uniqueness (cf.
[47], Theorem 6 - I.5) - in particular, every countable set is a set of uniqueness.
However, as sketched in (c), there are uncountable perfect sets which are sets
of uniqueness.

(b) Every set of uniqueness has measure zero and thus, in particular, every
subset of T with positive measure is a set of multiplicity. Indeed, if E ⊆ T
has positive Lebesgue measure then there is a closed subset F ⊆ E with
λ(F ) > 0. Consider the trigonometric series whose coefficients are prescribed
by the Fourier-Stieltjes coefficients of the characteristic function χF . On one
hand, χ̂F (0) = λ(F ) > 0. On the other hand, this series converges to zero
outside F . However, there are sets of Lebesgue measure zero which are not sets
of uniqueness. A proof of this result, originally due to Menshov, can be found
in [47] (Theorem 5 - III.4). For an example of a set of restricted multiplicity
(and thus, multiplicity) of measure zero, see Example 5.77.

(c) As gently hinted in (a) and (b), it is extremely difficult to provide a char-
acterization of sets of uniqueness. This statement will be made more precise
further in this section. Exceptionally, there are certain families of sets whose
characterization in terms of sets of uniqueness is known. In order to exemplify
this, start with an arbitrary set of real parameters ηi such that :

0 = η0 < η1 < ... < ηk < ηk+1 = 1, with 1− ηk := ξ < ηi+1 − ηi

Given a closed interval [a, b], with l = b− a, we consider the following pairwise
disjoint closed intervals :

[a+ lηi, a+ lηi + lξ], for 0 ≤ i ≤ k
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One says that their union was obtained from [a, b] by a dissection of type
(ξ, η1, ..., ηk). In our case of interest, we start with E0 = [0, 2π] and successively
obtain by dissection a decreasing chain of closed intervals E0 ⊇ ... ⊇ En ⊇ ...
and finally consider their intersection :

E(ξ, η1, ..., ηk) :=
⋂
n

En

This process mimics the usual construction of the Cantor set which in this ter-
minology appears as E( 1

3 ,
2
3 ).

The Salem-Zygmund theorem (cf. [47], Theorem 1 - III.4) reveals a rather sur-
prising connection between number theory and sets of uniqueness - it states that
E(ξ, η1, ..., ηk) is a set of uniqueness if and only if θ := 1

ξ is a Pisot number and

each ηi ∈ Q(θ).

(d) The question of whether or not every set of uniqueness must be topologically
negligible, i.e. meagre, was firstly raised in [4] and answered affirmatively for
analytic sets by Debs-Saint Raymond in [17] (Theoreme 13) - see Theorem 5.76.

The modern theory of sets of uniqueness, driven by a functional analytic flavoured
reformulation due to Piatetski-Shapiro’s work, frames our focus within the fam-
ily of closed sets of (extended) uniqueness - U(T) (U0(T)).

Recall that A(T) ≈ `1 via the Fourier transform and that V N(T) ≈ `∞, with :

〈f, S〉 =
∑
n

f̂(−n)S(n), for f =
∑
n

cne
inx ∈ A(T) and S ∈ `∞

Since each µ ∈ M(T) yields an element S = (µ̂(n)) ∈ `∞, one usually refers to
`∞ as the space of pseudomeasures - PM(T). Furthermore, since each f ∈ L1(T)

is associated with an element (f̂(n)) ∈ c0 it is usual to refer to c0 as the space of
pseudofunctions - PF (T). For a closed subset E, the subset of pseudomeasures
supported in E is defined to be the subset of pseudomeasures S such that for
every open interval I disjoint from E and every infinitely differentiable f ∈ C(T)

which is supported by I, it follows that
∑
n f̂(n)S(−n) = 0. The latter set is

denoted by PM(E). With this terminology, one can reformulate the definition of
closed sets of (extended) uniqueness in the following crucially useful functional
analytic turn : Let E ⊆ T be a closed subset, then

E is a set of uniqueness iff PM(E) ∩ PF (T) = {0}

E is a set of extended uniqueness iff M(E) ∩ PF (T) = {0}

The reader can find a proof of the equivalence of definitions in [47], respectively
in Theorem 1 - II.4 and Proposition 6 - II.5.

More generally, for a closed subset E of a locally compact group G we define :

J(E) = {u ∈ A(G) : u has compact support disjoint from E}
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It is known that (cf. [24]) :

J(E)⊥ = {T ∈ V N(G) : supp(T ) ⊆ E}

Furthermore, it is the case that PM(E) = J(E)⊥ (cf. [32]). Another general
fact about abelian (or compact) groups G is that the class of measures µ ∈M(G)
which satisfy λ(µ) ∈ C∗r (G) coincides with the class of Rajchman measures,
i.e. measures whose Fourier-Stieltjes coefficients vanish at infinity (cf. [8]).
Consequently, we conclude that if E ⊆ T is closed, then :

E is a set of uniqueness iff J(E)⊥ ∩ C∗r (T) = {0}

E is a set of extended uniqueness iff λ(M(E)) ∩ C∗r (T) = {0}

In turn, as it will be introduced in the next subsection, this motivates the
definition of sets of uniqueness for general locally compact groups.

Example 5.5. A compact subset E ⊆ T is said to be a Helson set if every
continuous function on E can be extended to an element of A(T). More gen-
erally, if G is a locally compact group, then a closed subset E ⊆ G is said to
be a Helson set if the restriction A(G) → C0(E) is surjective. For an element
µ ∈M(T), by slight abuse of notation we set ||µ||PM = ||µ̂||PM . It follows that
if E ⊆ T is a Helson set then the norms arising from M(T) and from PM(T)
are equivalent in M(E) ∩ PF (T) (cf. [47], Corollary 3 - VII.3). We include
a sketch of a proof that Helson sets are sets of extended uniqueness (cf. [32],
Theorem 4.5.2 for full details) : suppose, towards a contradiction, that E is a
Helson set and there is a non-zero ν ∈ M(E) ∩ PF (T). Since ν is continuous,
the complement of its support is a countable union of disjoint open intervals.
We pick some x ∈ supp(ν) which is not an endpoint of any of the intervals so
that for every ε > 0 the following holds :

|ν|(x, x+ ε) 6= 0 and |ν|(x− ε, x) 6= 0

Furthermore, we define the following function :

f(t) =

{
1 if t ∈ (x, x+ 1)

0 if t ∈ (x− 1, x]

and extend it to a continuous function on T \ {x}. The assignment µ 7→
∫
fdµ

is a bounded linear functional on M(E)∩PF (T) on which, since E is a Helson
set, the norms from M(T) and PM(T) agree. Hence there is some element
g ∈ A(T) = (PF (T))∗ such that :∫

fdµ =

∫
gdµ, for µ ∈M(E) ∩ PF (T)

However, it follows from our choice of x that g is not continuous at that point
which is a contradiction.
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5.1.2 General case : locally compact groups

Throughout this section, unless otherwise mentioned, G is a non-discrete locally
compact group.

Definition 5.6. Let G be a locally compact group and E ⊆ G be a closed
subset. Then, E is said to be a set of uniqueness (U-set, for short) if J(E)⊥ ∩
C∗r (G) = {0}. Otherwise, E is said to be a set of multiplicity (M-set, for
short). The set of closed sets of uniqueness of G is denoted by U(G) and
M(G) := F(G) \ U(G).

Definition 5.7. Let G be a locally compact group and E ⊆ G be a closed
subset. Then, E is said to be a set of extended uniqueness (U0-set, for short)
if λ(M(E)) ∩ C∗r (G) = {0}, where λ is the extension of the left regular repre-
sentation to M(G). Otherwise, E is said to be a set of restricted multiplicity
(M0-set, for short). The set of closed sets of extended uniqueness is denoted by
U0(G) and we set M0(G) := F(G) \ U0(G).

Remark 5.8. Note that since λ(M(E)) ⊆ J(E)⊥, it follows that U(G) ⊆
U0(G). Again, as in the case of G = T, this inclusion is strict for general non-
discrete locally compact abelian groups. Indeed, it is the case that every M-set
contains a Helson set (and as such, a U0-set) which is M-set (cf. [50], [43] for
G = T and [71] for the general case). This fact will be presented in greater
detail in subsection 5.3 as it plays an important role in establishing a certain
descriptive set-theoretic description of U(G).

Remark 5.9. Note that by a duality argument, if G is amenable then E ⊆ G

is a U-set if and only if J(E)
w∗

= B(G).

Example 5.10. Similarly as in the previous subsection, we present a short list
of examples of U-sets (M-sets) and U0-sets (M0-sets) :

(a) Every compact subset of a non-discrete locally compact group which does
not contain a non-empty perfect set, is a set of uniqueness ([13], Theorem 1). In
particular, every countable compact set is a U-set. If furthermore G is second
countable, then any countable closed set is a U-set ([74], Corollary 5.3).

(b) Any closed subset E of a second countable locally compact group G with
positive Haar measure is a M0-set. Indeed, let K ⊆ E be a compact such that
µ(K) > 0 and consider the measure τ prescribed by dτ(x) := χK(x)dµ(x).
Clearly, supp(τ) ⊆ E and 0 6= λ(τ) ∈ C∗r (G).

(c) Similarly to the case G = T, Helson sets are U0-sets in non-discrete locally
compact abelian groups (see Example 5.5).

5.1.3 Sets of operator multiplicity

In this section we present a short digression on an operator-theoretic point of
view towards sets of uniqueness. We will follow mainly [74]. The goal of this
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section is restricted to define sets of operator multiplicity and state the relation
between M and M0-sets and their operator-theoretic counterparts. This context
is then revealed to be fruitful in the next section, where we prove some proper-
ties about sets of (restricted) multiplicity. In order to achieve our goal, we start
the subsection by introducing the needed terminology.

Recall that a measure space (X,µ) is called a standard measure space if µ
is a Radon measure with respect to some completely metrizable separable and
locally compact topology on X. For standard measure spaces (X,µ) and (Y, ν),
a subset R ⊆ X × Y is said to be a rectangle if it is of the form R = A×B for
A and B measurable. We consider the product measure in X × Y :

(i) E ⊆ X × Y is said to be marginally null if E ⊆ (X0 × Y ) ∪ (X × Y0) for
µ(X0) = 0 and ν(Y0) = 0.

(ii) E,F ⊆ X × Y are said to be marginally equivalent if E∆F is marginally
null. We denote this by E ∼ F .

(iii) A subset E ⊆ X × Y is said to be ω-open if it is marginally equivalent to
a countable union of rectangles. The complement of a ω-open set will be
called ω-closed.

Given two Hilbert spaces H1 and H2, we denote as usual the space of com-
pact operators in L(H1,H2), by K(H1,H2). Henceforth, and throughout this
subsection, we set H1 = L2(X,µ) and H2 = L2(Y, ν). The space C1(H2,H1)
of nuclear operators is identified with the Banach space dual of K(H1,H2) via
〈T, S〉 = tr(TS). Moreover, one can identify C1(H2,H1) with the space Γ(X,Y )
of all (marginal equivalence classes of) fuctions h : X × Y → C which admit a
representation :

h(x, y) =

∞∑
i=1

fi(x)gi(y)

with fi ∈ H1 and gi ∈ H2 such that
∑∞
i=1 ||fi||22 < ∞ and

∑∞
i=1 ||gi||22 < ∞.

The duality between L(H1,H2) and Γ(X,Y ) is given by :

〈T, f ⊗ g〉 = (Tf, g), for T ∈ L(H1,H2) and f ∈ L2(X,µ), g ∈ L2(Y, ν)

If f ∈ L∞(X,µ), let Mf ∈ B(H1) be the operator of multiplication by f . The
collection {Mf}f∈L∞(X,µ) is a maximal abelian selfadjoint algebra (masa). If
A ⊆ X is measurable, we write P (A) = MχA where χA is the characteris-
tic map of A. A subspace W ⊆ B(H1,H2) is then called a masa-bimodule if
MΨTMϕ ∈W for all Ψ ∈ L∞(Y, ν), T ∈W and ϕ ∈ L∞(X,µ).

Now let κ ⊆ X×Y be a ω-closed set and T ∈ B(H1,H2). We say that κ supports
T (or that T is supported on κ) if P (B)MP (A) = 0 whenever A×B∩κ ∼ ∅. For
a subset M ⊆ B(H1,H2), there exists a smallest (up to marginal equivalence)
ω-closed set which supports every operator T ∈M, that we denote by supp(M)
(cf. [23]). On the other hand, it is known that for every ω-closed set κ there
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exists the smallest and the largest weak∗ closed masa-bimodule - respectively
Mmin(κ) and Mmax(κ) - with support κ (cf. [1], [75]).

Definition 5.11. Let (X,µ) and (Y, ν) be standard measure spaces and κ ⊆
X × Y be a ω-closed set. Then, κ is an operator M-set if :

K(H1,H2) ∩Mmax(κ) 6= {0}

Otherwise, κ is said to be an operator U-set.

In order to define the operator-theoretic counterpart to M0-sets, we need to in-
troduce additional terminology and notation concerning Arveson measures. We
mainly follow the seminal work [1].

Let σ be a complex measure of finite total variation defined on the product
σ-algebra of X × Y and let |σ| denote the variation of σ and |σ|X , |σ|Y be the
marginal measures of |σ|. Such measure σ is said to be an Arveson measure if
there is a constant c > 0 such that the following holds :

|σ|X ≤ cµ and |σ|Y ≤ cν

The set of all Arveson measures on X × Y is denoted by A(X,Y ) and for some
σ ∈ A(X,Y ), we denote the smallest constant satisfying its defining inequalities
by ||σ||A. For a σ-closed subset κ ⊆ X × Y , we denote by A(κ) the set of all
Arveson measures σ in X × Y such that supp(σ) ⊆ κ.

An Arveson measure σ ∈ A(Y,X) defines an operator Tσ : H1 → H2 which
will be called pseudointegral. These operators were introduced in [1]. Indeed,
for σ ∈ A(Y,X) one can consider the sesquilinear form φ : H1 ×H2 → C given
by :

φ(f, g) =

∫
Y×X

f(x)g(y)dσ(y, x)

By the Riesz Representation Theorem, it follows that there is an unique opera-
tor Tσ : H1 → H2 such that (Tσf, g) = φ(f, g).

For a given ω-closed subset κ ⊆ X ×Y we let κ̂ = {(y, x) : (x, y) ∈ κ}. We then
have the following :

Theorem 5.12. Let σ ∈ A(Y,X). There exists an unique Tσ : H1 → H2 such
that :

(Tσf, g) =

∫
Y×X

f(x)g(y)dσ(y, x), for f ∈ H1, g ∈ H2

Moreover, ||Tσ|| ≤ ||σ||A and for a given ω-closed subset κ ⊆ X×Y the operator
Tσ is supported on κ if and only if supp(σ) ⊆ κ̂.

Proof. The reader can find a proof in [74] (Theorem 3.2).

We finally define the operator-theoretic counterpart of M0-sets :
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Definition 5.13. Let (X,µ) and (Y, ν) be standard measure spaces and κ ⊆
X × Y be a ω-closed set. Then, κ is an operator M0-set if :

There is a non-zero measure σ ∈ A(κ̂) such that Tσ ∈ K(H1,H2)

Otherwise, κ is said to be an operator U0-set.

In the remaining of this subsection, we bridge the gap between the notions of
multiplicity and operator multiplicity. As mentioned in the beginning, this is a
fruitful effort. Let G be a group and E ⊆ G. We define :

E∗ = {(s, t) ∈ G×G : ts−1 ∈ E}

We note that if G is second countable and E is closed, then E∗ is ω-closed. One
has the following central results :

Theorem 5.14. Let G be a locally compact second countable group and E ⊆ G
be a closed subset. Then, the following are equivalent :

(i) E is a M -set.

(ii) E∗ is an operator M-set.

Proof. The reader can find a proof in [74] (Theorem 4.9).

Theorem 5.15. Let G be a locally compact second countable group and E ⊆ G
be a closed subset. Then, the following are equivalent :

(i) E is a M0-set.

(ii) E∗ is an operator M0-set.

Proof. The reader can find a proof in [74] (Theorem 4.12).

5.2 More properties

In this subsection we state and prove some preservation properties that hold
for closed sets of (extended) uniqueness. We omit proofs for most of those
results one can refer to literature, providing nevertheless the proof whenever
some novelty is asserted. For the sake of organization we divide the section
according to the nature of the properties discussed.

5.2.1 Products

Let (Xi, µi) and (Yi, νi) be standard measure spaces. We define the following
map :

ρ : (X1 × Y1)× (X2 × Y2)→ (X1 ×X2)× (Y1 × Y2)

((x1, y1), (x2, y2)) 7→ ((x1, x2), (y1, y2))
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We note that the following useful identity holds :

ρ(E∗1 × E∗2 ) = (E1 × E2)∗

for Ei ⊆ Gi where G1 and G2 are groups. Since we already know how to relate
operator M -sets with M -sets, the key element to prove that preservation of
M -sets under finite direct products holds is the following result :

Theorem 5.16. Let (Xi, µi) and (Yi, νi) be standard measure spaces and Ei ⊆
Xi×Yi be ω-closed sets. The set ρ(E1×E2) is an operator M-set if and only if
both E1 and E2 are operator M-sets.

Proof. The reader can find a proof in [74] (Theorem 5.11).

Corollary 5.17. Let G1 and G2 be locally compact second countable groups
and let E1 ⊆ G1 and E2 ⊆ G2 be closed sets. Then, the following holds :

(i) If E1 or E2 are sets of uniqueness, then E1 × E2 is a set of uniqueness

(ii) If E1 and E2 are sets of multiplicity, then E1 × E2 is a set of multiplicity

Proof. We only prove (i), since the argument for (ii) is entirely analogous (cf.
[74], Corollary 5.12). Suppose that E1 is a set of uniqueness. By Theorem
5.14, E∗1 is an operator U-set. Since ρ(E∗1 × E∗2 ) = (E1 × E2)∗, it follows from
Theorem 5.16 that (E1 × E2)∗ is an operator U-set and thus, once again by
Theorem 5.14, we conclude that E1 × E2 is a set of uniqueness.

In the remaining of this subsection, we establish the analogous preservation
property for M0-sets. It will be useful to consider the left and right slice maps.
Given ω ∈ (K(H2,K2))∗ = C1(K2, H2), the left slice map Lω is the function
Lω : K(H1 ⊗H2,K1 ⊗K2)→ K(H1,K1) defined on elementary tensors by :

Lω(A⊗B) = ω(B)A

A useful property of Lω is that if T ∈ K(H1 ⊗ H2,K1 ⊗ K2) is supported
on ρ(κ1 × κ2) then, supp(Lω(T )) ⊆ κ1 (cf. [74]). The right slice map Rω :
K(H1 ⊗H2,K1 ⊗K2)→ K(H2,K2) is defined analogously.

Theorem 5.18. Let (Xi, νi), (Yi, µi) be standard measure spaces and κi ⊆ Xi×
Yi be ω-closed sets, for i = 1, 2. The set ρ(κ1×κ2) is an operator M0-set if and
only if both κ1 and κ2 are operator M0-sets.

Proof. Let κ1 and κ2 be operator M0-sets, so that there are non zero measures
σ1 ∈ A(κ̂1) and σ2 ∈ A(κ̂2) such that Tσ1

∈ K(H1,K1) and Tσ2
∈ K(H2,K2).

Following the proof of Theorem 3.8 in [74], we conclude that Tσ := Tσ1
⊗ Tσ2

∈
K(L2(X1 × X2), L2(Y1 × Y2)) for a non zero Arveson measure σ supported in

̂ρ(κ1 × κ2). Hence, ρ(κ1 × κ2) is an operator M0-set.
Conversely, suppose that ρ(κ1×κ2) is an operator M0-set so that there is a non

zero measure σ ∈ A( ̂ρ(κ1 × κ2)) and Tσ ∈ K(H1 ⊗ H2,K1 ⊗ K2). Note that
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Lω(Tσ) ∈ K(H1,K1) and supp(Lω(Tσ)) ⊆ κ1. Thus, it suffices to prove that for
some ω, Lω(Tσ) is a pseudo-integral operator - say Tγ - for a non-zero Arveson
measure γ. It will follow from Theorem 5.12 that γ ∈ A(κ̂1) and thus, κ1 is
an operator M0-set. The case for κ2 is entirely analogous, using the right slice
operator Rω instead.
We let Ω = Y1 × Y2 ×X1 ×X2, π, πXi , πYi be respectively the projections of Ω
onto Y1 ×X1, Xi and Yi and fi ∈ L2(Xi, νi), gi ∈ L2(Yi, µi), for i = 1, 2 with
ω = f2 ⊗ g2.
Note that if σ is Arveson (in particular with finite total variation), then so is

|σ|. Consequently, we can assume that σ ∈ A( ̂ρ(κ1 × κ2)) is finite, non-zero
and non-negative and as Ω is completely metrizable and separable, it follows
that σ is Radon.10 Since σ 6= 0 and is Radon, there is a compact K ⊆ Ω with
σ(K) > 0. Note that πX2

(K) := C ⊆ X2 and πY2
(K) := C ′ ⊆ Y2 are compact

sets and let U ,V be open sets such that C ⊆ U and C ′ ⊆ V. Since X2 and Y2

are normal, there are continuous functions f2 : X2 → [0, 1] and g2 : Y2 → [0, 1]
such that χC ≤ f2 ≤ χU and χC′ ≤ g2 ≤ χV . Since ν2 is Radon, then :

inf{ν2(W) : C ⊆ W and W is open} = ν2(C) <∞

and we can choose V such that ν2(V) < ∞. Similarly, we can choose W such
that µ2(W) <∞. Consequently :∫

X2

f2
2 (x2)dν2 ≤

∫
X2

χUdν2 = ν2(U) <∞

and we conclude that f2 ∈ L2(X2, ν2). Similarly, we conclude that g2 ∈
L2(Y2, µ2). This is our choice of f2 and g2, defining ω. Now note that :

(Lω(Tσ)f1, g1) = 〈Lω(Tσ), f1⊗ g1〉 = 〈Tσ, (f1⊗ g1)⊗ω〉 = (Tσ(f1⊗ f2), g1 ⊗ g2)

Since σ is an Arveson measure on Ω we have :

(Lω(Tσ)f1, g1) =

∫
Ω

f1(x1)f2(x2)g1(y1)g2(y2)dσ((y1, y2), (x1, x2))

Letting y = (y1, y2) and x = (x1, x2), we define a measure γ on Y1 × X1 as
follows :

γ(E) :=

∫
Ω

χπ−1(E)((y, x))f2(x2)g2(y2)dσ(y, x)

Therefore, we may conclude that :

(Lω(Tσ)f1, g1) =

∫
Y1×X1

f1(x1)g1(y1)dγ(y1, x1)

10Let X be a completely metrizable and separable space and µ a (positive) Borel measure
on X. Then, X is Radon (cf. [9], Theorem 7.1.7). In fact, if w(X) is the weight of X, then
there is a non-tight finite (positive) Borel measure on X if and only if w(X) is a measurable
cardinal (cf. [25], Theorem 438H). Existence of measurable cardinals is not provable within
ZFC.
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If one proves that γ an Arveson measure, we may conclude that Lω(Tσ) is
pseudo-integral. It will then be enough to check that γ is non-zero and we are
done. On one hand :

γ(Y1 ×X1) =

∫
Ω

χΩ(y, x)f2(x2)g2(y2)dσ(y, x) ≤
∫

Ω

χΩ(y, x)dσ <∞

and thus, γ has finite total variation. On the other hand, let E = α×X1, with
a measurable set α ⊆ Y1. Then, we have that :

|γ|(α×X1) ≤
∫

Ω

χα×Y2×X1×X2((y, x))f2(y2)g2(x2)d|σ|((y, x))

=

∫
Ω

χα(y1)χY2×X1×X2
(y2, x1, x2)f2(y2)g2(x2)d|σ|((y, x))

≤ (

∫
Ω

f2
2 g

2
2d|σ|)

1
2 (

∫
Ω

χαχY2×X1×X2d|σ|)
1
2 := A

1
2B

1
2

≤ kν1(α), for some finite positive k. In fact :

Since σ is Arveson :

A
1
2 ≤ c(

∫
X2

f2
2 (x2)dν2)

1
2 (

∫
Y2

g2
2(y2)dµ2)

1
2 = c||f2||||g2|| <∞

Furthermore, note that given measurable spaces (Xi, νi) and (Yi, µi), a measure
σ on (X1 ×X2)× (Y1 × Y2) can be identified with a measure σ̃ on X1 × (X2 ×
Y1×Y2) as the product σ-algebras can be canonically identified. In this way, the
marginal measures |σ̃|(α) and |σ|(α ×X2) - for α ⊆ X1 measurable - coincide.
If σ is Arveson, it then follows that there is some positive finite constant d such
that |σ̃(α)| ≤ dν2

1(α). Thus, B
1
2 ≤ (dν2

1(α))
1
2 .

It remains to check that γ is non-zero : let E = πY1
(K) × πX1

(K) which is
compact, hence closed and thus Borel subset of Y1 ×X1. Then :

γ(E) =

∫
Ω

χπ−1(E)(y, x)f2(x2)g2(y2)dσ(y, x) ≥ σ(K) > 0

since if (y1, y2, x1, x2) ∈ K, then χπ−1(E) = 1 and f2(x2) = g2(y2) = 1, by
construction.

We can thus establish the corresponding fact for M0-sets :

Corollary 5.19. Let G1 and G2 be locally compact second countable groups
and E1 ⊆ G1 and E2 ⊆ G2 be closed sets. Then :

(i) If E1 and E2 are sets of restricted multiplicity, then E1 × E2 is a set of
restricted multiplicity.

(ii) If E1 or E2 are sets of extended uniqueness, then E1 × E2 is a set of
extended uniqueness.

Proof. Let E1 and E2 be M0-sets. By Theorem 5.15, E∗1 and E∗2 are operator
M0-sets. Since ρ(E∗1×E∗2 ) = (E1×E2)∗ it follows by Theorem 5.18 and Theorem
5.15 that E1 × E2 is a M0-set. The proof is entirely analogous for the case of
sets of extended uniqueness.
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5.2.2 Inverse images

We begin with a quite general result concerning the preservation of U-sets under
inverse images. In [80] (Theoreme 7) it is proven that if G is a locally compact
abelian second countable group, H ⊆ G a normal closed subgroup, E ⊆ G/H a
closed subset and q : G→ G/H the quotient map, then :

E ∈ U(G/H) if and only if q−1(E) ∈ U(G)

We extend the latter result for locally compact second countable groups, not
necessarily abelian. Indeed, this generalization is a direct consequence of the
following fulcral result :

Theorem 5.20. Let (X,µ), (Y, ν), (X1, µ1), (Y1, ν1) be standard Borel spaces
and suppose that ϕ : X → X1 and Ψ : Y → Y1 are measurable maps. Let
E ⊆ X1×Y1 and F = {(x, y) ∈ X×Y : (ϕ(x),Ψ(y)) ∈ E}. If ϕ∗µ and Ψ∗ν are
equivalent, respectively, to µ1 and ν1, then E is an operator M-set if and only
if F is an operator M-set.

Proof. The result follows from Theorem 5.5 in [74]. As noted in Remark 5.6 (cf.
[74]), the injectivity assumption in Theorem 5.5 can be dropped (cf. [22]).

Corollary 5.21. Let G be a locally compact second countable group, H ⊆ G
a normal closed subgroup and E ⊆ G/H a closed subset. Then :

E ∈ U(G/H) if and only if q−1(E) ∈ U(G)

Proof. Note that the pushforward measure of the Haar measure mG of G by
q is equivalent to the Haar measure mG/H on G/H. Indeed, q∗(mG) is Borel,
non-trivial and left-invariant since for S ⊆ G/H one has that :

q∗mG(gHS) = mG(q−1(gHS)) = mG(SH) = mG(q−1(S)) = q∗mG(S)

Since G/H is Polish it follows that q∗mG is Radon and thus, by uniqueness of
Haar measure, equivalent to mG/H . The result now follows immediately from
Theorem 5.20 and Theorem 5.14 noting that since q is a homomorphism, then
q−1(E)∗ = (q−1 × q−1)(E∗).

Corollary 5.22. Let G and H be locally compact second countable groups
with Haar measures mG and mH respectively and E ⊆ H be a closed set. If
ϕ : G→ H is a continuous isomorphism, then :

E ∈ U(H) if and only if ϕ−1(E) ∈ U(G)

Proof. Since ϕ is a homomorphism, ϕ−1(E)∗ = (ϕ−1×ϕ−1)(E∗) and since it is
an isomorphism, ϕ∗mG and mH are equivalent. Thus, the result follows from
Theorem 5.14 and Theorem 5.20.
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The following characterization of closed subgroups was proved in [74] (Corollary
5.10), answering a questions posed in [14]. As noted previously, the problem of
characterizing sets of uniqueness is extremely difficult in general (and, as one
could argue in the next section, an effort doomed to fail), hence the following
result is of particular interest and we include its proof :

Corollary 5.23. LetG be a locally compact second countable group andH ⊆ G
a closed subgroup. Then, H is a M-set if and only if H is open. In particular,
if G is connected then the only closed subgroup which is a M-set is G itself.

Proof. Let m denote the Haar measure of G. Then, by Steinhaus’ theorem H
is open if and only if m(H) > 0 and since U-sets have necessarily zero measure,
it follows by Theorem 5.14 that it is enough to prove that if m(H) = 0 then H∗

is an operator U-set. Since G/H is Polish, (G/H, q∗m) is standard. Consider
D = {(z, z) : z ∈ G/H}. Since every operator on L2(G/H, q∗m) supported
on D is a multiplication operator and q∗m is non atomic, the only compact
operator supported on D must be the zero operator and consequently, D is an
operator U-set. By Theorem 5.20, it follows that H∗ = (q−1 × q−1)(D) is an
operator U-set, as we wanted.

As with U-sets, in [80] it was proven that U0-sets are also preserved under
the inverse image of quotients of abelian groups (cf. [80], Theoreme 8). More
concretely, if G is a locally compact abelian second countable group, H is a
closed normal subgroup and E is a closed subset of G/H, then :

E ∈ U0(G/H) if and only if q−1(E) ∈ U0(G)

In the remaining of the subsection we partly extend the result for groups which
are not necessarily abelian. We recall that if G is either compact or abelian, the
class of measures µ ∈M(G) satisfying λ(µ) ∈ C∗r (G) coincides with the class of
Rajchman measures.

Consider the case q : R → T and suppose that E ⊆ T is a closed set such
that q−1(E) is a M0-set. Thus, there is a Rajchman measure ν 6= 0 supported
on q−1(E). Take the pushforward measure µ := q∗ν on T, which is a non-zero
measure on T supported on E. Furthermore, µ is Rajchman. Indeed, this fol-
lows from the observation that if f is a function on T and g is its 2π-periodic
extension as a function on R, then

∫
R g(x)dν(x) =

∫
T f(t)dµ(t). In particular,

ν̂(n) = µ̂(n). Hence, since ν̂ ∈ C0(R) it follows that lim|n|→∞ µ̂(n) = 0 and µ
is Rajchman. We conclude that E is a M0-set. In order to use this idea within
a more general setting, we establish first some notation.

Let G be locally compact and H ⊆ G be a closed normal subgroup. Given
f ∈ Cc(G), we define :

φ(f)([x]) :=

∫
H

f(xh)dh

One can prove that φ(f) ∈ Cc(G/H) and that in fact, φ : Cc(G)→ Cc(G/H) is
surjective (cf. Proposition 1.3.7, in [41]). The Haar measures on G and on H
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can be normalized in such way that the Weil’s formula holds for all f ∈ Cc(G) :∫
G

f(x)dx =

∫
G/H

(

∫
H

f(xh)dh)dµ[x]

where µ is a G-invariant measure on G/H (since H is closed normal, in this
case µ is a Haar measure on G/H). One can verify that given f ∈ L1(G),
Weil’s formula still holds and that ||φ(f)||1 ≤ ||f ||1 and thus, φ is actually a
∗-homomorphism from L1(G) onto L1(G/H).

Recall (see section 3) that every unitary representation of G determines a non
degenerate ∗-representation π̃ of L1(G) as follows :

〈π̃(f)ξ, η〉 =

∫
G

f(x)〈π(x)ξ, η〉dx, for f ∈ L1(G) and ξ, η ∈ H(π)

For any representation π of G/H and ξ, η ∈ H(π), one shows that :

〈π ◦ q(f)ξ, η〉 = 〈π(φ(f))ξ, η〉, for f ∈ L1(G)

where q : G → G/H is the quotient map. This implies that ||φ(f)||C∗(G/H) ≤
||f ||C∗(G) and thus, φ can be extended to a ∗-homomorphism from C∗(G) onto
C∗(G/H). For more details, the interested reader is again referred to [41].

Theorem 5.24. Let G be an amenable locally compact group. Let H ⊆ G be
a normal closed subgroup and E ⊆ G/H a closed set. Then, if q−1(E) is a
M0-set, so is E.

Proof. Since q−1(E) is a M0-set, there is a measure µ ∈ M(q−1(E)) such that
λG(µ) 6= 0 and λG(µ) ∈ C∗(G). Consider the pushforward measure q∗µ ∈M(E)
which is non-zero and thus, λG/H(q∗µ) 6= 0. It then suffices to prove that
λG/H(q∗µ) ∈ C∗(G/H) and we can conclude that E is a M0-set. Indeed :

φ(λG(µ))λG/H(φ(f)) = φ(λG(µ)λG(f)) = φ(λG(µ ∗ f))

= λG/H(φ(µ ∗ f)) = (λG/H ◦ q)(µ ∗ f)

= (λG/H ◦ q)(µ)(λG/H ◦ q)(f)

Since π ◦ q(µ) = π(q∗µ) for any representation π we conclude that :

φ(λG(µ)) = λG/H ◦ q(µ) = λG/H(q∗µ) ∈ C∗(G/H)

and we are done.

In order to prove a converse to Theorem 5.24 we rely on a certain operator
that allows going from C∗r (G/H) to C∗r (G) while respecting the support in a
convenient way.

Let G be a locally compact group, θ ∈ A(G) ∩ Cc(G) and T ∈ V N(G/H),
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where H is a closed normal subgroup of G. Then, one can show that the fol-
lowing functional is bounded (Theorem 3.7 in [73]) :

A(G) 3 u 7→ 〈T, φ(θu)〉

Thus, there is an operator Φθ(T ) ∈ V N(G) such that :

〈Φθ(T ), u〉 = 〈T, φ(θu)〉 , u ∈ A(G)

Lemma 5.25. Let θ ∈ A(G) ∩ Cc(G). Then, the following holds :

(i) Φθ maps C∗r (G/H) into C∗r (G).

(ii) If T ∈ C∗r (G/H) ∩ J(E)⊥, then Φθ(T ) ∈ C∗r (G) ∩ J(q−1(E))⊥, where
q : G→ G/H is the quotient map.

Proof. The reader can find a proof in [73] (Theorem 3.7).

Motivated by the definition of property (l) in [73], we introduce the following
property :

Definition 5.26. Let G be a locally compact group and H ⊆ G be a closed
normal subgroup. For any θ ∈ Cc(G), let |θ|(x) := |θ(x)|. We say that H
has the property (|l|2) if for every proper compact K ⊆ G/H there exists θ ∈
A(G) ∩ Cc(G) such that φ(|θ|) = c1 and φ(θ2) = c2, for positive real constants
c1, c2 on a neighborhood of K.

Remark 5.27. As an important example, Z ⊆ R has the property (|l|2). In-
deed, after identifying T with [0, 1) let’s fix a proper compact K ⊆ T. We may
assume that 0 /∈ K - otherwise replacing K with a suitable translation. Using
the regularity of A(R), let θ ∈ A(R) such that θ(x) = 1 on a neighborhood U of
K and θ(x) = 0 whenever x /∈ (0, 1). If x ∈ U , note that :

φ(|θ|)([x]) =
∑
h∈Z
|θ(x+ h)| =

∑
h∈Z

θ(x+ h)θ(x+ h) = φ(θ2)([x]) = 1

An entirely analogous argument shows that Zn ⊆ Rn and Zn×{1}m ⊆ Rn×Tm
also have the property (|l|2).

Theorem 5.28. Let G be a locally compact group, H ⊆ G a closed normal
subgroup with property (|l|2) and E ⊆ G/H a compact set. Furthermore, assume
that G/H is second countable. Let q : G → G/H denote the quotient map and
suppose that E is a M0-set. Then, q−1(E) is also a M0-set.

Proof. Since E ⊆ G/H is a M0-set, there is some µ ∈M(E) such that λ(µ) 6= 0
and λ(µ) ∈ C∗r (G/H). We note that since G/H is second countable and µ 6= 0,
it follows that µ(E) > 0.
For any θ ∈ A(G) ∩ Cc(G), Φθ(λ(µ)) ∈ C∗r (G) by Lemma 5.25. Thus, if one
shows that Φθ(λ(µ)) = λ(ν) for some ν ∈ M(q−1(E)) such that λ(ν) 6= 0, it
follows that q−1(E) is a M0-set.
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In order to obtain such measure ν, appealing to Riesz-Markov-Kakutani Rep-
resentation Theorem it is enough to choose θ such that the following linear
functional Ψ is bounded :

C0(G) 3 u 7→
∫
G/H

(

∫
H

θ(xh)u(xh)dh)dµ(x)

Indeed, if Ψ is bounded then there is some measure ν ∈M(G) such that :

Ψ(u) =

∫
G

u(s)dν(s)

By construction, for u ∈ A(G) we have that :

〈Φθ(λ(µ)), u〉 = 〈λ(µ), φ(θu)〉 = Ψ(u) = 〈λ(ν), u〉

and we can conclude that Φθ(λ(µ)) = λ(ν). Thus, it remains to choose an
appropriate θ. Since E is compact and H ⊆ G has the property (|l|2), let
θ ∈ A(G) ∩ Cc(G) be such that φ(|θ|) = c1 > 0 and φ(θ2) = c2 > 0 on a
neighborhood of E. It follows that :

|
∫
G/H

(

∫
H

θ(xh)u(xh)dh)dµ(x)| ≤
∫
G/H

|
∫
H

θ(xh)u(xh)dh|dµ(x)

≤ ||u||∞
∫
G/H

|φ(θ)(x)|dµ(x)

≤ ||u||∞c1µ(E)

Hence, Ψ is bounded. Moreover, it follows from Lemma 5.25 that ν ∈M(q−1(E)).
It remains to check that indeed λ(ν) 6= 0. For this purpose, it suffices to choose
u ∈ A(G) such that Ψ(u) 6= 0. We let u = θ and note that :∫

G/H

(

∫
H

θ(xh)θ(xh)dh)dµ(x) =

∫
G/H

φ(θ2)(x)dµ(x) = c2µ(E) > 0

Corollary 5.29. Let q : Rn × Tm → Tn+m be the quotient map for integers
n,m ≥ 0 and E ⊆ Tn+m be a closed subset. Then, E is a M0-set if and only if
q−1(E) is a M0-set.

Proof. The result follows from Theorem 5.24 and Theorem 5.28.

5.2.3 Unions

In this subsection we approach the problem of closure properties of U-sets un-
der unions. An early accomplishment in this direction is the result due to Bari
(cf. [4]) stating that a countable union of closed sets of uniqueness (in T) is
still a set of uniqueness. It should be stressed that these matters are far from
being well understood : for instance, insofar the author is aware, it is still an
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open problem to determine whether or not the union of even two Gδ sets of
uniqueness of T is still a set of uniqueness (cf. [47], pp. 46). Our goal for the
subsection is more modest : we follow [83] with the purpose of establishing that
U(G) is a σ-ideal whenever G is a locally compact amenable group. We finish
the subsection with a brief digression on Bari’s classical result within certain
set-theoretic assumptions.

Let G be a locally compact group. Following [83], we say that a closed set
E ⊆ G is a J-set whenever the following holds :

E =
⋃

T∈J(E)⊥∩C∗r (G)

supp(T )

Proposition 5.30. Let G be a locally compact group and E ⊆ G a closed
subset. Then :

(i) E ∈ U(G) if and only if E does not contain any non-empty J-set

(ii) If G is amenable, E ∈ U(G) if and only if F \ E = F for every J-set F

Proof. The proof of (i) is immediate from the definitions and properties of
supp(T ). For a proof of (ii), the reader is referred to [83] (Corollary 4.6).

Theorem 5.31. Let G be a locally compact amenable group, {En} ⊆ U(G) and
set E =

⋃
nEn. Then, if E is closed it follows that E ∈ U(G).

Proof. By Proposition 5.30-(i) it is enough to show that E does not contain any
non-empty J-set. Suppose, towards a contradiction, that E contains a J-set F
and let On := F \En. By Proposition 5.30-(ii) it follows that On is dense in F
and by the Baire Category theorem, so is

⋂
nOn. However, since F ⊆

⋃
nEn

this is impossible unless F = ∅.

Corollary 5.32. Let G be a locally compact amenable group. Then, U(G) is
a σ-ideal of F(G).

Proof. The fact that U(G) is hereditary is straightforward and the requirement
concerning countable unions is satisfied from Theorem 5.31.

For the purpose of this thesis, Corollary 5.32 is all that is needed. However, and
for the sake of completeness, we end the subsection with the observation that
the proof of Bari’s result as given in [47] (Theorem 5 - I.5) still holds under more
general set-theoretic assumptions. With this in mind, we momentarily go back
to trigonometric series S ∼

∑
cne

inx, with x ∈ T. For such formal series with
bounded coefficients {cn} and for a continuous function ϕ on T with absolutely
convergent Fourier coefficients, one defines the following formal series :

S(ϕ).S ∼
∑

Cne
inx, with Cn =

∑
k

ckϕ̂(n− k)
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If ϕ has Fourier coefficients converging sufficiently rapidly to 0 (indeed, it is
enough that ϕ̂(n) = O(|n|−3)) we can relate the formal product S(ϕ).S with
ϕ(x).S in an useful way. In particular :

Proposition 5.33. If ϕ ∈ C∞(T) and S ∼
∑
cne

inx is such that cn → 0, the
following holds :

∞∑
n=−∞

(Cn − ϕ(x)cn)einx = 0, uniformly on x

Proof. The reader can find a proof of a more general result in [47] (Lemma 2 -
I.4).

Another result which is needed in our digression is the following :

Proposition 5.34. Suppose that S ∼
∑
cne

inx is such that cn → 0, with par-
tial sums Sn(x) bounded at each point x and

∑
cne

inx = 0 almost everywhere.
Then, cn = 0 for all n ∈ Z.

Proof. The reader can find a proof in [47] (Theorem 3 - I.5).

Meager sets and null sets are trivially closed under countable unions and under
certain set-theoretic assumptions, for ℵ0 ≤ κ < 2ℵ0 , the same still holds true
for κ-unions. The reader which is unfamiliar with the terminology is referred to
the Appendix.

Theorem 5.35. Under ZFC +MA(κ), the following assertions are true :

(i) Let {Mα}α<κ be a collection of meager sets of R. Then,
⋃
αMα is meager

(ii) Let {Nα}α<κ be a collection of null sets of R. Then,
⋃
αNα is null

Proof. The reader can find a proof in [49] (respectively, Theorem 2.20 and The-
orem 2.21).

We can finally conclude our digression :

Theorem 5.36. Assume ZFC+MA(κ) and let {Eα}α<κ be a family of closed
sets of uniqueness of T. Then,

⋃
α<κEα is a set of uniqueness.

Proof. Let E =
⋃
αEα and suppose that S ∼

∑
cne

inx = 0 for all x ∈ T \ E.
Since each Eα ∈ U(T), it follows by Theorem 5.35-(ii) that µ(E) = 0 and thus,
cn → 0.11 Suppose, towards a contradiction, that not all coefficients cn are zero
and consider the following set :

G = {x ∈ T : {SN (x)} is unbounded}, with SN =

N∑
n=−N

cne
inx

11By Cantor-Lebesgue theorem, if
∑
cneinx = 0 on a set of positive measure then cn → 0

(cf. [47], Lemma 6 - I.3 ).
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It follows by Proposition 5.34 that G 6= ∅ and as such, a non-empty Polish space.
Let Gα = G ∩ Eα and note that since G =

⋃
αGα, it follows from Proposition

5.35-(i) that there is some β and interval Iβ such that G∩Iβ = Gβ∩Iβ 6= ∅. We
prove that

∑
cne

inx = 0 on Iβ and thus, Iβ ∩G = ∅, yielding a contradiction.
Pick any f ∈ C∞(T) which vanishes on T\Iβ and is positive on Iβ and consider
the formal product T := S(f).S ∼ Cne

inx. Since Eβ ∈ U(T), it follows by
Proposition 5.33 that it is enough to prove that

∑
Cne

inx vanishes off Eβ . Let
x /∈ Eβ and note that it is sufficient to consider the case when x ∈ Iβ ∩ E.
By regularity, let J be an interval such that x ∈ J and J ∩ Eβ = ∅. Pick
any g ∈ C∞(T) such that g(x) = 1 with supp(g) ⊆ J and consider the formal
product R := S(g).T ∼

∑
Dne

inx. Since
∑
cne

inx = 0 a.e., the same is true for
T and consequently, for R as well. On the other hand,

∑
Dne

inx has bounded
partial sums outside J ∩ G = J ∩ Gβ as S and T have that property as well.
It follows from Proposition 5.34 that Dn = 0 for all n and thus, by Proposition
5.33, that

∑
Cne

inx = 0.

Remark 5.37. Since MA(ℵ0) holds in ZFC, we recover Bari’s result. More-
over, since singletons are sets of uniqueness of T, we conclude that under
ZFC +MA(κ) every subset E ⊆ T with |E| = κ is a set of uniqueness.

5.3 Descriptive set theory and sets of uniqueness

Some applications of descriptive set-theoretic tools to the study of closed sets
of uniqueness are presented. In turn, these provide insight on the problem of
characterization of such sets from which other properties can be entailed. We
prove some generalizations of previous results, aiming to provide the appropriate
context for the sake of completeness.

5.3.1 Complexity

In this subsection we locate the descriptive set-theoretic complexity of U(G) and
U0(G) under certain assumptions on G. In [80], it was proven that if G is a non-
discrete locally compact abelian second countable group then U(G) and U0(G)
are Π1

1-complete subsets of F(G). We observe that U(G) and U0(G) are always
coanalytic whenever G is a locally compact second countable group, abelian or
not. Relying on the functorial properties of section 5.2 and on the fact that
U(T) is Π1

1-complete, we provide a direct proof that U(G) is Π1
1-complete for

connected locally compact Lie groups G (abelian or not) and that U0(G) is Π1
1-

complete for connected abelian Lie groups G. Using the aforementioned result
from [80], we easily extend the result on the descriptive complexity of U(G) for
general locally compact Polish groups (non necessarily abelian) such that the
quotient G/[G,G] is non-discrete. We start by identifying the Polish spaces on
which we will work.

Recall that for a locally compact space X, we consider the Fell topology on
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F(X) which is compact metrizable, induces the Effros Borel space and coin-
cides with the Vietoris topology whenever X is compact. Moreover, recall that
if X is a locally compact, Hausdorff and second countable space then C0(X)
is separable12 and since M(X) = C0(X)∗, it follows that B1(M(G)) is w∗-
metrizable whenever G is a locally compact and second countable (Hausdorff)
group G. Thus, by Banach-Alaoglu Theorem, it follows that :

G locally compact second countable group, then (B1(M(G)), w∗) is Polish

Let G be a locally compact and second countable group and recall that any
element of u ∈ A(G) is of the form u = f ∗ ǧ for f, g ∈ L2(G), with norm
||u|| = inf{||f ||2||g||2} with infimum taken over all representations of the form
u = f∗ǧ. Since G is second countable, then L2(G) is separable and consequently,
A(G) is also separable. Thus, and since V N(G) = A(G)∗, B1(V N(G)) is w∗-
metrizable. Similarly as before, we conclude that :

G locally compact second countable group, then (B1(V N(G)), w∗) is Polish

Moreover, if G is a locally compact and second countable group, it follows that
L1(G) is separable. Since the norm in C∗(G) is dominated by the ||.||1-norm, we
conclude that C∗(G) is separable. Since it is defined as a completion, it follows
that C∗(G) is Polish. We consider the representation λ of M(G) restricted to
the unit ball and with the following topologies :

λ : (B1(M(G)), w∗)→ (V N(G), w∗)

Note that λ is continuous. Indeed, since B1(M(G)) is w∗-metrizable, it is suf-
ficient to verify sequential continuity : if µn → µ, it follows by definition that
ϕµn → ϕµ (cf. Theorem 4.27) and thus, λ(µn) → λ(µ). In fact, the definition
of the pairing A(G)∗ = V N(G) entails the continuity of λ even if one considers
the WOT topology in the codomain.

Theorem 5.38. Let G be a locally compact second countable group. Then,
U(G) ⊆ F(G) is coanalytic.

Proof. For the sake of readability, we divide the proof in 3 steps :

Step 1 : Let ||.||r and ||.||∗ be the norms on C∗r (G) and C∗(G) respectively
and recall that since ||.||r ≤ ||.||∗, this entails a continuous surjective map :
Υ : C∗(G) → C∗r (G) ⊆ L(L2(G)), taking the operator norm in the codomain.
Note that C := B1(V N(G)) ∩ C∗r (G) is closed in the operator norm and thus,
since Υ is continuous, P := Υ−1(C) is also closed. As a closed subspace of a
Polish space, it follows that P is also Polish. Let’s denote the restriction of
Υ to P still as Υ. Then, Υ : P → B1(V N(G)) is a function whose image is
B1(V N(G)) ∩ C∗r (G), as Υ is surjective. Since Υ was continuous with respect

12Since X is second countable, so it is its one-point compactification X̃. Thus, C(X̃) is
separable as X̃ is compact, Hausdorff and second countable. Since subspaces of separable
metric spaces are separable, we are done.
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to the operator norm, it will remain continuous with respect to the w∗-topology
in the range. Thus :

Γ1 := C∗r (G) ∩B1(V N(G)) ⊆ (B1(V N(G)), w∗) is analytic

Step 2 : Considering F(G) with the Fell topology and (B1(V N(G)), w∗), the
following set is closed, thus Borel :

Γ2 = {(S,E) ∈ B1(V N(G))×F(G) : supp(S) ⊆ E}

Let {(Sn, En)} ⊆ Γ2 such that (Sn, En) → (S,E). It is enough to prove
that supp(S) ⊆ E. Let u ∈ A(G) ∩ Cc(G) such that supp(u) ∩ E = ∅ and
W = {F ∈ F(G) : F ∩ supp(u) = ∅} which is an open neighborhood of E (in
the Fell topology). Since En → E, then Ek ⊆ W for all sufficiently large k. Since
supp(Sk) ⊆ Ek, then for all sufficiently large k one has that 〈u, Sk〉 = 0. On the

other hand, since Sn
w∗−−→ S, it follows that 〈u, S〉 = 0 and thus supp(S) ⊆ E as

we wanted.

Step 3 : Define P ⊆ B1(V N(G))×F(G) to be the following subset :

P = {(S,E) : (S,E) ∈ Γ2, S 6= 0} ∩ π−1
1 (Γ1)

where πi (i = 1, 2) denotes the projection onto the factors of the product
B1(V N(G)) × F(G). By Step 1, Γ1 is analytic and thus so is π−1

1 (Γ1) since
π1 is Borel. By Step 2, and since the condition S 6= 0 is Borel, P is analytic.
Again, since π2 is Borel, it follows that π2(P ) is analytic. Note that :

π2(P ) =M(G)

and we can thus conclude that U(G) is coanalytic.

Theorem 5.39. Let G be a locally compact second countable group. Then,
U0(G) ⊆ F(G) is coanalytic.

Proof. For the sake of readability, we divide the proof in 3 steps :

Step 1 : Since the ball B1(V N(G)) is w∗-closed by Banach-Alaoglu Theorem,
it follows that P := λ−1(B1(V N(G))) ⊆ (B1(M(G)), w∗) is closed and thus,
Polish. Consequently, λ(P ) ⊆ (B1(V N(G)), w∗) is analytic. By the proof of
Theorem 5.38, C∗r (G)∩B1(V N(G)) is also analytic. Since the intersection of two
analytic sets is analytic, the following set is also analytic in (B1(V N(G)), w∗) :

A := λ(P ) ∩ C∗r (G) ∩B1(V N(G)) \ {0}

Consequently, the following set is analytic in (B1(M(G)), w∗) :

Λ1 := λ−1(A) = {µ ∈ B1(M(G)) : λ(µ) ∈ C∗r (G) ∩B1(V N(G)) \ {0}}

Step 2 : Consider (B1(M(G)), w∗) and F(G) with the Fell topology and let :

Λ2 = {(µ,E) : supp∗(λ(µ)) ⊆ E}
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where πi (for i = 1, 2) is the projection onto the factors of B1(M(G))× F(G).
The proof that Λ2 is closed, hence analytic, goes exactly as in the proof that

Γ2 is closed in Theorem 5.38. Indeed, as pointed out earlier, µn
w∗−−→ µ implies

that λ(µn)
w∗−−→ λ(µ) and we can reproduce the argument used in the proof of

Theorem 5.38.

Step 3 : Define P ⊆ B1(M(G))×F(G) as the following subset :

P = {(µ,E) : µ ∈M(E), λ(µ) ∈ C∗r (G) ∩B1(V N(G)), λ(µ) 6= 0}

Since P = π−1
1 (Λ1)∩Λ2 it follows by Step 1 and Step 2 that P is analytic. Thus,

to prove that U0(G) is coanalytic it is enough to show that M0(G) = π2(P ) :
On one hand, if E ∈ π2(P ), then there is a measure µ ∈ B1(M(G)) such that
(µ,E) ∈ P . By definition of P , this means that λ(M(E)) ∩ C∗r (G) 6= {0} and
thus, E is a M0-set.
Conversely, suppose that E ⊆ G is a M0-set and thus there is some µ ∈ M(E)
such that λ(µ) ∈ C∗r (G) \ {0}. In particular, µ 6= 0. Then, µ̃ = µ

||µ|| ∈
B1(M(G)) ∩M(E) and T := λ(µ̃) ∈ C∗r (G) \ {0}. If ||T || ≤ 1, then λ(µ̃) ∈
C∗r (G)∩B1(V N(G)). Otherwise, we consider µ′ = µ̃

||T || and λ(µ′). In any case,

there is a measure µ ∈ B1(M(G))∩M(E) such that λ(µ) ∈ C∗r (G)∩B1(V N(G))
and λ(µ) 6= 0. Thus, E ∈ π2(P )

For the sake of completeness we provide a proof that U(T) ⊆ K(T) is Π1
1-

complete - fact on which we will further rely on - as given in [47]. It should
be stressed out that a different proof of this fact (in fact of a more general
statement), using the techniques presented in the next subsection, was given in
[17]. We use the following result, where Q′ denotes Q ∩ [0, 1] :

Proposition 5.40. The set K(Q′) = {K ∈ K([0, 1]) : K ⊆ Q′} is Π1
1-complete.

Proof. For the sake of readability we divide the proof in steps :

Step 1 : K(Q′) is coanalytic. Indeed, let N = [0, 1] \Q′ and define :

G = {(K,x) ∈ K([0, 1])× [0, 1] : x ∈ K ∩N}

Let π1 and π2 be, respectively, the projections of K([0, 1])× [0, 1] onto K([0, 1])
and [0, 1] and C = {(K,x) ∈ K([0, 1])× [0, 1] : x ∈ K}. Since C is closed13 and
N is Gδ it follows that G = π−1

2 ∩C is Polish. Consequently, K([0, 1])\K(Q′) =
π1(G) is analytic. Hence, K(Q′) is coanalytic.

Step 2 : Suppose that F ⊆ 2ω is a Fσ set and that E ⊆ 2ω is the set of eventu-
ally periodic sequences. By Theorem 3.45, either F ≤W E or E ≤W 2ω \ F .14

13It is a well known result that if X is metrizable, then {(x,K) ∈ X × K(X) : x ∈ K} is
closed (cf. [45], Exercise 4.29).

14Recall that if X is a zero dimensional Polish space and A ⊆ X, then there is some B ⊆ ωω

such that A ≡W B (cf. section 3.2.1).
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However, if there is a continuous map f with E = f−1(2ω \E) it follows that E
is a dense Gδ set. On the other, and since E is countable, its complement is also
a dense Gδ set which contradicts Baire Category theorem. Thus, we conclude
that F ≤W E necessarily. Let Θ = K(E) and note that, similarly as in Step 1,
this is a coanalytic subset of 2ω. After seeing WF as a Π1

1-complete set of 2ω,
it follows that there is some Fσ set F ⊆ 2ω × 2ω such that :

x ∈WF ⇔ ∀y ∈ 2ω : (x, y) ∈ F

Consider a continuous function f such that F = f−1(E) and define Ψ : 2ω →
K(2ω) as Ψ(x) := f({x}×2ω). As WF is Π1

1-complete, this proves that so is Θ.

Step 3 : Define f : 2ω → [0, 1] by x 7→
∑
n=0

x(n)
2n+1 . Note that x ∈ E if

and only if f(x) ∈ Q′. Let F : K(2ω) → K([0, 1]) be prescribed by K 7→ f(K).
Note that F is continuous 15 and that K ∈ K(E) if and only F (K) ∈ K(Q′).
By Step 2, we conclude that K(Q′) is Π1

1-complete.

We can now prove the complexity results. First for T and thereafter for a more
general case.

Theorem 5.41. The set U(T) ⊆ K(T) is Π1
1-complete.

Proof. By Theorem 5.40 it is enough to define a continuous map F : K([0, 1])→
K(T) such that K(Q′) = F−1(U(T)). We start by defining a continuous map
f : [0, 1]→ K(T) prescribed as follows :

x 7→ E(
1

4
,

3

8
+
x

9
,

3

4
)

It follows by Salem-Zygmund theorem (cf. Example 5.4) that Q = f−1(U(K(T))).
Now, we define a map F : K([0, 1])→ K(T) as follows :

K 7→
⋃
x∈K

f(x)

By the properties of the Vietoris topology, F is continuous. Moreover, by Bari’s
theorem (cf. Theorem 5.36), F−1(U(T)) = K(Q′) as we wanted.

Remark 5.42. The proof of Salem-Zygmund theorem given in [47] (Theorem
1 - III.4) actually shows a stronger statement : if 1

ξ is not a Pisot number or

some ηi /∈ Q( 1
ξ ), then E(ξ, η1, ..., ηk) is a set of restricted multiplicity (cf. [47],

Theorem 4 - III.4). Since sets of uniqueness are also sets of extended uniqueness,
the proof of Theorem 5.41 also shows the following :

Theorem 5.43. The set U0(T) ⊆ K(T) is Π1
1-complete.

Relying on Theorems 5.41 and 5.43 and on some of the previously established
preservation properties of U-sets and U0-sets, one proves the following :

15It is a well known result that if X,Y are metrizable and f : X → Y is continuous, then
the function g : K(X)→ K(Y ) defined by C 7→ f(C) is continuous (cf. [45], Exercise 4.29).
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Theorem 5.44. Let G be a connected locally compact Lie group. Then, U(G) ⊆
F(G) is Π1

1-complete.

Proof. By Theorem 5.38, it is enough to prove that U(G) is Π1
1-hard. Therefore,

we divide the analysis in two cases :

Case 1 : Suppose that G is abelian and thus, G ≈ Rn × Tm. By Corol-
lary 5.22 it suffices to show that U(Rn × Tm) is Π1

1-hard. Firstly, note that
for any positive integer k, the function g : F(T) → F(Tk) such that E 7→ Ek

is measurable and, by Theorem 5.17, is such that U(T) = g−1(U(Tk)). Thus,
U(Tk) is Π1

1-hard. Now, let q : Rn × Tm → Tn+m be the quotient map and
f : F(Tn+m)→ F(Rn × Tm) be given by E 7→ q−1(E).
Note that this map is measurable. Indeed, if A = {F ∈ F(Rn×Tm) : F∩U 6= ∅},
then f−1(A) = {F ∈ F(Tn+m) : F ∩ q(U) 6= ∅}. Since q is the quotient map
by an action of a subgroup, q(U) is open for each open set U and we may
conclude that f is measurable. Furthermore, by Corollary 5.21 one has that
E ∈ U(Tn+m) if and only if q−1(E) ∈ U(Rn × Tm) and we are done.

Case 2 : To consider the non-abelian case, note that G/[G,G] is a connected
abelian Lie group and thus, by Step 1, U(G/[G,G]) is Π1

1-hard and we use the
same argument as before with the quotient map q : G→ G/[G,G].

Theorem 5.45. Let G be a connected abelian Lie group. Then, U0(G) ⊆ F(G)
is Π1

1-complete.

Proof. By Theorem 5.39 it is enough to prove that U0(G) is Π1
1-hard. For the

sake of readability we divide the proof in 3 steps :

Step 1 : By Corollary 5.19 and considering the map h : F(T) 7→ F(Tk) given
by E 7→ Ek we conclude that U0(Tk) is Π1

1-hard.

Step 2 : Let G1 and G2 be locally compact abelian groups, ϕ : G1 → G2

be an isomorphism (of topological groups) and µ ∈ M(G1). This induces a
pushforward measure ϕ∗µ on G2 and an isomorphism ϕ∗ : Ĝ1 → Ĝ2 given by
χ 7→ χ ◦ ϕ−1 such that :

µ̂(χ) =

∫
G1

χ(x)dµ(x) =

∫
G2

ϕ∗(χ)(y)dϕ∗µ(y) = ϕ̂∗µ(ϕ∗(χ))

Hence, if µ̂ ∈ C0(Ĝ1) it follows that ϕ̂∗µ ∈ C0(Ĝ2). If E ⊆ G1 is a M0-set there
is some µ ∈M(E) such that µ 6= 0 is Rajchman and thus, ϕ∗(µ) ∈M(ϕ(E)) and
is a non zero Rajchman measure implying that ϕ(E) is also a M0-set. Analo-
gously, we may conclude that E ⊆ G1 is a M0-set if and only if ϕ(E) is a M0-set.

Step 3 : Any such G is isomorphic to Rn × Tm for some integers n,m ≥ 0
and consequently, by Step 2, it suffices to prove that U0(Rn × Tm) is Π1

1-hard.
In order to do so, we appeal to Corollary 5.29 and consider the Borel reduction
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f : F(Tn+m)→ F(Rn×Tm) given by E 7→ q−1(E), where q : Rn×Tm → Tn+m

is the quotient map.

We conclude the section with a generalization of Theorem 5.44. In order to do
so, we recall once again that in [80] it was proven that U(G) is Π1

1-complete
whenever G is a non-discrete second countable locally compact abelian group.
Thus, repeating the argument given in the proof of Theorem 5.44 - applied to
the quotient map q : G→ G/[G,G] we easily conclude that :

Theorem 5.46. Let G be a locally compact Polish group such that G/[G,G] is
non-discrete. Then, U(G) is Π1

1-complete.

5.3.2 Borel bases : U-sets

Debs and Saint-Raymond proved in [17] that U(T) does not have a Borel basis,
a result which is generalized by Matheron in [56] : if G is a locally compact
abelian second countable group, then U(G) does not have a Borel basis. In
particular, U(G) is not Borel and, if G is compact, we recover the complexity
result proven in [80] for the abelian case. Furthermore, this provides a deep
insight on the question regarding the characterization of the set of (closed) sets
of uniqueness. Indeed, there is no reasonable (Borel, hereditary) subset B of
U(G) for which one can express every closed set of uniqueness as a countable
union of elements in B.
In this subsection we include a sketch of the proof of Matheron’s result (as given
in [56]) and prove three sufficient conditions for the non-existence of a Borel ba-
sis for U(G) - for G not necessarily abelian. The reader who is unfamiliar with
the terminology is referred to section 3.5.

We start by recalling that U(G) is a σ-ideal of F(G) whenever G is a locally
compact amenable group (cf. Corollary 5.32).

Proposition 5.47. Let G be a locally compact abelian second countable non-
discrete group. Then, the σ-ideal U(G) is calibrated.

Proof. It is enough to prove that if {En} ⊆ U(G) and E ∈ F(G) is such that
E\

⋃
nEn ∈ U(G)int then E ∈ U(G). Suppose, by contradiction, that E /∈ U(G)

and let S ∈ PF (G) be such that S 6= 0 and is supported by E. By Proposition
2.1 in [56] there is some T 6= 0 such that supp(T ) ⊆ E\

⋃
nEn and thus, supp(T )

is a M -set which is a contradiction.

Proposition 5.48. Let G be a locally compact abelian second countable non-
discrete group and E ∈M(G). Then, U(G) ∩ F(E) is Π1

1-complete.

Proof. The reader can find a proof in [56] (Corollaire 2.3).

Remark 5.49. A proof of Proposition 5.48 using different arguments can be
found in [47] (Theorem 2-VII.2) for the case G = T : if E ∈ M(T), there is
an unbounded rank on U(T) ∩ K(T) and thus, it follows by Theorem 3.36 that
U(T) ∩ K(T) is Π1

1-complete.
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Proposition 5.50. Let G be a locally compact abelian second countable non-
discrete group. There is a Gδ-set of G such that all its closed subsets are in
U(G) but it can’t be covered by countably many elements in U(G).

Proof. By a result of Saeki (cf. [71]) every M -set contains a Helson set of
multiplicity and by Lemme 7 in [56] if E ⊆ G is a Helson set, then there is a
Gδ-set F ⊆ E dense in E and such that all its closed subsets are U -sets. We can
thus choose E to be a Helson set of multiplicity and assume that E ∈ U(G)perf.
Finally, suppose by contradiction that F ⊆

⋃
nEn with En ∈ U(G). Since

E ∈ U(G)perf it follows that each En is meager in E and consequently so is F
which contradicts the Baire Category theorem.

We can finally conclude the sketch of the proof of inexistence of Borel bases for
U(G) as in [56] :

Theorem 5.51. Let G be a non-discrete second countable locally compact abelian
group. Then, U(G) does not have a Borel basis.

Proof. The result is immediate from Theorem 3.55, Proposition 5.47, Proposi-
tion 5.48 and Proposition 5.50.

Remark 5.52. Note that if G is also compact, it follows from Theorem 5.51
and Theorem 3.48 that U(G) is Π1

1-complete.

In the remaining of this section we identify sufficient conditions on which the set
of closed sets of uniqueness of a not necessarily abelian group does not admit a
Borel basis, based on insofar its quotients or open subgroups admit such basis
or not. Thereafter, we prove a sufficient condition for the inexistence of Borel
basis for groups which are a product of a certain form. An useful result on bases
and pre-bases is the following :

Proposition 5.53. Let I ⊆ F(X) be a σ-ideal. Then :

(i) I has a Σ1
1 basis if and only if I has a Σ1

1 pre-basis.

(ii) If I is Π1
1 and has a Σ1

1 basis, then I has a Borel basis.

Proof. The reader can find a proof in [57] (Proposition 1.11).

We will need the following well-known properties of the support of T ∈ V N(G):

Proposition 5.54. Let G be a locally compact group, T, T1, T2 ∈ V N(G) and
u ∈ B(G). Then :

(i) If T = λ(µ) for some µ ∈M(G), then supp(T ) = supp(µ).

(ii) If T1 or T2 have compact support then supp(T1T2) ⊆ supp(T1)supp(T2).

(iii) supp(u.T ) ⊆ supp(u) ∩ supp(T ).

Proof. The reader can find a proof in [24] (Remarque 4.7 and Proposition 4.8,
respectively).
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Proposition 5.55. Let G be a locally compact group, g ∈ G and E ⊆ G a
closed subset. Then, if E is a U-set so is gE := {gx : x ∈ E}.

Proof. Suppose that gE is not a U-set and let T ∈ J(gE)⊥ ∩ C∗r (G) such that
T 6= 0. Consider T̃ := λ(δg−1)T ∈ C∗r (G) and note that by Prop. 5.54 one has

that supp(T̃ ) ⊆ g−1(gE) = E. Moreover, T̃ 6= 0, since T 6= 0 and λ(δg−1) is

unitary. Thus, T̃ ∈ J(E)⊥∩C∗r (G)\{0} and it follows that E is not a U-set.

Theorem 5.56. Let G be a locally compact second countable amenable group
and H be a countable closed subgroup such that :

(i) The quotient map q : G→ G/H is a closed map.

(ii) There is no Borel basis for U(G/H).

Then, U(G) does not have a Σ1
1 pre-basis. In particular, U(G) does not have a

Borel basis and consequently, if G is also compact then U(G) is Π1
1-complete.

Proof. Suppose that U(G) has a Σ1
1 pre-basis B. We prove that in this case,

B̃ := {q(B) : B ∈ B} is a Σ1
1 pre-basis for U(G/H). It follows by Proposition

5.53 that U(G/H) has a Borel basis which is a contradiction. Indeed, consider
the map :

f : F(G)→ F(G/H), E 7→ q(E)

Note that since q was assumed to be a closed map, f is a well-defined Borel
map and moreover, since B was assumed to be Σ1

1, it follows that B̃ is Σ1
1.16 It

remains to show that B̃ is a pre-basis for U(G/H) :
(i) Each q(B) ∈ U(G/H) : by Corollary 5.21, q(B) ∈ U(G/H) if and only
if q−1(q(B)) ∈ U(G). Note that q−1(q(B)) =

⋃
h∈H hB and that since each

B ∈ U(G) it follows from Proposition 5.55 that hB ∈ U(G) for each h ∈ H.
Since q was assumed to be closed, q−1(q(B)) is closed and thus, since we assume
that H is countable, it follows from Theorem 5.31 that q−1(q(B)) is a U-set, as
required.
(ii) We now check that U(G/H) = B̃σ : let E ∈ U(G/H) so that by Corollary
5.21, q−1(E) ∈ U(G). Since B is a pre-basis it follows that q−1(E) ⊆

⋃
nBn for

some {Bn} ⊆ B. Since q is surjective, q(q−1(E)) = E ⊆
⋃
n q(Bn) and we are

done.

Example 5.57. Theorem 5.56 and Theorem 5.51 imply that, for instance,
U(G×D) - where G is any compact non-discrete second countable abelian group
and D any non-abelian compact countable group - does not have a Borel basis
and thus, is Π1

1-complete. Indeed, recall that for general topological groups,
G/H is discrete if and only if H ⊆ G is open and thus, one considers the
commutator [G×D,G×D] as the subgroup H.

16If X,Y are Polish and f : X → Y is continuous then F 7→ f(F ) is a Borel map from
F(X) to F(Y ) (cf. Exercise 12.11 in [70]).
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Now let G be a locally compact group and consider H ⊆ G to be an open
subgroup, so that one can consider the (non-zero) Haar measure on H induced
by the Haar measure on G. We denote by f◦ the trivial extension from H to G
of a function defined on H. It follows that given T ∈ V N(G) and f ∈ L2(H), if
we define T |H(f) := T (f◦)|H then T |H : f 7→ T |H(f) is an element of V N(H).
Furthermore, we define the restriction map r : u 7→ u|H , for u ∈ A(G).

Proposition 5.58. Let H be an open subgroup of a locally compact group G.
Then :

(i) The map φ : u 7→ u◦ is an isometric isomorphism of A(H) into A(G) and
the map T 7→ T |H is its the adjoint map φ∗. Moreover :

φ∗(V N(G)) = V N(H) and φ∗(C∗r (G)) = C∗r (H)

(ii) The restriction map r maps A(G) onto A(H) and its adjoint map r∗ is an
isomorphism onto its image such that r∗(C∗r (H)) ⊆ C∗r (G)

Proof. The reader can find a proof in [41] (Proposition 2.4.1).

Theorem 5.59. Let G be a locally compact group and H ⊆ G be an open
subgroup.17 Then :

(i) If E ∈ U(G), then E ∩H ∈ U(H).

(ii) If E ∈ U(H), then E ∈ U(G).

Proof. (i) Suppose that E ∩ H is not a U-set of H and thus, there is some
T ∈ C∗r (H) ∩ J(E ∩H)⊥ such that T 6= 0. By Proposition 5.58, r∗(T ) 6= 0 is
an element of C∗r (G). Moreover, r∗(T ) ∈ J(E)⊥. Indeed, let u ∈ J(E) so that
u|H ∈ J(E ∩H) and 〈T, u|H〉 = 〈r∗(T ), u〉 = 0. Thus, E is not a U -set of G.
(ii) Suppose that E is not a U-set of G and let T ∈ C∗r (G)∩J(E)⊥ such that T 6=
0. By Proposition 5.58, T |H ∈ C∗r (H). We note that if h ∈ supp(T ) ⊆ E ⊆ H,
then h ∈ supp(T |H) and since T 6= 0, it follows that T |H 6= 0. Indeed, suppose
towards a contradiction that there is some u ∈ A(H) such that u(h) 6= 0 and
that u.T |H = 0. Then, 〈T |H , uv〉 = 0 for all v ∈ A(H) and thus, 〈T, u◦w〉 = 0 for
all w ∈ A(G). Consequently, u◦.T = 0 which is impossible since u◦(h) 6= 0.

Theorem 5.60. Let G be a locally compact amenable group and H be an open
subgroup such that U(H) does not have a Borel basis. Then, U(G) does not have
a Borel basis and if G is also compact, then U(G) is Π1

1-complete.

Proof. Suppose that B is a Borel basis for U(G). By Proposition 5.53 it is
enough to show that B̃ = {B ∩ H : B ∈ B} is a Σ1

1 pre-basis for U(H). Note
that B̃ is Σ1

1 since H is a fixed closed subset of G. Furthermore, and since H is
open, B̃ is indeed a pre-basis :
(i) By Theorem 5.59, B̃ ⊆ U(H).
(ii) Let E be a U -set of H. By Theorem 5.59, E is also a U-set of G and
thus, E ⊆

⋃
nBn for {Bn} ⊆ B. It is then enough to note that E = E ∩H ⊆⋃

nBn ∩H and we conclude that U(H) = B̃σ.
17Recall that an open subgroup is also closed.

76



Example 5.61. Recall that if G is a topological group, then the identity com-
ponent G0 is open if and only if G is locally connected. In particular, this holds
for any Lie group G. Furthermore, if G is a compact, nilpotent Lie group then
G0 is an abelian normal subgroup. Hence, it follows from Theorem 5.60 that
U(G) does not have a Borel basis (and in particular is Π1

1-complete) if G is a
compact, nilpotent Lie group such that G0 is not discrete.

Finally, we prove a sufficient condition for the non existence of a Borel basis for
U(G) whenever G is a product of a certain form. We follow closely the proof
that U(T) does not have a Borel basis as given in [47], [17] and [46].

Henceforth, until the end of this subsection, we consider G = G1 × ... × Gn
such that each factor Gi is a compact and second countable group verifying the
following properties :

(1) For every i ∈ {1, ..., n} there is a closed set Ei ⊆ Gi such that Ei /∈ U(Gi)
loc

and a Gδ-set Fi ⊆ Ei, dense in Ei and such that Fi ∈ U(Gi)
int.

(2) There is some N ∈ {1, ..., n} such that for and every M -set E ⊆ GN , then
U(GN ) ∩ F(E) is not Borel.

We note that G is compact and consequently, U(G) is calibrated :

Proposition 5.62. Let G be a Polish amenable group, not necessarily abelian.
Then, the coanalytic σ-ideal U(G) is calibrated.

Proof. For the sake of readability we divide the proof in three steps :

Step 1 : Let Z ⊆ B(G) be a convex subset and for S ∈ C∗r (G) define

Z · S = {u · S : u ∈ Z}. Then, Z
w∗ · S ⊆ Z · S. Indeed, suppose that

Z · S ⊆ C∗r (G) so that Z · S is a closed convex subset of C∗r (G), the pred-
ual of B(G). Let T ∈ C∗r (G) \ Z · S. By a version of Hahn-Banach Theorem18

there is some v ∈ B(G) such that :

<(〈T, v〉) > s := sup{<(〈u · S, T 〉) : u ∈ Z}

Now {u ∈ B(G) : <(〈v, u·S〉) ≤ s} is w∗-closed subset of B(G) containing Z and

thus, Z
w∗

. Hence, T /∈ Zw
∗

·S as long as we check that Z ·S ⊆ C∗r (G). Indeed,
for any u ∈ B(G) and T = λG(µ) with µ ∈M(G) one has that u · T = λG(uµ)
(cf. [41], Rem. 2.5.2). Consequently, Φu : V N(G)→ V N(G) given by T 7→ u ·T
is a bounded map such that Φu(λG(Cc(G))) ⊆ C∗r (G) from where it follows that
Φu(C∗r (G)) ⊆ C∗r (G) as we wanted.

Step 2 : Let S ∈ C∗r (G), E ∈ U(G) and ε > 0. Then, there is some T ∈ C∗r (G)
such that ||T −S|| < ε and supp(T ) ⊆ supp(S)\E. Indeed, if E is a U-set, then

18Let C be a non-empty closed convex subset of a Banach space X and let x0 ∈ X \ C.
Then, there is some x∗ ∈ X∗ such that supx∈C <(〈x, x∗〉) < <(〈x0, x∗〉).
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J(E)
w∗

= B(G) and consequently, applying Step 1 to Z = J(E), we conclude
that S ∈ J(E) · S. Hence, there is some u ∈ J(E) such that by Proposition 5.54
T := u · S has the required properties.

Step 3 : Let {En} ⊆ U(G) and E ∈ F(G) such that F(E \
⋃
nEn) ⊆

U(G). We want to prove that E ∈ U(G). Suppose not, so that there is
some S ∈ J(E)⊥ ∩ C∗r (G) such that S 6= 0. Without loss of generality, as-
sume ||S|| = 1. Appealing to Step 2, one defines by induction (starting with
S0 = S) a sequence {Sn} ⊆ C∗r (G) such that ||Sn+1 − Sn|| ≤ 2−(n+2) and
supp(Sn+1) ⊆ supp(Sn) \ En. We let T := limn Sn and note that by construc-
tion, T 6= 0 and supp(T ) ⊆ E\

⋃
nEn. However, this contradicts the assumption

that E \
⋃
nEn ∈ U int and we conclude that U(G) is indeed calibrated.

In particular G = Tn is of this form. Indeed Propositions 5.48 and 5.50 imply
that the required conditions hold. We note that the content which follows,
provides an alternative proof of the inexistence of Borel basis for U(Tn) (and
consequently for any G ≈ Tn) which in particular only relies on the existence of
Helson sets of multiplicity for T (cf. [17] and [43]) - in order to verify property
(1) for the torus. For a proof of property (2) for the case Gi = T, the reader can
find a rank-theoretic argument in [47] (Theorem VII.2.2) (cf. Remark 5.49).

Proposition 5.63. There is a closed set E ⊆ G such that E /∈ U(G)loc and a
Gδ-set F ⊆ E, dense in E and such that F ∈ U(G)int.

Proof. For each i, let Fi ⊆ Ei ⊆ Gi be as in property (1) and consider :

E :=

n∏
i=1

Ei ⊆ G and F :=

n∏
i=1

Fi ⊆ E

Note that E is a closed set, F is a Gδ-set and that since F = F1 × ...Fn = E,
then F is dense in E. In order to check that E /∈ U(G)loc consider an open set
W of G such that W ∩ E 6= ∅. Assume, without loss of generality, that W =
W1× ...×Wn, with eachWi and open set of Gi. By choice of Ei, it follows that
Wi ∩ Ei /∈ U(Gi) for each i and by Corollary 5.17, L :=

∏n
i=1Wi ∩ Ei /∈ U(G).

It suffices to note that L ⊆ W ∩ E and we can conclude that W ∩ E /∈ U(G).
In order to check that F ∈ U(G)int note that by property (1) if C ⊆ F is any
closed set, then Ci := πi(C) ∈ F(Gi). By choice of Fi, each Ci ∈ U(Gi) and by
Corollary 5.17,

∏n
i=1 Ci ∈ U(G). Since C ⊆

∏n
i=1 Ci, we conclude that C is a

U -set and we’re done.

Theorem 5.64. Let E ∈ M(G) be of the form E =
∏n
i=1Ei. Then, U(G) ∩

F(E) is not Borel.

Proof. Let N be as in property (2) and without loss of generality, let N = 1.
Consider the following function after fixing E = E1 × ...× En :

ϕ : F(G1)→ F(G) such that F 7→ F × E2 × ...× En
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Since this is a well-defined Borel map it suffices to verify that ϕ−1(U(G) ∩
F(E)) = U(G1) ∩ F(E1), as it follows by Corollary 5.17 that each Ei is a M -
set. Let F ∈ U(G1) ∩ F(E1) so that ϕ(F ) ∈ F(E). It follows from Corollary
5.17 that ϕ(F ) ∈ U(G). Conversely, either F is a M -set of G1 in which case
it also follows from Corollary 5.17 that ϕ(F ) /∈ U(G) or F ( E1 in which case
ϕ(F ) /∈ F(E).

We will need a modified version of Theorem 3.55 - which we shall prove in
Theorem 5.66. Its proof relies on the following important result :

Theorem 5.65. Let X be a compact metric space and I be a σ-ideal of F(X).
Assume that I is calibrated and has a basis B such that for every non-empty
open set V ⊆ X there is some K ⊆ V such that K ∈ I \ B. Then, if A ⊆ X has
the Baire property and K(A) ⊆ I, then A is meager.

Proof. The reader can find a proof in [46] (Theorem 23.2).

Theorem 5.66. Let X be a compact metric space of the form X = X1 × X2

and I be a σ-ideal of K(X). Assume that :

(i) I is calibrated

(ii) I admits a basis B which is non-trivial on each closed set L /∈ I of the
form L = C1 × C2

Then, I has the covering property.

Proof. We prove that if there is some analytic set A ⊆ X which cannot be
covered by countably many elements of I, then there is some closed K ⊆ A
such that K /∈ I. Note that since A is Σ1

1, there is a Gδ-set G ⊆ X × C such
that A = πX(G). Consider the following set :

G̃ = G\
⋃
{V ⊆ X×C : V is open and πX(V ∩G) can be countably covered in I}

Since we assumed that such A exists, it is clear that G̃ 6= ∅ and thus F = G̃ is
a non-empty compact. We now define the following σ-ideal J on K(F ) :

K ∈ J ⇔ πX(K) ∈ I

Suppose that J verifies the conditions of Theorem 5.65 and notice that G̃ is
not meager, by the Baire Category Theorem. Hence, it will follow that there
is some closed set L ⊆ G̃ such that L /∈ J , i.e. K := πX(L) ∈ K(A) \ I and
we are done. Thus, it suffices to show that the hypothesis of Theorem 5.65 hold :

(i) J is calibrated : Let K ∈ K(F ), {Kn} ⊆ J and K(K \
⋃
nKn) ⊆ J . Suppose,

towards a contradiction, that K /∈ J and thus πX(K) /∈ I. Note that since each
Kn ∈ J , then πX(Kn) ∈ I. Hence, since I is calibrated, it follows that there
is a compact L ⊆ πX(K) \

⋃
n πX(Kn) such that L /∈ I. But this implies that

T := K ∩ (L× C) ⊆ K \
⋃
nKn is such that T /∈ J , which is a contradiction.
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(ii) Consider D = {K ∈ K(F ) : πX(K) ∈ B} and note that D is a basis
for J . Now consider any open set V which intersects F . We shall prove that
J ∩K(V ∩ F ) 6= D∩K(V ∩ F ) and thus conclude that J ∩K(U) 6= D∩K(U) for
all non-empty open sets U in F establishing that D is a non-trivial basis. So let’s
fix an open set V which intersects F . Since X and C are metric, one can find
another open setW intersecting F and such that : πX(W ∩ F ) ⊆ πX1(W ∩ F )×
πX2(W ∩ F ) ⊆ πX(V ∩ F ). By definition of G̃, πX(W ∩ G̃) can’t be countably
covered by elements in I, otherwise πX(W∩G) can be so covered which implies
that W ∩ G̃ = ∅, contradicting the density of G̃ in F . Hence, πX(W ∩ F ) /∈ I.
Since I is an ideal, L := πX1

(W ∩ F ) × πX2
(W ∩ F ) /∈ I. By condition (ii)

in our hypothesis, there is some K ∈ K(L) such that K ∈ I \ B. By com-
pactness, πX(V ∩ F ) = πX(V ∩ F ) and thus, considering C := (K × C) ∩ V ∩ F
one has that πX(C) = K and thus, C /∈ D and C ∈ J . Furthermore, since
K ⊆ L ⊆ πX(V ∩ F ), we have that C ∈ K(V ∩ F ).

Theorem 5.67. The σ-ideal U(G) ⊆ F(G) has no Borel basis.

Proof. Suppose, by contradiction, that there is a Borel basis for U(G). Since
U(G) is calibrated it follows from Theorem 5.64 and Theorem 5.66 that U(G)
has the covering property. But this is impossible by Theorem 5.63, in an entirely
analogous way to the argument given in the proof of Proposition 5.50.

5.3.3 Borel bases : U0-sets

A substantial structural difference between U(T) and U0(T) was established in
[17] : while the former does not have a Borel basis, the latter does. In turn, this
result synthesises in itself important cornerstone moments of the classic theory
of sets of uniqueness. As such, and for the sake of completeness, we include in
this final subsection an extended comment - omitting most of the proofs - on the
issue. We mainly follow [56], where the topic is treated with greater generality.
For a comprehensive source regarding the existence of Borel bases for U0(T),
the reader is referred to [47].

Let X be a locally compact and second countable space and A be a regular
Banach algebra of functions in Cb(X). For an element of S ∈ A∗, its support
supp(S) is defined to be the smallest closed F ⊆ X with the property that for
each f ∈ A with compact support disjoint from F , then 〈S, f〉 = 0. This is
reminiscent of the definition of supp(T ) whenever T ∈ V N(G) = A(G)∗.
For elements ϕ ∈ A and S ∈ A∗ we define S.ϕ ∈ A∗ via the relation :

〈S.ϕ, g〉 = 〈S, ϕ.g〉, for every g ∈ A

Henceforth we fix some P ⊆ A witnessing the regularity of A and we say that
a subset B ⊆ A∗ is stable under P -multiplication if for every S ∈ B and ϕ ∈ P
we have that S.ϕ ∈ B. Morever, if E ⊆ X is closed :

B(E) := {S ∈ B : supp(S) ⊆ E} and IB := {E ∈ F(X) : B(E) = {0}}
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Proposition 5.68. If B ⊆ A∗ is a (norm) closed convex cone stable under
P -multiplication, then IB is a σ-ideal of F(X).

Proof. The reader can find a proof in [56] (Proposition 1.1).

LetG be a locally compact abelian second countable and non-discrete group. We
extend the terminology previously introduced when G = T and define PM(G) -
the space of pseudomeasures of G - to be the dual of A(G). Similarly, PF (G) -
the space of pseudofunctions of G - is defined to be the set of those pseudomea-
sures S such that Ŝ ∈ C0(Ĝ), where Ĝ is the dual group of G.

Remark 5.69. Let G be a locally compact abelian group. It follows by Propo-
sition 5.68, setting A = P = A(G) and B = PF that U(G) is a σ-ideal. If
instead we fix B = M(G) ∩ PF , we conclude that U0(G) is a σ-ideal.

Following the notation in [56], henceforth E is a non-empty compact metrizable
space and M+(E) ⊆M(E) is the subset of positive measures.

Definition 5.70. A B ⊆ M+(E) is called a band if it is a closed convex cone
such that whenever µ ≤ ν and ν ∈ B, then µ ∈ B. Furthermore, we say that B
is a band of type I if B is a band and there is a locally compact second countable
space Y and a continuous function θ : Y → C(E) such that θ(Y ) is bounded
and B = {µ ∈M+(E) : µ ◦ θ ∈ C0(Y )}, with ◦ referring to duality.

Example 5.71. Let G be a locally compact abelian second countable group
and E ⊆ G be a compact subset. Then, it is well known that the set B of
positive Rajchman measures supported by E is a band of type I (cf. [29]).

For a band B of type I and µ ∈M+(E), let µ̃ := µ◦θ and R(µ) = limy→∞|µ̃(y)|.
Furthermore, we define the following set :

I ′B = {F ∈ K(E) : ∃c > 0∀µ ∈ P (F ) : R(µ) ≥ c}

where P (F ) denotes the set of probability measures supported by F .

Remark 5.72. If B is the set of positive Rajchman measures supported by E,
I ′B coincides with the set U ′0 as defined in [47].

Theorem 5.73. If B is a band of type I, then I ′B is a basis for IB.

Proof. The reader can find a proof in [56] (Theoreme 3.1).

Corollary 5.74. Let G be a compact abelian second countable group. Then,
U ′0(G) is a Borel basis for U0(G).

Proof. Clearly, U ′0(G) is Borel and thus, the conclusion follows immediately from
Theorem 5.73 and Example 5.71.

Theorem 5.75. Let G be a compact abelian second countable group which is
non discrete. Then, U0(G) has the covering property.
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Proof. Firstly, note that U0(G) is calibrated. It is known that given any E ∈
M0(G), then U0(G) ∩ F(E) is Π1

1-complete (cf. [56], Corollaire 3.4). Since by
Corollary 5.74 U0(G) has a Borel basis, the conclusion follows from Theorem
3.55.

Finally, we can provide a rigorous justification of something claimed in the
beginning of the section for sets of uniqueness (not necessarily closed) of T :

Theorem 5.76. Let A ⊆ T be a set of extended uniqueness with the BP. Then,
A is meager. In particular, all analytic sets of uniqueness of T are meager.

Proof. For the sake of readability we divide the proof in 2 steps :

Step 1 : First, note that it is enough to prove that every analytic set of extended
uniqueness A ⊆ T is meager. Indeed, if this is the case, let Ã ⊆ T be any set of
extended uniqueness with the BP. Either Ã is meager or comeager in some open
set V and thus, contains a Gδ set G which is dense in V. But this is impossible
since G is analytic and a meager set of extended uniqueness. Accordingly, we fix
an analytic set of extended uniqueness A ⊆ T. By Theorem 5.75, U0(T) has the
covering property and thus, it suffices to prove that all closed subsets of A are
sets of extended uniqueness. In order to do so, we prove that any Rajchman mea-
sure µ is such that µ(A) = 0. Suppose, towards a contradiction, that this is not
the case. By Theorem 3.31, A is measurable and consequently there is a closed
set F ⊆ A with µ(F ) > 0. We define ν(E) := µ(E ∩ F ) for all µ-measurable
subsets E and prove in Step 2 that ν̂(n)→ 0. It follows from Theorem 5-II.3 in
[47] that

∑
ν̂(n)einx = 0 for all x /∈ F and thus, for all x /∈ A. However, since

µ(F ) > 0 this contradicts the assumption that A is a set of extended uniqueness.

Step 2 : For every ε > 0 there is a trigonometric polynomial P (x) =
∑N
k=−N cke

ikx

such that : ∫
|χF − P |dµ < ε

Now let dn :=
∫
P (t)e−intdµ and note that |ν̂(n)−dn| = |

∫
(χF (t)−P (t))e−intdµ|.

Hence, in order to prove that ν̂(n)→ 0, it is enough to prove that dn → 0. In-
deed, this is the case since :

dn =

∫
(

N∑
k=−N

cke
ikx)e−intdµ =

N∑
k=−N

ckµ̂(n− k)

and by assumption, µ is a Rajchman measure.

Example 5.77. As an application of Theorem 5.76 we provide an interesting
example of a set of restricted multiplicity which has measure zero (cf. Example
5.4). We follow the proof given in [47] of a result which had been proven by
Lyons in [53], providing a negative answer to an open question asked by Kahane
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and Salem. A sequence (xk) ⊆ [0, 2π] is said to be uniformly distributed if for
every interval I ⊆ [0, 2π] of length |I|, the following holds :

lim
N→∞

1

N
|{k ≤ N : xk ∈ I}| =

|I|
2π

A set P ⊆ [0, 2π] is called a W ∗-set if there is some increasing sequence of
positive integers (nk) such that for every x ∈ P the sequence (nkx) - considered
mod 2π - is not uniformly distributed. What Kahane and Salem asked was
whether or not it is the case that every W ∗-set is a set of uniqueness. Lyons
proved that the set of non-normal numbers (of base q ≥ 2) :

W ∗qk = {x ∈ [0, 2π] : (qkx mod 2π) is not uniformly distributed}

is a set of restricted multiplicity. Recall that a number is said to be normal if
it is normal for every base q ≥ 2. It is a classic result due to Borel (cf. [10])
that almost every real number is normal. Thus, W ∗qk provides an example of a

set of (restricted) multiplicity with measure zero. In order to establish this, we
consider the following set :

P = {x ∈ [0, 2π] : limN (| 1

N

n∑
k=1

eiq
kx|) = 1}

The fact that P ⊆ W ∗qk follows from Weyl’s criterion.19 It is then enough to
check that P is comeager since by Theorem 5.76 this implies that P is a set of
restricted multiplicity. Indeed, the complement of P is contained in the union
of the following closed sets :

Fk,r = {x ∈ [0, 2π] : ∀N ≥ k : | 1

N

N∑
k=1

eiq
kx| ≤ r}, for k ∈ N, r ∈ Q ∩ [0, 1)

Moreover, each Fk,r has empty interior. Otherwise, suppose that there is some
open interval V contained in some Fk,r. It follows that Fk,r would contain a point

x = 2mπ
k0

for some k0 and thus, eiq
kx = 1 for k ≥ k0 which is a contradiction.

6 Point spectrum

This section contains a few results concerning the point spectrum of linear
bounded operators acting on separable Banach spaces. Despite its indepen-
dence from previous sections, we decide to include it due to the nature of this
work. We recall that, given a Banach space X and a linear bounded operator
T ∈ L(X), its point spectrum is defined as σp(T ) = {λ ∈ C : ker(T−λ1) 6= {0}}.

19A sequence (xk) is uniformly distributed if and only if for all non-zero m ∈ Z, then

limN ( 1
N

∑N
k=1 e

imxk ) = 0.
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6.1 A characterization of reflexivity

In this subsection we provide a characterization of Banach spaces with uncon-
ditional basis in terms of the complexity of operators acting on their closed
subspaces. We start with the following observation (cf. [64]) :

Proposition 6.1. Let X be a separable Banach space and T ∈ L(X). Then,
the set σp(T ) ⊆ C is analytic.

Proof. Let W = {x ∈ X : ||x|| = 1 and ∃λ(x) ∈ C : T (x) = λ(x)x} and consider
the function λ : W → C prescribed by x 7→ λ(x). We note that λ is well-defined
and moreover, λ(W ) = σp(T ). Hence, it suffices to prove that W is closed and λ
is continuous. Suppose that (xn) ⊆W is such that xn → x. Since T is bounded,
note that:

|λ(xn)| = ||T (xn)||
||xn||

→ ||T (x)||
||x||

<∞

and thus, there is a convergent subsequence λ(xnk) → w from where it follows
that T (xnk)→ T (x) = wx and thus, W is closed. Moreover, λ is continuous.

Recall that a Banach space X is said to be reflexive if the following map is
surjective :

J : X → (X∗)∗, such that x 7→ Jx(f) := f(x)

Whenever X is reflexive, the statement of Proposition 6.1 can be sharpened :

Theorem 6.2. Let X be a reflexive separable Banach space and T ∈ L(X).
Then, σp(T ) is Borel.

Proof. The reader can find a proof in [64].

Recall that a (Schauder) basis (ei) for a Banach space X is a sequence such that
for every element x ∈ X there is an unique sequence of scalars (αi) for which∑
αiei converges to x in norm. Evidently, every Banach space with a basis is

separable.20 To each element ei we associate a functional e∗i such that for every
x ∈ X one has that x =

∑
e∗i (x)ei.

Definition 6.3. Let X be a Banach space with a basis (ei). Then :

(a) (ei) is shrinking if (e∗i ) is a basis for X∗.

(b) (ei) is boundedly complete if whenever (αi) is a sequence of scalars such
that supn ||

∑n
i=1 αiei|| <∞, then

∑
αiei converges in norm.

(c) (ei) is an unconditional basis if the basis expansion for each x ∈ X converges
unconditionally. Otherwise, (ei) is said to be a conditional basis.

Theorem 6.4. Let (ei) be a basis for X. Then, X is reflexive iff (ei) is both
shrinking and boundedly complete.

20The converse is false, as proven by P. Enflo providing a negative answer to Problem 153
in the Scottish Book.
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Proof. The reader can find a proof in [37].

The next result concerns Banach spaces with an unconditional basis :

Theorem 6.5. Let (ei) be an unconditional basis for X. Then, the following
hold :

(i) (ei) is boundedly complete iff X has no complemented subspace isomorphic
to c0.

(ii) (ei) is shrinking iff X has no complemented subspace isomorphic to `1.

Proof. The reader can find a proof in [52].

Remark 6.6. It is known that every separable infinite dimensional Banach
space with a basis has a conditional basis (cf. [65]) and every infinite dimensional
Banach space contains an infinite dimensional subspace which either has an
unconditional basis or is hereditarily indecomposable (cf. [31]). In the case when
X is reflexive, it is known that every reflexive Banach space with unconditional
basis is isomorphic to a complemented subspace of a reflexive Banach space with
symmetric basis (cf. [79]).

Theorem 6.7. Let S ⊆ C be a bounded analytic set. Then, there is some
T ∈ L(c0) such that σp(T ) = S.

Proof. The reader can find a proof in [44].

An immediate consequence of Theorem 6.7 is the following :

Corollary 6.8. Let X be a Banach space which contains a closed subspace Y
isomorphic to c0. Then, there is some T ∈ L(Y ) with non Borel σp(T ).

Proof. By Theorem 6.7, one can choose an operator T ∈ L(c0) such that its
point spectrum σp(T ) is not Borel. Let S : Y → c0 be an isomorphism and
consider R = S−1TS ∈ L(Y ). Then, note that σp(R) = σp(T ) : indeed,
suppose that λ ∈ σp(T ) so that there is some z ∈ c0 \ {0} such that Tz = λz.
As S is bijective, there is an unique y ∈ Y \ {0} such that S(y) = z. Since :

R(y) = S−1(T (S(y))) = S−1(Tz) = S−1(λz) = λS−1(z) = λy

we conclude that λ ∈ σp(R). Conversely, let λ ∈ σp(R) so that there is some
y ∈ Y \ {0} such that Ry = λy. Consider z = S(y) ∈ c0 \ {0} and note that :

R(y) = S−1(T (S(y))) = S−1(Tz) = λy ⇒ S(S−1(Tz)) = S(λy)⇒ Tz = λz

from where we conclude that λ ∈ σp(T ). It follows that σp(T ) = σp(R).

In order to establish a characterization of reflexivity for Banach spaces with
unconditional basis, we need a final observation. For the sake of completeness,
we state the result we need with its converse as well :

85



Theorem 6.9. A Banach space X contains a complemented isomorphic copy
of `1 iff X∗ contains an isomorphic copy of c0.

Proof. The reader can find a proof in [6].

We conclude the subsection with the following characterization of reflexivity :

Theorem 6.10. Let X be a Banach space with unconditional basis. Then, X
is reflexive if and only if for every closed subspaces Y ⊆ X and Z ⊆ X∗ and
operators T ∈ L(Y ) and T ′ ∈ L(Z) it holds that σp(T ) and σp(T

′) are Borel
sets.

Proof. Suppose that X is reflexive and note that since it has a basis, then X
is separable. It follows that X∗ is also reflexive and separable and thus, each
closed subspaces Y and Z are also reflexive (and separable). By Theorem 6.2,
we are done.
Now suppose that X is not reflexive and let (ei) be an unconditional basis. By
Theorem 6.4, either (ei) is not shrinking or (ei) is not boundedly complete.
If (ei) is not shrinking, by Theorem 6.5 and Theorem 6.9, X∗ contains an
isomorphic copy of c0. If, on the other hand, (ei) is not boundedly complete,
then by Theorem 6.5 X contains an isomorphic copy of c0. Hence, we conclude
by Corollary 6.8 that there is either a closed subspace Y ⊆ X or Z ⊆ X∗ with
operators T ∈ L(Y ) with non Borel point spectrum or T ′ ∈ L(Z) with non
Borel point spectrum.

6.2 Subsets of Subs(X) associated with T

In this subsection, following some ideas in [64], we prove that if X is a reflexive
separable Banach space and T ∈ L(X), then the following is a Borel subset of
Subs(X) :

KT = {ker(T − λ1) : λ ∈ C}

For each T ∈ L(X), define a function ΓT : C→ F(X) \ {∅} prescribed by :

λ 7→ ker(T − λ1)

For fixed x ∈ X and p ≥ 0, define the following sets :

Apx := {λ ∈ C : d(x, ker(T − λ1)) ≤ p} and Âpx := Apx ∩ σp(T )

Proposition 6.11. Let X be a Banach space and T ∈ L(X) such that σp(T )
is Borel. Then, every Apx is analytic.

Proof. First, we introduce some notation. Let d be the metric induced by the
norm on X and let r, p > 0 and x ∈ X. Define :

Cxr,p = {y ∈ X : r ≤ ||y||, d(x, y) ≤ p and ∃λ(y) ∈ C : T (y) = λ(y)y}

As Cxr,p consists of eigenvectors, the map ϕxr,p : Cxr,p → C given by y 7→ λ(y) is
well-defined. For the sake of readability, we divide the proof in three steps :
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Step 1: First, we prove that ϕxr,p(C
x
r,p) ⊆ C is analytic. It is enough to prove

that Cxr,p ⊆ X is closed and that ϕxr,p is continuous. Let {yn} ⊆ Cxr,p such that
yn → y. Clearly, ||y|| ≥ r. Moreover, and since T is bounded :

|λ(yn)| = ||T (yn)||
||yn|| →

||T (y)||
||y|| <∞

Thus, {λ(yn)} is bounded and we can consider a convergent subsequence λ(ynk)→
λ. It follows that T (ynk) = λ(ynk)ynk → λy. Hence, T (y) = λy. Furthermore,
it is clear that d(x, y) ≤ p and thus, Cxr,p is closed. Finally, we note that in order
to prove that ϕxr,p is continuous, it is enough to prove that (λ(yn)) is Cauchy :

|λ(yn)−λ(yn+1)|||y|| ≤ |λ(yn)|||y−yn||+||T (yn)−T (yn+1)||+|λ(yn+1)|||yn+1−y||

Since T is continuous, yn → y and {λ(yn)} is bounded, it is clear that (λ(yn))
is Cauchy and we are done.

Step 2: We prove that for each p > 0, the sets Âpx are analytic. We divide
the analysis in two cases :
(i) Suppose that d(x, 0) ≤ p. Then, Âpx = σp(T ) which is Borel by assumption.

(ii) Suppose that d(x, 0) > p. By Step 1, it is enough to prove that for each
rm = 1

m , the following holds :

Âpx =
⋃
m

⋂
n
ϕx
rm,p+

1
n

(Cx
rm,p+

1
n

)

Indeed, let λ ∈ Âpx. Since d(x, 0) > p, there is some m such that for every n ≥ m
one can choose some yn 6= 0 such that yn ∈ ker(T − λ1) and d(x, yn) ≤ p + 1

n .
One can assume without loss of generality that there is some δ > 0 such that
||yn|| ≥ δ, for all n. Indeed, towards a contradiction, suppose that for every
δ > 0 there is some N such that for all k ≥ N then d(yk, 0) < δ. Then, yn → 0
which implies that d(x, 0) ≤ p. Hence, there is some δ > 0 such that for all
n, there is some k ≥ n such that d(yk, 0) ≥ δ. Thus, we can assume without
loss of generality that ||yn|| ≥ δ. If δ ≥ 1, then certainly λ ∈ ϕx

r1,p+
1
n

(Cx
r1,p+

1
n

)

for all n. Otherwise, let m be such that 1
m ≤ δ. In this case, it is clear that

λ ∈ ϕx
rm,p+

1
n

(Cx
rm,p+

1
n

) for all n.

Conversely, let λ ∈
⋂
n ϕ

x
r,p+ 1

n

(Cx
r,p+ 1

n

) for some r > 0. Then, for all n there is

some yn ∈ ker(T − λ1) such that ||yn|| ≥ r > 0 and d(x, yn) ≤ p + 1
n . Thus,

λ ∈ σp(T ) and d(x, ker(T − λ1)) ≤ p so that λ ∈ Âpx.

Step 3: (i) Let p > 0. By Step 2, Âpx is analytic and thus, it is enough to
prove that Apx ∩¬σp(T ) is analytic. Note that Apx ∩¬σp(T ) ⊆ ¬σp(T ) and that
if λ ∈ ¬σp(T ), then ker(T − λ1) = {0}. Either d(x, 0) ≤ p in which case λ ∈ Apx
and thus Apx ∩ ¬σp(T ) = ¬σp(T ) or d(x, 0) > p in which case Apx ∩ ¬σp(T ) = ∅.
Since σp(T ) is assumed to be Borel, in both cases we have that Apx ∩ ¬σp(T ) is
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analytic.
(ii) If p = 0, then either A0

0 = C or A0
x has at most one element, for x 6= 0. In

either case, A0
x is analytic.

For T ∈ L(X), K ⊆ X and M ≥ 0 we define the following set :

ΛT (K,M) = {λ ∈ C : ker(T − λ1) ∩K 6= ∅ and |λ| ≤M}

The importance of the sets ΛT (K,M) is due to the following result :

Proposition 6.12. Let T ∈ L(X), for X separable and Banach and let K ⊆ X
be weakly compact. Then, for any M ≥ 0, the set ΛT (K,M) is compact.

Proof. The reader can find a proof in [64].

Proposition 6.13. Let X be a separable and reflexive Banach space, with
T ∈ L(X). Then, Apx is Borel.

Proof. For any x ∈ X, let Kr
x = B(x, r). Since X is reflexive, it follows by

Proposition 6.12 that each ΛT (Kr
x,M) is compact and thus, it is enough to

prove that :

Apx =
⋃
M

⋂
n

ΛT (K
p+ 1

n
x ,M)

Let λ ∈ Apx such that |λ| ≤ M . Then, d(x, ker(T − λ1)) ≤ p and thus, for any

n, there is some yn ∈ ker(T − λ1) ∩Kp+ 1
n

x . Hence, λ ∈ ΛT (K
p+ 1

n
x ,M).

Conversely, suppose that for some M , λ ∈ ΛT (K
p+ 1

n
x ,M) for every n. If

d(x, ker(T −λ1)) > p, then there is some m such that for every y ∈ ker(T −λ1)

one has that d(x, y) ≥ p + 1
m . It follows that λ /∈ ΛT (K

p+ 1
m+1

x ,M), which
contradicts our assumption.

We now consider the measurability of ΓT (for a fixed T ∈ L(X)) with respect
to the σ-algebra generated by the Wijsman topology W on F(X) \ {∅}. The
reader who is unfamiliar with the terminology is referred to section 3.2.

Proposition 6.14. Let X be a separable and reflexive Banach space. Then,
ΓT is a measurable map.

Proof. SinceW is in particular second countable, it is enough to verify that the
pre-image of each subbasis element is a measurable subset of C. Thus, it suffices
to show that Γ−1

T (ϕ−1
x ((p, q))) is Borel for any x ∈ X and p, q ∈ Q+

0 . Consider :

Bpx = {λ ∈ C : d(x, ker(T−λ1)) > p} and Cqx = {λ ∈ C : d(x, ker(T−λ1)) < q}

Note that Bpx = ¬Axp and thus, by Proposition 6.13, is Borel. Moreover, note

that Cqx =
⋃
n
A
q− 1

n
x and thus, is Borel.

Theorem 6.15. Let X be a reflexive separable Banach space and fix some
T ∈ L(X). Let KT = {ker(T − λ1) : λ ∈ C}. Then, KT is a Borel set of
Subs(X). In particular, KT is an element of the Effros-Borel space of F(X).
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Proof. By Theorem 6.2, σp(T ) is Borel and by Proposition 6.14 the map ΓT
is measurable. Since ΓT |σp(T ) is injective, Theorem 3.27 implies that KT =
ΓT (σp(T )) ∪ {0} is a Borel subset of Subs(X) and F(X).

6.3 Jamison sequences

We finish this section with a brief overview on Jamison sequences, leading to
the proof of a stability result concerning certain perturbations on the set of
such sequences. Henceforth, X is a separable Banach space and whenever we
consider increasing sequences (nk) of positive integers we assume, without loss
of generality, that n1 = 1.

Definition 6.16. Let (nk) be an increasing sequence of positive integers and
T ∈ L(X). We say that T is partially power bounded with respect to (nk) if :

sup
k
||Tnk || <∞

An increasing sequence (nk) of positive integers is said to be a Jamison sequence
if whenever T ∈ L(X) is partially power bounded with respect to it, then the
unimodular point spectrum σp(T ) ∩ T of T is countable. The set of Jamison
sequences will be denoted by J .

Remark 6.17. Let X be a separable infinite dimensional Banach space. We
say that X is an universal Jamison space if whenever an increasing sequence of
positive integers (nk) is not a Jamison sequence, then there is some T ∈ L(X)
partially power bounded with respect to (nk) and with uncountable unimodu-
lar point spectrum. It was proven in [21] that `2(N) is an universal Jamison
space and more generally in [18] that separable Banach spaces which admit an
unconditional Schauder decomposition, are universal Jamison spaces.21

Example 6.18. It turns out that for a given increasing sequence (nk) of posi-
tive integers, the growth of {||T k||} is related with how small σp(T ) ∩ T is :

(a) The sequence (nk) = (k) is a Jamison sequence (cf. [38]). In order to
prove this, define the following equivalence relation in T :

z ∼ w if and only if ∃i, j ∈ N \ {0} such that ziwj = 1

It is a well known fact that if z and w are not equivalent, then the subset
{(zn, wn) : n ∈ N} is dense in T×T (cf. [67]). Moreover, suppose that T ∈ L(X)
is such that supk ||T k|| = M <∞ and that λ1, λ2 ∈ σp(T )∩T are not equivalent,
with norm one eigenvectors x1 and x2, respectively. Then :

||x1 − x2|| ≥
2

M + 1

21One says that X admits an unconditional Schauder decomposition if there is a sequence of
closed subspaces (Xn) of X such that Xn 6= {0} and that any element x ∈ X can be uniquely
written as an unconditionally convergent series x =

∑
xn, with xn ∈ Xn.
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Indeed, since λ1 and λ2 are not equivalent, we can pick a sequence (nk) such
that (λnk1 , λnk2 )→ (−1, 1). By triangular inequality, one has that :

||x1 − λnk1 x1|| ≤ ||x1 − x2||+ ||x2 − λnk2 x2||+ ||λnk2 x2 − λnk1 x1||

The left hand side converges to ||2x1|| = 2 and, on the other hand one has that
||x2 − λnk2 x2|| → 0 and that ||λnk2 x2 − λnk1 x1|| ≤ M ||x1 − x2||. Now, suppose
towards a contradiction that supk ||T k|| < ∞ and σp(T ) ∩ S1 is uncountable.
It follows that there is an uncountable and mutually disjoint collection of open
balls {B(x, 1

M+1 )}, which contradicts the separability of X. Hence, (k) is a
Jamison sequence.

(b) It follows from (a) that if σp(T ) ∩ T is uncountable, then supk ||T k|| = ∞.
It is thus natural to ask whether or not if σp(T ) ∩ T uncountable implies
limk ||T k|| = ∞. A negative answer to the former question was provided in
[69]. However, in [68] it is proven that under certain additional assumptions the
answer is positive :

(i) If σp(T ) ∩ T has positive Lebesgue measure or is of second category, then
limk ||T k|| =∞

(ii) If σp(T ) ∩ T is uncountable, then there is a subset Z ⊆ N of density zero
for which limk/∈Z ||T k|| =∞

In order to provide an useful characterization of Jamison sequences we introduce
a metric d(nk) on T associated with each increasing sequence (nk) of positive
integers :

d(nk)(λ, µ) := sup
k
|λnk − µnk |, for λ, µ ∈ T

Theorem 6.19. Let (nk) be an increasing sequence of positive integers. The
following are equivalent :

(i) The sequence (nk) is a Jamison sequence

(ii) For every uncountable subset K ⊆ T, the metric space (K, d(nk)) is non
separable

(iii) For every uncountable subset K ⊆ T there exists a positive ε such that K
contains an uncountable ε-separated family for the distance d(nk).

(iv) There exists a positive ε such that every uncountable subset K ⊆ T contains
an uncountable ε-separated family for the distance d(nk).

(v) There exists an ε > 0 such that any two distinct points λ, µ ∈ T are ε-
separated for the distance d(nk).

Proof. The reader can find a proof in [3].
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Remark 6.20. Let G be a Lie group and (nk) an increasing sequence of positive
integers. In [2] it is proven that (nk) is Jamison if and only if there exists an
open neighborhood U of the identity 1G such that if gnk ∈ U for every k, then
g = 1G (cf. Lemma 6.22, for the case when G = T).

For a fixed sequence (nk) and ε > 0, define the following subset of T :

Λ(nk)
ε := {λ ∈ T : sup

k
|λnk − 1| < ε}

Lemma 6.21. Let T ∈ L(X) and suppose that (nk) is an increasing sequence
of positive integers such that supk ||Tnk || < ∞. Then, given ε > 0, there is a
countable subset {µn} ⊂ T such that :

σp(T ) ∩ T ⊂
⋃
l

µlE

where
E =

⋂
k

{λ ∈ T : |λnk − 1| ≤ ε}

Proof. The reader can find a proof in [69].

Lemma 6.22. Let (nk) be an increasing sequence of positive integers and ε > 0.

Then, (nk) ∈ J if and only if Λ
(nk)
ε = {1}.

Proof. For the sake of readability we divide the proof in two steps :

Step 1 : We first prove that (nk) ∈ J if and only if there is some ε > 0

for which Λ
(nk)
ε is countable. Suppose that (nk) ∈ J and note that by Theorem

6.19(v) there is some ε such that Λ
(nk)
ε = {1}. Conversely, suppose that there

is some ε > 0 such that Λ
(nk)
ε is countable and let T ∈ L(X) be such that

supk ||Tnk || < ∞. Then, the set E in Lemma 6.21 (for instance for ε̃ = ε
2 ) is

countable and thus, σp(T )∩T is countable, from where it follows that (nk) is a
Jamison sequence.

Step 2 : If there is some ε > 0 such that Λ
(nk)
ε = {1}, then it follows im-

mediately from Step 1 that (nk) ∈ J . Conversely, suppose that each Λ
(nk)
ε has

at least two elements. If there is any δ > 0 such that Λ
(nk)
δ is countable, by

Step 1 we have that (nk) is a Jamison sequence. But this is impossible, since by

Theorem 6.19(v) there is some ε > 0 such that Λ
(nk)
ε has only one element.

Example 6.23. We provide a short list of examples of (non) Jamison sequences
(cf. [3]). In what follows, (nk) is an increasing sequence of positive integers :

(a) If supk{
nk+1

nk
} < ∞, then (nk) is Jamison. If furthermore nk|nk+1, then

(nk) is Jamison if and only if supk{
nk+1

nk
} <∞.
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(b) If limk
nk+1

nk
=∞, then (nk) is non Jamison.

(c) If (nk) is a set of positive upper density, then (nk) is Jamison. If (nk)
has density zero, it is not possible to conclude anything : (k2) is Jamison but
(k!) is not.

We finish the section with a few results on the stability of J under certain
perturbations. These criteria allow us to easily generate Jamison sequences.

Lemma 6.24. Suppose that (nk) is an increasing sequence of positive integers

and ε > 0. If (nk) /∈ J , then 1 ∈ Λ
(nk)
ε \ {1}.

Proof. Since (nk) is non Jamison, it follows by Lemma 6.22 that each Λ
(nk)
ε \

{1} is non empty. Moreover, since Λ
(nk)
ε ⊆ Λ

(nk)
δ for ε < δ, one has that

{Λ(nk)
ε \ {1}}ε>0 is a family of closed non empty subsets of S1 with the finite

intersection property. It follows by compactness of S1 that there is some z ∈⋂
ε>0 Λ

(nk)
ε \ {1}. Thus, one has that for each ε > 0, |z − 1| ≤ ε. Hence,

z = 1 ∈
⋂
ε>0 Λ

(nk)
ε \ {1}.

Theorem 6.25. Let (nk) and (tk) be increasing sequences of positive integers
such that supk |tk − nk| <∞. Then, (nk) ∈ J if and only if (tk) ∈ J .

Proof. Let supk |tk − nk| = M < ∞, fix some small ε > 0 and assume that

(nk) /∈ J . By Lemma 6.22 it is enough to prove that Λ
(tk)
ε 6= {1}. Since (nk)

is non Jamison, using Lemma 6.24 we can pick some z = eiθ such that z 6= 1,

z ∈ Λ
(nk)
ε
3

and with θ small enough so that Mθ
2π < ε

3 . Then, for any k :

|ztk − 1| ≤ |ztk − znk |+ |znk − 1| < 2ε

3
< ε

Hence, Λ
(tk)
ε 6= {1} and thus, (tk) is non Jamison.

Lemma 6.26. Let c be any positive integer and (nk) be an increasing sequence
of positive integers. Then, (nk) ∈ J if and only if (cnk) ∈ J .

Proof. Suppose that (cnk) is non Jamison and fix some ε > 0. We prove that

Λ
(nk)
ε 6= {1}, from where it follows that (nk) is non Jamison by Lemma 6.22.

By Lemma 6.24, there is some sequence (λn) ⊆ Λ
(cnk)
ε \ {1} such that λn →

1. We pick any element from this sequence, say λk := λ. Then, λ 6= 1 and

supk |λcnk−1| < ε. If λc 6= 1, then λc ∈ Λ
(nk)
ε \{1} and we are done. Otherwise,

suppose that λc = 1 and note that any other cth-root of unity µ is such that
|λ−µ| ≥ 2

c . Since (λn) is a Cauchy sequence, let µ = λm be such that |µ−λ| < 2
c .

It is clear that µc 6= 1 and since µ ∈ Λ
(cnk)
ε , it follows that µc ∈ Λ

(nk)
ε \ {1}.

Conversely, let (cnk) be a Jamison sequence and suppose that for some operator
T ∈ L(X) one has that supk ||Tnk || = M <∞. For any k :

||T cnk || ≤ c||Tnk || ≤ cM <∞
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Hence, supk ||T cnk || < ∞. By assumption, (cnk) ∈ J and thus σp(T ) ∩ T is
countable.

In fact, one can further generalize Proposition 6.26 as follows :

Proposition 6.27. Let (tk) and (nk) be increasing sequences of positive inte-
gers such that (tk) = (aknk), for some sequence (ak) of positive integers with
supk(ak) = A <∞. Then, (tk) ∈ J if and only if (nk) ∈ J .

Proof. Suppose that (tk) is non Jamison. Since supk(ak) = A one has that
ak ∈ {1, ..., A}. Without loss of generality, we can assume that for each j ≤ A
the subset Ij := {k ∈ N : ak = j} is either infinite or empty. Moreover, we will
see that it is enough to consider the case when each Ij 6= ∅. Fix any ε > 0 and

let P :=
∏A
i=1 i < ∞. Since (tk) is non Jamison, there is some λ ∈ Λ

(tk)
ε
P

such

that λ 6= 1. Note that for each j ≤ A one has that supk∈Ij |λ
jnk − 1| < ε

P . Our
strategy is to use Lemma 6.22 to prove that (Pnk) is non Jamison and then, by
Lemma 6.26 it follows that (nk) is also non Jamison. We can assume that for
any k there is some j ≤ A such that k ∈ Ij and thus :

|λPnk − 1| ≤ (

A∏
i 6=j

i)|λjnk − 1| < (

A∏
i 6=j

i)
ε

P
=
ε

j
< ε

Conversely, suppose that (tk) is Jamison. Suppose that T ∈ L(X) is such that
supk ||Tnk || = M <∞. Then :

||T tk || = ||T aknk || ≤ ||Tnk ||ak ≤MA <∞

By assumption, (tk) is Jamison and thus, σp(T ) ∩ T is countable.

It is convenient to introduce some notation : Given two increasing sequences
of positive integers (tk) and (nk), we define another sequence (rk) tk

nk

prescribed

by (with [.] denoting the closest integer function) :

rk := |tk − [
tk
nk

]nk|

Theorem 6.28. Let (tk) and (nk) be increasing sequences of positive integers
and suppose that (tk) is (non) Jamison. Then, if one of the following conditions
hold, (nk) is also (non) Jamison :

(i) supk( tknk ) <∞ and supk(rk) tk
nk

<∞

(ii) supk(nktk ) <∞ and supk(rk)nk
tk

<∞

Proof. Suppose that (i) holds. Since supk(rk) < ∞, it follows by Theorem
6.25 that [ tknk ]nk is non Jamison. Furthermore, since supk( tknk ) < ∞ it follows

by Proposition 6.27 that (nk) is non Jamison. Alternatively, suppose that (ii)
holds. Note that nk = [nktk ]tk ± rk for all k. Since supk(nktk ) < ∞, it follows

by Proposition 6.27 that ([nktk ]tk) is non Jamison and since supk(rk) < ∞, it

follows by Theorem 6.25 that (nk) is non Jamison.
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7 Appendix

Definition 7.1. Let (P,≤) be a partially ordered set and F ⊆ P . The subset
F is said to be a filter if :

(i) F 6= ∅

(ii) For every x, y ∈ F there is some z ∈ F such that z ≤ x and z ≤ y

(iii) Whenever x ∈ F and y ∈ P is such that x ≤ y, then y ∈ F

Definition 7.2. Let (P,≤) be a partially ordered set. A subset D ⊆ P is said
to be dense if for every element x ∈ P there is some y ∈ D such that y ≤ x.
Two elements x, y ∈ P are said to be incompatible if there is no element z ∈ P
such that z ≤ x and z ≤ y otherwise, they are said to be compatible. A subset
A ⊆ P is said to be an antichain if every distinct x, y ∈ A are incompatible. A
partially ordered set (P,≤) is said to be c.c.c. (or to have the countable chain
condition) if every antichain in P is countable.

Example 7.3. Let X be a topological space and consider :

P = ({V ⊆ X : V is non-empty open subset},≤)

with U ≤ V if and only if U ⊆ V. Clearly, P is c.c.c. if and only if there is no
uncountable family of pairwise disjoint non-empty open sets of X. Thus, if X
is separable it follows that P is c.c.c. It is worth to note that the converse is
false : if κ > 2ℵ0 , then 2κ is c.c.c. (cf. [49], Proposition 1.9) but not separable.

Definition 7.4. Let κ < 2ℵ0 be an infinite cardinal. Then, MA(κ) is the
following statement : if (P,≤) is a non-empty c.c.c. partial order and D is a
family of ≤ κ dense subsets of P , then there is a filter F ⊆ P(P ) such that for
every D ∈ D we have that D ∩ F 6= ∅.

The assumption κ < 2ℵ0 is justified by the following proposition :

Proposition 7.5. The statement MA(ℵ0) holds in ZFC, while the statement
MA(2ℵ0) does not.

Proof. Suppose that D = {Dn} is a family of dense subsets of (P,≤). We pick
d1 ∈ D1 and since D2 is dense, there is some d2 ∈ D2 such that d2 ≤ d1. We
define by induction a set S = {dn} such that dn ∈ Dn and dn+1 ≤ dn for
all n. In order to prove that MA(ℵ0) holds, it suffices to consider the filter
F = {x ∈ P : ∃n(dn ≤ x)}.
In order to verify that MA(2ℵ0) is inconsistent with ZFC, consider :

P = ({finite partial functions f : ω → 2},≤)

with f ≤ g if and only if f extends g. We note that f, g are compatible if they
both agree on the intersection of their domains and that since P is countable,
it is immediate that P is c.c.c. For each n ∈ ω and F ∈ 2ω, define :

An = {f ∈ P : n ∈ dom(f)} and BF = {f ∈ P : ∃n ∈ dom(f)(f(n) 6= F (n))}
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Set D = {An} ∪ {BF } and note that D is a collection of dense subsets of P
such that |D| = 2ℵ0 . Suppose that F is a filter on P and assume, towards a
contradiction, that F ∩ D 6= ∅ for every D ∈ D. Since F is a filter, for every
subset S ⊂ F there is an element fS which extends all elements in S. Choose
S = {F ∩D}D∈D and consider the element fS . Then, dom(fS) = ω but fS does
not coincide with any element in 2ω, which is a contradiction.

Remark 7.6. For evident reasons, one often assumes the negation of the Con-
tinuum Hypothesis while working under MA(κ). What may not be so evident
is the reason why we assume that (P,≤) is c.c.c., since this is not needed in
order to prove that MA(ℵ0) holds in ZFC (cf. Theorem 7.5). Indeed, if (P,≤)
is not c.c.c. then MA(ℵ1) may not hold : consider the following partial order :

P = ({finite partial functions f : ω → ω1},≤)

where f ≤ g if and only if f extends g. Clearly, P is not c.c.c. as {〈0, α〉}α∈ω1 is
an uncountable family of incompatible elements in P . For each α ∈ ω1 we define
Dα = {f ∈ P : α ∈ ran(f)} and note that D = {Dα}α∈ω1

is a family of dense
subsets of P . Suppose, towards a contradiction, that F is a filter on P such
that F ∩Dα 6= ∅ for every α ∈ ω1. Then, consider the element gS which extends
all elements in S = {F ∩Dα} and thus, ran(gS) = ω1 which is impossible.
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