31,311 research outputs found

    A New Family of Fault Tolerant Quantum Reed-Muller Codes

    Get PDF
    Fault tolerant quantum computation is a critical step in the development of practical quantum computers. Unfortunately, not every quantum error correcting code can be used for fault tolerant computation. Rengaswamy et. al. define CSS-T codes, which are CSS codes that admit the transversal application of the T gate, which is a key step in achieving fault tolerant computation. They then present a family of quantum Reed-Muller fault tolerant codes. Their family of codes admits a transversal T gate, but the asymptotic rate of the family is zero. We build on their work by reframing their CSS-T conditions using the concept of self-orthogonality. Using this framework, we define an alternative family of quantum Reed-Muller fault tolerant codes. Like the quantum Reed-Muller family found by Rengaswamy et. al., our family admits a transversal T gate, but also has a nonvanishing asymptotic rate. We prove three key results in our search for a Reed-Muller CSS-T family with a nonvanishing rate. First, we show an equivalence between a code containing a self-dual subcode and the dual of that code being self-orthogonal. This allows us to more easily determine if a pair of codes define a CSS-T code. Next, we show that if C1 and C2 are both Reed-Muller codes that form a CSS-T code, C1 must be self-orthogonal. This limits the rate of any family that is constructed solely from Reed-Muller codes. Lastly, we define a family of CSS-T codes by choosing C1 = RM(r, 2r + 1) and C2 = RM(0, 2r + 1) for some nonnegative integer r. We show that this family has an asymptotic rate of 1/2, and show that it is the only possible CSS-T family constructed only from Reed-Muller codes where C1 is self dual

    Asymptotic Bound on Binary Self-Orthogonal Codes

    Full text link
    We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the information rate R=1/2, by our constructive lower bound, the relative minimum distance \delta\approx 0.0595 (for GV bound, \delta\approx 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.Comment: 4 pages 1 figur

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Euclidean and Hermitian LCD MDS codes

    Full text link
    Linear codes with complementary duals (abbreviated LCD) are linear codes whose intersection with their dual is trivial. When they are binary, they play an important role in armoring implementations against side-channel attacks and fault injection attacks. Non-binary LCD codes in characteristic 2 can be transformed into binary LCD codes by expansion. On the other hand, being optimal codes, maximum distance separable codes (abbreviated MDS) have been of much interest from many researchers due to their theoretical significant and practical implications. However, little work has been done on LCD MDS codes. In particular, determining the existence of qq-ary [n,k][n,k] LCD MDS codes for various lengths nn and dimensions kk is a basic and interesting problem. In this paper, we firstly study the problem of the existence of qq-ary [n,k][n,k] LCD MDS codes and completely solve it for the Euclidean case. More specifically, we show that for q>3q>3 there exists a qq-ary [n,k][n,k] Euclidean LCD MDS code, where 0knq+10\le k \le n\le q+1, or, q=2mq=2^{m}, n=q+2n=q+2 and k=3orq1k= 3 \text{or} q-1. Secondly, we investigate several constructions of new Euclidean and Hermitian LCD MDS codes. Our main techniques in constructing Euclidean and Hermitian LCD MDS codes use some linear codes with small dimension or codimension, self-orthogonal codes and generalized Reed-Solomon codes

    Constructions of optimal LCD codes over large finite fields

    Full text link
    In this paper, we prove existence of optimal complementary dual codes (LCD codes) over large finite fields. We also give methods to generate orthogonal matrices over finite fields and then apply them to construct LCD codes. Construction methods include random sampling in the orthogonal group, code extension, matrix product codes and projection over a self-dual basis.Comment: This paper was presented in part at the International Conference on Coding, Cryptography and Related Topics April 7-10, 2017, Shandong, Chin
    corecore