5 research outputs found

    On LCD, self dual and isodual cyclic codes over finite chain rings

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICIn this paper, LCD cyclic, self dual and isodual codes over finite chain rings are investigated. It was proven recently that a non-free LCD cyclic code does not exist over finite chain rings. Based on algebraic number theory, we introduce necessary and sufficient conditions for which all free cyclic codes over a finite chain ring are LCD. We have also obtained conditions on the existence of non trivial self dual cyclic codes of any length when the nilpotency index of the maximal ideal of a finite chain ring is even. Further, several constructions of isodual codes are given based on the factorization of the polynomial x−1 over a finite chain ring

    The hull of two classical propagation rules and their applications

    Full text link
    Propagation rules are of great help in constructing good linear codes. Both Euclidean and Hermitian hulls of linear codes perform an important part in coding theory. In this paper, we consider these two aspects together and determine the dimensions of Euclidean and Hermitian hulls of two classical propagation rules, namely, the direct sum construction and the (u,u+v)(\mathbf{u},\mathbf{u+v})-construction. Some new criteria for resulting codes derived from these two propagation rules being self-dual, self-orthogonal or linear complement dual (LCD) codes are given. As applications, we construct some linear codes with prescribed hull dimensions and many new binary, ternary Euclidean formally self-dual (FSD) LCD codes, quaternary Hermitian FSD LCD codes and good quaternary Hermitian LCD codes which are optimal or have best or almost best known parameters according to Datebase at http://www.codetables.dehttp://www.codetables.de. Moreover, our methods contributes positively to improve the lower bounds on the minimum distance of known LCD codes.Comment: 16 pages, 5 table

    Group rings: Units and their applications in self-dual codes

    Get PDF
    The initial research presented in this thesis is the structure of the unit group of the group ring Cn x D6 over a field of characteristic 3 in terms of cyclic groups, specifically U(F3t(Cn x D6)). There are numerous applications of group rings, such as topology, geometry and algebraic K-theory, but more recently in coding theory. Following the initial work on establishing the unit group of a group ring, we take a closer look at the use of group rings in algebraic coding theory in order to construct self-dual and extremal self-dual codes. Using a well established isomorphism between a group ring and a ring of matrices, we construct certain self-dual and formally self-dual codes over a finite commutative Frobenius ring. There is an interesting relationships between the Automorphism group of the code produced and the underlying group in the group ring. Building on the theory, we describe all possible group algebras that can be used to construct the well-known binary extended Golay code. The double circulant construction is a well-known technique for constructing self-dual codes; combining this with the established isomorphism previously mentioned, we demonstrate a new technique for constructing self-dual codes. New theory states that under certain conditions, these self-dual codes correspond to unitary units in group rings. Currently, using methods discussed, we construct 10 new extremal self-dual codes of length 68. In the search for new extremal self-dual codes, we establish a new technique which considers a double bordered construction. There are certain conditions where this new technique will produce self-dual codes, which are given in the theoretical results. Applying this new construction, we construct numerous new codes to verify the theoretical results; 1 new extremal self-dual code of length 64, 18 new codes of length 68 and 12 new extremal self-dual codes of length 80. Using the well established isomorphism and the common four block construction, we consider a new technique in order to construct self-dual codes of length 68. There are certain conditions, stated in the theoretical results, which allow this construction to yield self-dual codes, and some interesting links between the group ring elements and the construction. From this technique, we construct 32 new extremal self-dual codes of length 68. Lastly, we consider a unique construction as a combination of block circulant matrices and quadratic circulant matrices. Here, we provide theory surrounding this construction and conditions for full effectiveness of the method. Finally, we present the 52 new self-dual codes that result from this method; 1 new self-dual code of length 66 and 51 new self-dual codes of length 68. Note that different weight enumerators are dependant on different values of β. In addition, for codes of length 68, the weight enumerator is also defined in terms of γ, and for codes of length 80, the weight enumerator is also de ned in terms of α

    Some new constructions of isodual and LCD codes over finite fields

    No full text
    corecore