220 research outputs found

    Interactive Learning-Based Realizability for Heyting Arithmetic with EM1

    Full text link
    We apply to the semantics of Arithmetic the idea of ``finite approximation'' used to provide computational interpretations of Herbrand's Theorem, and we interpret classical proofs as constructive proofs (with constructive rules for ,\vee, \exists) over a suitable structure \StructureN for the language of natural numbers and maps of G\"odel's system \SystemT. We introduce a new Realizability semantics we call ``Interactive learning-based Realizability'', for Heyting Arithmetic plus \EM_1 (Excluded middle axiom restricted to Σ10\Sigma^0_1 formulas). Individuals of \StructureN evolve with time, and realizers may ``interact'' with them, by influencing their evolution. We build our semantics over Avigad's fixed point result, but the same semantics may be defined over different constructive interpretations of classical arithmetic (Berardi and de' Liguoro use continuations). Our notion of realizability extends intuitionistic realizability and differs from it only in the atomic case: we interpret atomic realizers as ``learning agents''

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    The logic of interactive Turing reduction

    Full text link
    The paper gives a soundness and completeness proof for the implicative fragment of intuitionistic calculus with respect to the semantics of computability logic, which understands intuitionistic implication as interactive algorithmic reduction. This concept -- more precisely, the associated concept of reducibility -- is a generalization of Turing reducibility from the traditional, input/output sorts of problems to computational tasks of arbitrary degrees of interactivity. See http://www.cis.upenn.edu/~giorgi/cl.html for a comprehensive online source on computability logic

    The intuitionistic fragment of computability logic at the propositional level

    Get PDF
    This paper presents a soundness and completeness proof for propositional intuitionistic calculus with respect to the semantics of computability logic. The latter interprets formulas as interactive computational problems, formalized as games between a machine and its environment. Intuitionistic implication is understood as algorithmic reduction in the weakest possible -- and hence most natural -- sense, disjunction and conjunction as deterministic-choice combinations of problems (disjunction = machine's choice, conjunction = environment's choice), and "absurd" as a computational problem of universal strength. See http://www.cis.upenn.edu/~giorgi/cl.html for a comprehensive online source on computability logic

    Negation in context

    Get PDF
    The present essay includes six thematically connected papers on negation in the areas of the philosophy of logic, philosophical logic and metaphysics. Each of the chapters besides the first, which puts each the chapters to follow into context, highlights a central problem negation poses to a certain area of philosophy. Chapter 2 discusses the problem of logical revisionism and whether there is any room for genuine disagreement, and hence shared meaning, between the classicist and deviant's respective uses of 'not'. If there is not, revision is impossible. I argue that revision is indeed possible and provide an account of negation as contradictoriness according to which a number of alleged negations are declared genuine. Among them are the negations of FDE (First-Degree Entailment) and a wide family of other relevant logics, LP (Priest's dialetheic "Logic of Paradox"), Kleene weak and strong 3-valued logics with either "exclusion" or "choice" negation, and intuitionistic logic. Chapter 3 discusses the problem of furnishing intuitionistic logic with an empirical negation for adequately expressing claims of the form 'A is undecided at present' or 'A may never be decided' the latter of which has been argued to be intuitionistically inconsistent. Chapter 4 highlights the importance of various notions of consequence-as-s-preservation where s may be falsity (versus untruth), indeterminacy or some other semantic (or "algebraic") value, in formulating rationality constraints on speech acts and propositional attitudes such as rejection, denial and dubitability. Chapter 5 provides an account of the nature of truth values regarded as objects. It is argued that only truth exists as the maximal truthmaker. The consequences this has for semantics representationally construed are considered and it is argued that every logic, from classical to non-classical, is gappy. Moreover, a truthmaker theory is developed whereby only positive truths, an account of which is also developed therein, have truthmakers. Chapter 6 investigates the definability of negation as "absolute" impossibility, i.e. where the notion of necessity or possibility in question corresponds to the global modality. The modality is not readily definable in the usual Kripkean languages and so neither is impossibility taken in the broadest sense. The languages considered here include one with counterfactual operators and propositional quantification and another bimodal language with a modality and its complementary. Among the definability results we give some preservation and translation results as well

    Kolmogorov's Calculus of Problems and Its Legacy

    Full text link
    Kolmogorov's Calculus of Problems is an interpretation of Heyting's intuitionistic propositional calculus published by A.N. Kolmogorov in 1932. Unlike Heyting's intended interpretation of this calculus, Kolmogorov's interpretation does not comply with the philosophical principles of Mathematical Intuitionism. This philosophical difference between Kolmogorov and Heyting implies different treatments of problems and propositions: while in Heyting's view the difference between problems and propositions is merely linguistic, Kolmogorov keeps the two concepts apart and does not apply his calculus to propositions. I stress differences between Kolmogorov's and Heyting's interpretations and show how the two interpretations diverged during their development. In this context I reconstruct Kolmogorov's philosophical views on mathematics and analyse his original take on the Hilbert-Brouwer controversy. Finally, I overview some later works motivated by Kolmogorov's Calculus of Problems and propose a justification of Kolmogorov's distinction between problems and propositions in terms of Univalent Mathematics.Comment: 66 pages including Appendi

    Implicit and Explicit Stances in Logic

    Get PDF
    corecore