1,239 research outputs found

    Some inequalities for the Tutte polynomial

    Get PDF
    We prove that the Tutte polynomial of a coloopless paving matroid is convex along the portions of the line segments x+y=p lying in the positive quadrant. Every coloopless paving matroids is in the class of matroids which contain two disjoint bases or whose ground set is the union of two bases of M*. For this latter class we give a proof that T_M(a,a) <= max {T_M(2a,0), T_M(0,2a)} for a >= 2. We conjecture that T_M(1,1) <= max {T_M(2,0), T_M(0,2)} for the same class of matroids. We also prove this conjecture for some families of graphs and matroids.Comment: 17 page

    The algebra of flows in graphs

    Get PDF
    We define a contravariant functor K from the category of finite graphs and graph morphisms to the category of finitely generated graded abelian groups and homomorphisms. For a graph X, an abelian group B, and a nonnegative integer j, an element of Hom(K^j(X),B) is a coherent family of B-valued flows on the set of all graphs obtained by contracting some (j-1)-set of edges of X; in particular, Hom(K^1(X),R) is the familiar (real) ``cycle-space'' of X. We show that K(X) is torsion-free and that its Poincare polynomial is the specialization t^{n-k}T_X(1/t,1+t) of the Tutte polynomial of X (here X has n vertices and k components). Functoriality of K induces a functorial coalgebra structure on K(X); dualizing, for any ring B we obtain a functorial B-algebra structure on Hom(K(X),B). When B is commutative we present this algebra as a quotient of a divided power algebra, leading to some interesting inequalities on the coefficients of the above Poincare polynomial. We also provide a formula for the theta function of the lattice of integer-valued flows in X, and conclude with ten open problems.Comment: 31 pages, 1 figur

    Exact Results on Potts Model Partition Functions in a Generalized External Field and Weighted-Set Graph Colorings

    Full text link
    We present exact results on the partition function of the qq-state Potts model on various families of graphs GG in a generalized external magnetic field that favors or disfavors spin values in a subset Is={1,...,s}I_s = \{1,...,s\} of the total set of possible spin values, Z(G,q,s,v,w)Z(G,q,s,v,w), where vv and ww are temperature- and field-dependent Boltzmann variables. We remark on differences in thermodynamic behavior between our model with a generalized external magnetic field and the Potts model with a conventional magnetic field that favors or disfavors a single spin value. Exact results are also given for the interesting special case of the zero-temperature Potts antiferromagnet, corresponding to a set-weighted chromatic polynomial Ph(G,q,s,w)Ph(G,q,s,w) that counts the number of colorings of the vertices of GG subject to the condition that colors of adjacent vertices are different, with a weighting ww that favors or disfavors colors in the interval IsI_s. We derive powerful new upper and lower bounds on Z(G,q,s,v,w)Z(G,q,s,v,w) for the ferromagnetic case in terms of zero-field Potts partition functions with certain transformed arguments. We also prove general inequalities for Z(G,q,s,v,w)Z(G,q,s,v,w) on different families of tree graphs. As part of our analysis, we elucidate how the field-dependent Potts partition function and weighted-set chromatic polynomial distinguish, respectively, between Tutte-equivalent and chromatically equivalent pairs of graphs.Comment: 39 pages, 1 figur
    corecore