21,139 research outputs found

    A Special Class of Almost Disjoint Families

    Get PDF
    The collection of branches (maximal linearly ordered sets of nodes) of the tree <ωω{}^{<\omega}\omega (ordered by inclusion) forms an almost disjoint family (of sets of nodes). This family is not maximal -- for example, any level of the tree is almost disjoint from all of the branches. How many sets must be added to the family of branches to make it maximal? This question leads to a series of definitions and results: a set of nodes is {\it off-branch} if it is almost disjoint from every branch in the tree; an {\it off-branch family} is an almost disjoint family of off-branch sets; {\frak o}=\min\{|{\Cal O}|: {\Cal O} is a maximal off-branch family}\}. Results concerning o\frak o include: (in ZFC) ao{\frak a}\leq{\frak o}, and (consistent with ZFC) o\frak o is not equal to any of the standard small cardinal invariants b\frak b, a\frak a, d\frak d, or c=2ω{\frak c}=2^\omega. Most of these consistency results use standard forcing notions -- for example, Con(b=a<o=d=c)Con({\frak b}={\frak a}<{\frak o}={\frak d}={\frak c}) comes from starting with a model of ZFC+CHZFC+CH and adding ω2\omega_2-many Cohen reals. Many interesting open questions remain, though -- for example, Con(o<d)Con({\frak o}<{\frak d})

    Convergent expansions for Random Cluster Model with q>0 on infinite graphs

    Full text link
    In this paper we extend our previous results on the connectivity functions and pressure of the Random Cluster Model in the highly subcritical phase and in the highly supercritical phase, originally proved only on the cubic lattice Zd\Z^d, to a much wider class of infinite graphs. In particular, concerning the subcritical regime, we show that the connectivity functions are analytic and decay exponentially in any bounded degree graph. In the supercritical phase, we are able to prove the analyticity of finite connectivity functions in a smaller class of graphs, namely, bounded degree graphs with the so called minimal cut-set property and satisfying a (very mild) isoperimetric inequality. On the other hand we show that the large distances decay of finite connectivity in the supercritical regime can be polynomially slow depending on the topological structure of the graph. Analogous analyticity results are obtained for the pressure of the Random Cluster Model on an infinite graph, but with the further assumptions of amenability and quasi-transitivity of the graph.Comment: In this new version the introduction has been revised, some references have been added, and many typos have been corrected. 37 pages, to appear in Communications on Pure and Applied Analysi

    The realization problem for tail correlation functions

    Get PDF
    For a stochastic process {Xt}tT\{X_t\}_{t \in T} with identical one-dimensional margins and upper endpoint τup\tau_{\text{up}} its tail correlation function (TCF) is defined through χ(X)(s,t)=limττupP(Xs>τXt>τ)\chi^{(X)}(s,t) = \lim_{\tau \to \tau_{\text{up}}} P(X_s > \tau \,\mid\, X_t > \tau ). It is a popular bivariate summary measure that has been frequently used in the literature in order to assess tail dependence. In this article, we study its realization problem. We show that the set of all TCFs on T×TT \times T coincides with the set of TCFs stemming from a subclass of max-stable processes and can be completely characterized by a system of affine inequalities. Basic closure properties of the set of TCFs and regularity implications of the continuity of χ\chi are derived. If TT is finite, the set of TCFs on T×TT \times T forms a convex polytope of T×T\lvert T \rvert \times \lvert T \rvert matrices. Several general results reveal its complex geometric structure. Up to T=6\lvert T \rvert = 6 a reduced system of necessary and sufficient conditions for being a TCF is determined. None of these conditions will become obsolete as T3\lvert T \rvert\geq 3 grows.Comment: 42 pages, 7 Table

    Generalized modularity matrices

    Get PDF
    Various modularity matrices appeared in the recent literature on network analysis and algebraic graph theory. Their purpose is to allow writing as quadratic forms certain combinatorial functions appearing in the framework of graph clustering problems. In this paper we put in evidence certain common traits of various modularity matrices and shed light on their spectral properties that are at the basis of various theoretical results and practical spectral-type algorithms for community detection
    corecore