361 research outputs found

    Multidimensional Scaling with Regional Restrictions for Facet Theory: An Application to Levi's Political Protest Data

    Get PDF
    Multidimensional scaling (MDS) is often used for the analysis of correlation matrices of items generated by a facet theory design. The emphasis of the analysis is on regional hypotheses on the location of the items in the MDS solution. An important regional hypothesis is the axial constraint where the items from different levels of a facet are assumed to be located in different parallel slices. The simplest approach is to do an MDS and draw the parallel lines separating the slices as good as possible by hand. Alternatively, Borg and Shye (1995) propose to automate the second step. Borg and Groenen (1997, 2005) proposed a simultaneous approach for ordered facets when the number of MDS dimensions equals the number of facets. In this paper, we propose a new algorithm that estimates an MDS solution subject to axial constraints without the restriction that the number of facets equals the number of dimensions. The algorithm is based on constrained iterative majorization of De Leeuw and Heiser (1980) with special constraints. This algorithm is applied to Levi’s (1983) data on political protests.Axial Partitioning;Constrained Estimation;Facet Theory;Iterative Majorization;Multidimensional Scaling;Regional Restrictions

    Multidimensional Scaling with Regional Restrictions for Facet Theory: An Application to Levi's Political Protest Data

    Get PDF
    Multidimensional scaling (MDS) is often used for the analysis of correlation matrices of items generated by a facet theory design. The emphasis of the analysis is on regional hypotheses on the location of the items in the MDS solution. An important regional hypothesis is the axial constraint where the items from different levels of a facet are assumed to be located in different parallel slices. The simplest approach is to do an MDS and draw the parallel lines separating the slices as good as possible by hand. Alternatively, Borg and Shye (1995) propose to automate the second step. Borg and Groenen (1997, 2005) proposed a simultaneous approach for ordered facets when the number of MDS dimensions equals the number of facets. In this paper, we propose a new algorithm that estimates an MDS solution subject to axial constraints without the restriction that the number of facets equals the number of dimensions. The algorithm is based on constrained iterative majorization of De Leeuw and Heiser (1980) with special constraints. This algorithm is applied to Levi’s (1983) data on political protests

    The Past, Present, and Future of Multidimensional Scaling

    Get PDF
    Multidimensional scaling (MDS) has established itself as a standard tool for statisticians and applied researchers. Its success is due to its simple and easily interpretable representation of potentially complex structural data. These data are typically embedded into a 2-dimensional map, where the objects of interest (items, attributes, stimuli, respondents, etc.) correspond to points such that those that are near to each other are empirically similar, and those that are far apart are different. In this paper, we pay tribute to several important developers of MDS and give a subjective overview of milestones in MDS developments. We also discuss the present situation of MDS and give a brief outlook on its future

    Multidimensional scaling with regional restrictions for facet theory: an application to Levy's political protest data

    Full text link
    "Multidimensional scaling (MDS) is often used for the analysis of correlation matrices of items generated by a facet-theory design. The emphasis of the analysis is on regional hypotheses on the location of the items in the MDS solution. An important regional hypothesis is the axial constraint, where the items from different levels of a facet are assumed to be located in different parallel slices. The simplest approach is to do an MDS and draw the parallel lines separating the slices as good as possible by hand. Alternatively, Borg & Shye (1995) proposed to automate the second step. Borg & Groenen (1997, 2005) proposed a simultaneous approach for ordered facets, when the number of MDS dimensions equals the number of facets. In this paper, we propose a new algorithm that estimates an MDS solution subject to axial constraints without the restriction that the number of facets equals the number of dimensions. The algorithm is based on constrained iterative majorization of De Leeuw & Heiser (1980) with special constraints. This algorithm is applied to Levy's (1983) data on political protests." (author's abstract

    Multiplexing regulated traffic streams: design and performance

    Get PDF
    The main network solutions for supporting QoS rely on traf- fic policing (conditioning, shaping). In particular, for IP networks the IETF has developed Intserv (individual flows regulated) and Diffserv (only ag- gregates regulated). The regulator proposed could be based on the (dual) leaky-bucket mechanism. This explains the interest in network element per- formance (loss, delay) for leaky-bucket regulated traffic. This paper describes a novel approach to the above problem. Explicitly using the correlation structure of the sources’ traffic, we derive approxi- mations for both small and large buffers. Importantly, for small (large) buffers the short-term (long-term) correlations are dominant. The large buffer result decomposes the traffic stream in a stream of constant rate and a periodic impulse stream, allowing direct application of the Brownian bridge approximation. Combining the small and large buffer results by a concave majorization, we propose a simple, fast and accurate technique to statistically multiplex homogeneous regulated sources. To address heterogeneous inputs, we present similarly efficient tech- niques to evaluate the performance of multiple classes of traffic, each with distinct characteristics and QoS requirements. These techniques, applica- ble under more general conditions, are based on optimal resource (band- width and buffer) partitioning. They can also be directly applied to set GPS (Generalized Processor Sharing) weights and buffer thresholds in a shared resource system

    Multiple Correspondence Analysis & the Multilogit Bilinear Model

    Full text link
    Multiple Correspondence Analysis (MCA) is a dimension reduction method which plays a large role in the analysis of tables with categorical nominal variables such as survey data. Though it is usually motivated and derived using geometric considerations, in fact we prove that it amounts to a single proximal Newtown step of a natural bilinear exponential family model for categorical data the multinomial logit bilinear model. We compare and contrast the behavior of MCA with that of the model on simulations and discuss new insights on the properties of both exploratory multivariate methods and their cognate models. One main conclusion is that we could recommend to approximate the multilogit model parameters using MCA. Indeed, estimating the parameters of the model is not a trivial task whereas MCA has the great advantage of being easily solved by singular value decomposition and scalable to large data
    corecore