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Abstract 

Multidimensional scaling (MDS) is often used for the analysis of correlation matrices of items 
generated by a facet theory design. The emphasis of the analysis is on regional hypotheses on 
the location of the items in the MDS solution. An important regional hypothesis is the axial 
constraint where the items from different levels of a facet are assumed to be located in 
different parallel slices. The simplest approach is to do an MDS and draw the parallel lines 
separating the slices as good as possible by hand. Alternatively, Borg and Shye (1995) 
propose to automate the second step. Borg and Groenen (1997, 2005) proposed a 
simultaneous approach for ordered facets when the number of MDS dimensions equals the 
number of facets. In this paper, we propose a new algorithm that estimates an MDS solution 
subject to axial constraints without the restriction that the number of facets equals the number 
of dimensions. The algorithm is based on constrained iterative majorization of De Leeuw and 
Heiser (1980) with special constraints. This algorithm is applied to Levi’s (1983) data on 
political protests. 

Key words 
Multidimensional scaling, Constrained estimation, Facet theory, Axial partitioning, Regional 
restrictions, Iterative majorization. 

1 Introduction 

Multidimensional scaling (MDS) has long been an important technique for analyzing data 
obtained with facet theory (FT, see, for example, Borg and Shye 1995). Amongst other areas, 
Ingwer Borg has been advocating these two methods as useful tools for theory building and 
data analysis. A strong point of FT is the careful design by which items are constructed. 
Often, correlations between these items are visualized by MDS. Consider Table 1 that shows 
a dissimilarity matrix Δ and a facet design of three facets. In practical facet theory 
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Figure 1 Three ways of partitioning the MDS space for a three level facet. 

Table 1 Example of a dissimilarity matrix Δ and a three facet design. 

 Dissimilarity matrix Δ  Facet design 
         Facet 
 I1 I2 I3 L In-1 In   1 2 3 
I1 0       I1 a a c 
I2 δ12 0      I2 a b c 
I3 δ13 δ23 0     I3 b a c 
M M M M O    M M M M 
In-1 δ1,n-1 δ2,n-1 δ3,n-1 L 0   In-1 c b a 
In δ1n δ2n δ3n L δ2n 0  In c b a 

applications, the dissimilarities are often transformed correlations rij between items: δij = 1 – 
rij. The facets can be viewed as categorical design variables on the items of the analysis. The 
first facet in Table 1 divides the items into three different categories, the second facet into two 
categories and the third into three. Thus, every item j belongs to a single category on each of 
the three facets. In facet theory it is typically postulated that the facets imply particular 
structures on the empirical intercorrelations and that these structure will be reflected by 
regional hypotheses in the MDS solution. Each facet is assumed to partition the MDS space 
into regions in one of three manners (see Figure 1): by an axial partitioning (division into 
slices along a line), a modular partitioning (division into concentric bands), or a polar 
partitioning (division into pie pieces), see Guttman (1959), Borg and Shye (1995), and Borg 
and Groenen (1997, 2005). Note that the lines in Figure 1 are drawn by hand. In this paper, 
we limit ourselves to axial partitioning only. 

Given some MDS solution, the construction of the regions is most often done 
subjectively by the researcher and not through a standardized computational method. A first 
step towards imposing regions automatically was proposed by Borg and Shye (1995) who 
provided a two step procedure: first do an MDS followed by finding an optimal location of 
the lines separating the categories of a facet. In Borg and Groenen (1997, 2005), a 
simultaneous approach was proposed that searched for an MDS solution that is constrained 
such that the levels of a facet are linearly separated. The advantage of this approach is that 
only theory-consistent MDS solutions are considered and that the program Proxscal in SPSS 
(Meulman, Heiser and SPSS, 1999) can handle these constraints. However, the application of 
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Table 2 Example of a facet design H. 

 h1 h2 h3

I1 1 1 2 
I2 1 2 2 
I3 2 1 3 
I4 2 2 1 
I5 2 1 3 
I6 3 1 3 
I7 3 2 1 

the simultaneous approach is limited to situations in which the number of dimensions is the 
same as the number of facets. Furthermore, Proxscal only works for ordered facets.  

In this paper, we propose a Multiple Axial-wise Partitioning Constraints MDS model 
(MAPC). The MAPC MDS model makes it possible to incorporate axial facet constraints in 
the construction of the MDS map. An important characteristic of our MAPC MDS model is 
that it is able to handle situations in which there are more constraining facets than dimensions, 
so that the dimensionality and therefore the complexity of the interpretation of the MDS map 
can be kept at a minimum. In addition, MAPC MDS can handle unordered facets as well.  

This paper is organized as follows. First, we introduce the main ideas of regional 
constraints in MDS using axial partitioning. Then, we derive the MAPC MDS algorithm and 
apply the method to data of Levy on political protests. We end the paper with some 
conclusions.  

2 Multiple axial-wise partitioning constraints 

We propose a multiple axial-wise partitioning constrained MDS for the analysis of data 
obtained by facet theory design that is able to deal with more (categorical) facets than 
dimensions. The basic idea underlying the MAPC model is that we require the MDS solution 
to be partitioned into successive slices for each facet. Items from different levels of facets are 
required to lie in different slices, whereas items from the same level are required to lie within 
the same slice. The hyperplanes separating the slices corresponding to a single facet are 
parallel to each other, which implies that they are orthogonal to one particular direction in the 
MDS space.  

Consider the small example of m = 3 facets in the n×m matrix H in Table 2. Let us focus 
on the first facet h1 which has three levels. Assume for the moment that this facet is ordered, 
that is, the axial hypothesis implies that the items are located in subsequent parallel regions 
that are ordered along a line according to the order of the levels. Because the regions are 
parallel, two adjacent regions representing adjacent levels of the facet h1, are separated by 
parallel hyperplanes that form parallel lines in 2D. Orthogonal to these separation 
hyperplanes, there exists a line exists such that the orthogonal projection of the items onto that 
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Figure 2 Example of a axial partitioned MDS space where the items of three levels are separated 
by an axial partitioning. The projections qi of the items on the line orthogonal to the 
dashed separation lines satisfy the set of inequalities in (1).  

line satisfy the set of inequalities  

q1, q2 ≤ q3, q4, q5 ≤ q6, q7. (1)

Figure 2 shows an MDS solution that is consistent with facet h1 treated ordinally. Any MDS 
solution for which the projections of the items on some line in the MDS space satisfy (1) 
yields an axial partitioning for the ordinal facet h1.  

What if the regions of the facet are not ordered, that is, if the levels of the facet are 
treated ordinally? Then, any permutation of the labels of h1 is equally good. Therefore, for a 
facet h1 with three levels there are six admissible projections on the line are: 

 q1, q2 ≤ q3, q4, q5 ≤ q6, q7

 q1, q2 ≤ q6, q7 ≤ q3, q4, q5  
 q6, q7 ≤ q1, q2 ≤ q3, q4, q5

 q6, q7 ≤ q3, q4, q5 ≤ q1, q2  
 q3, q4, q5 ≤ q1, q2 ≤ q6, q7

 q3, q4, q5 ≤ q6, q7 ≤ q1, q2.  

For such a nominal facet, we one can run MDS subject to all six orders and retain the best 
solution. 

In terms of matrix algebra, we can specify multiple axial constraints as follows. Let X be 
the n×p matrix of coordinates of n items in p dimensions. For multiple facets, let Q be the 
n×m matrix with the projections for each of the m facets. Then, the coordinates X are 
restricted by 
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Figure 3 A multiple axial partitioned MDS space satisfying the axial partitioning restrictions 
imposed by the three facets in Table 2. The dashed lines are the separation lines.  

X = QC (2)

subject to rank of Q is p and C is an m×p matrix. The combination of the inequality 
restrictions such as (1) and the rank p restriction on Q ensures that the regional constraints of 
all facets are simultaneously satisfied. Figure 3 shows an example of an MDS solution where 
the items satisfy the restrictions of the multiple axial regions for the three facets in Table 2. 

Note that not all combinations of the levels of the three facets are present in Table 1 as 
there are seven items with different combinations of facet levels out of a possible number 
3×2×3 = 18 different combinations. Yet Figure 3 allows us to reconstruct 14 different regions, 
of which only 13 are visible in the figure, that correspond to 14 combinations of the three 
facet levels. The location of a level-separation line is uniquely determined only when 
projections of at least two items from each of the levels onto the characteristic's vector 
coincide. If that is not the case, then there is still some freedom left. Instead of level-
separation lines, we will have level-separation regions. As the number of levels within a facet 
increases or the number of facets increase, then there is usually not much freedom left to place 
the separation line. 

The Stress function of MDS can be very flat near the (local) minimum, or can have 
various similar local minima for completely different configurations (Borg and Lingoes, 
1980). The idea behind constrained MDS methods in general is that constrained 
configurations can be interpreted in terms of the external information (constraining attributes), 
with possibly an only slightly lower fit than the unconstrained configurations. That is, we may 
get a more easily to interpret configuration without having to offer too much precision in the 
representation of preferences or dissimilarities. In practice, it is advisable to always compare 
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MAPC-constrained MDS configurations with their unconstrained counterparts. 

3 An algorithm for imposing MAPC in MDS  

The multiple axial partitioning constraints do not operate on each dimension separately. 
Instead, coordinates on one dimension affect the feasible set of coordinates on other 
dimensions. As a consequence of the dependency of dimensions with respect to the 
constraints, MDS with multiple axial partitioning constraints can not be computed by simple 
extensions of previously proposed algorithms for other constrained MDS methods, like MDS 
with dimension-wise order constraints on the coordinates (see Heiser and Meulman, 1983; 
Borg and Groenen, 1997) and dimension-wise monotone-spline constraints as proposed by 
Winsberg and De Soete (1997). Nor can MAPC MDS be implemented by existing algorithms 
for MDS methods that do impose constraints simultaneously on all dimensions, like MDS 
with constraints on interpoint distances (Skarabis, 1978; Borg and Lingoes, 1980), with 
“circle constraints” (Borg and Lingoes, 1980; De Leeuw and Heiser, 1980), more general 
equality and inequality constraints (Lee, 1984), configuration-size constraints (Mathar, 1990), 
or reduced-rank subspace constraints for subsets of objects (Borg, 1977). 

For finding MDS solutions under multiple partitioning constraints, we use the iterative 
majorization algorithm of De Leeuw and Heiser (1980), called SMACOF. Their iterative 
majorization algorithm minimizes the following weighted least squares Stress function 

σ2(X) =  w∑
=

n

j 1
∑

+=

n

ji 1
ij ( δij – dij(X))2 (3) 

under any set of constraints, by finding a series of constraints-satisfying configurations with 
monotonically decreasing stress values. In (4), dij(X) is the Euclidean distance between 
objects i and j in a p-dimensional space, whose coordinates are given in rows i and j of the 
n×p-configuration matrix X and wij is a fixed (nonnegative) weight that weights the 
contribution of the squared residual of object pair (i,j) to the overall Stress. Instead of σ2(X) 
we report ∑ ∑= +=

= n
j ij

n
ji ijn w1

2
1

22 )()( δσσ XX  which has the same local minima and the 
advantage that at a local minimum  values are always between 0 and 1 and are equal to 
the square of Kruskal’s (1964) Stress-1 (see, Borg and Groenen, 2005, p.249–250). 

)(2 Xnσ

In case of MDS for the analysis of intercorrelations between items from a facet design, 
the n objects correspond to the n items and all wij's are larger than 0 (usually equal to 1), 
unless the intercorrelations for some pairs (i,j) are missing, in which case their associated 
weights become 0. The summation in (4) is across all lower-diagonal elements of the matrix 
of dissimilarities Δ only, because this matrix is assumed to be symmetric. 

In each step of the iterative majorization algorithm, a better constrained configuration is 
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found by constructing a function ϕ(X,X*) that majorizes σ2(X), and by minimizing ϕ(X,X*) 
over X. A function ϕ(X,X*) is said to majorize function σ2(X), when σ2(X) ≤ ϕ(X,X*) for all 
X, and ϕ(X,X*) = σ2(X) when X = X*. Let  be the constrained X that minimizes ϕ(X,Xˆ X *) 
for some X*, then we have the following set of (in)equalities: 

 σ2( ) ≤ ϕ( ,Xˆ X ˆ X *) ≤ ϕ(X*,X*) = σ2(X*) 

Clearly, choosing X* to be equal to the constrained configuration obtained in the previous 
iteration and minimizing ϕ(X,X*) over X subject to the constraints, we obtain a constrained 
configuration with lower (or equal) stress in each iteration. X* is called a supporting point of 
the majorizing function. Because the series of Stress values of successive constrained 
configurations is monotonically decreasing and the Stress is bounded from below by zero 
guarantees that the algorithm will converge to at least a local minimum. For more information 
on iterative majorization, see, for example, De Leeuw (1994), Heiser (1995), or, for an 
introduction, Borg and Groenen (2005). 

Majorization is useful when a complicated function, like σ2(X) can be majorized by a 
simpler function. A relatively quadratic function in X that majorizes σ2(X) is 

 ϕ(X,X*)  =   

  = c

( )∑ ∑
= +=

+−−
n

j

n

ji
ijijjiijijij dwbw

1 1

22 )()*)((2 XxxXδ

1 + ||X – V–B(X*)X*||2V, 

where 

xi is the p-vector containing elements from the ith row of X, 
bij(X*) = wijδij/dij(X*), if dij(X*) > 0, and 
bij(X*) = 0, if dij(X*) = 0, 
||Z||2V denotes the weighted squared Euclidean norm given by tr (Z′VZ), 
V is an n×n-matrix, whose elements vij are equal to –(wij+wji) if i ≠ j, and whose 

elements vii are equal to∑ , ≠ij ijw
V– is a generalized inverse of V, 
B(X*) is the n × n matrix with elements –bij if i ≠ j and ∑ ≠ij ijb  if i = j, 
c1 is a constant that depends on X*. 

The unconstrained X that minimizes ϕ(X,X*) which we will refer to by X , that is equal to V–

B(X*)X*. The constrained X that minimizes ϕ(X,X*) can be found by projecting X  onto the 
multiple axial constraints in the metric defined by V.  

In the previous section, we stated that the multiple axial partitioning constraints can be 
imposed by requiring X = QC such that qk satisfies the partitioning constraints of each facet k 
and Q being of rank p. To avoid the possibility that some qk = 0, we also impose additionally 
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the constraint ||qk||2 = n. These restrictions are equivalent to X = ZA′C subject to the 
constraints Zak ∈ Ck and ||Zak||2 = n. Here, 

Z is an n×p-matrix of to be estimated parameters, 
A is an m×p-matrix of to be estimated parameters, 
ak is the m-vector containing the elements from the kth row of A, 
C is an m×p-matrix of to be estimated parameters, and 
Ck is the closed convex cone that denotes the inequality constraints that are implied by the 

kth level. 

So, the matrix A defines directions, in the p-dimensional space given by Z. Writing X in 
terms of ZA′C and imposing constraints on the columns of ZA′ guarantees that the directions 
given by C′(CC′)– in the p-dimensional space given by X satisfy the constraints. The 
constraints ||Zak || = n are necessary to guarantee that the multiple axial constraints are all 
satisfied. Without this explicit length constraint a solution can be found that satisfies only p 
axial constraints with nonzero ak, and the remaining m–p axial constraints being satisfied by 
choosing ak = 0. The inequality constraints defined by each Ck are constraints similar to (1) 
that typically correspond to a nominal or ordinal measurement level and the primary approach 
to ties (Gifi, 1990; Kruskal,1964; Young, 1981). Note that ZA′ is identified up to 
simultaneous linear transformations of both Z and A, that is, the combination Z and A is 
equivalent to the combination ZL and A(LL′)-1L for any nonsingular p×p-matrix L. 
Therefore, without loss of generality, we impose Z′Z = nI and ak′ak = 1. Thus, minimizing 
ϕ(X,X*) over the regional restrictions is equivalent to minimizing 

 ϕ1(Z,A,C) = || X – ZA′C||2V

over Z, A, and C, subject to the constraints Zak ∈ Ck and || Zak ||2 = n. 
To minimize function ϕ1(Z,A,C) we use alternating least squares: that is, first we update 

C keeping A and Z fixed, then we update A keeping Z and C fixed, and then we update Z 
keeping A and C fixed. These three steps are carried out iteratively. Minimizing ϕ1(Z,A,C) 
over C is a straightforward regression problem, for which C  = (AZ′VZA′)ˆ +AZ′V X  is an 
optimal solution, where (AZ′VZA′)+ is the Moore-Penrose inverse, since AZ′VZA′ is not of 
full rank. The main difficulty lies in minimizing ϕ1(Z,A,C) over Z and A for fixed C over the 
constraint sets Ck and ak′Z′Zak = n. 

While updating Z and A, we keep C fixed. Let the singular value decomposition of C be 
given by PΦQ′, so that the Moore-Penrose inverse of C is given by C+ = QΦ-1P′. ϕ1(Z,A,C) 
can then be written as 

ϕ1(Z,A,C) = || X – ZA′C||2V = ||C+′ X ′V1/2 – AZ′V1/2||2CC′ (4)

 – 8 – 



The metric CC′ makes it difficult to impose the constraints. Therefore, we use an additional 
majorization step (e.g., see De Leeuw, 1994; Heiser, 1995). Let Y* be the matrix ZA′ 
obtained in the previous iteration, satisfying all constraints. We can then derive a function 
majorizing ϕ1(Z,A,C) by using the following inequality: 

 
2

'
2/12/1

2
1

'*'
ICC

VAZVY
φ−

−  ≤ 0 

which can be written as 

||AZ′V1/2||2CC′ ≤ ||ZA′||2
1φ 2

V – 2tr AZ′VY*′( I – CC′) +|| Y2
1φ *′V1/2 ||2 , 

CCI ′−2
1φ

(5)

where  is the largest eigenvalue of CC′, that is, the square of the first diagonal element of 
Φ. Combining (

2
1φ

4) and (5) gives 

 ϕ1(Z,A,C) ≤ ||ZA′||2
1φ 2

V – 2tr AZ′VY*′( I – CC′) – 2 tr AZ′V2
1φ X C′ + 

  ||Y*′V1/2||2
CCI ′−1φ

||2V. 
(6) 

2  + || X

To simplify notation, let c2 denote the last two constant terms in (6), and let M denote Y*(I –
 CC′) + 2

1
−φ 2

1
−φ X C′. Then (6) can be written as 

ϕ1(Z,A,C) ≤ ||ZA′  – M||2
1φ 2

V – ||M||2
1φ 2

V + c2. (7) 

The right hand side of (7) is a quadratic function in ZA′. In the case in which all wij’s are 
equal to each other, as is typical in MDS of dissimilarities, V can be written as nJ′J, with J 
(the centering operator) defined as I – n-111′, I the n×n identity matrix, and 1 the n-vector 
with all elements equal to one. Therefore, the first term of the right hand side of (7) can, 
provided that Z and M have zero column means which can be imposed without loss of 
generality, be written as n ||ZA′  – M||2

1φ 2, which simplifies the majorizing function even 
further. 

For a description of the updates of matrices A and Z, the reader is referred to the 
appendix. There are several convergence criteria to be specified for the different loops in the 
algorithm. First of all, convergence criteria have to be specified for the outer iterations where 
a constrained configuration with a better stress value is obtained. Secondly, a convergence 
criterion has to chosen for the iterations that minimize n ||ZA′  – M||2

1φ 2 over Z and A. 
Finally, a convergence criterion has to be chosen for the iterations of Dijkstra’s cyclic 
projection algorithm that is used for obtaining the updates of A and Z described in the 
appendix. 

 – 9 – 



4 Regionally constrained MDS for Levi’s political protest acts 

Levy (1983) studied the attitudes of respondents from different countries towards different 
protest behaviours. The items Levy considered varied on three facets: (1) the modality of the 
attitude (evaluation, approval, or likelihood of own overt action), (2) the strength of execution 
(demanding, obstructive, or physically damaging), and (3) the way to carry out the protest 
(omission or commission) and were constructed as follows. First, 10 protest acts were 
formulated based on combinations of the levels of facets 2 and 3. These 10 protest acts were 
then combined with all levels of facet 1. This procedure yields the 30 items in Table 4. These 
items were rated by respondents on a Likert scale ranging from very positive to very negative. 
The data that we have available are correlation matrices of the items gathered in five countries 
(1973-1974): Great Britain (n = 1482), Austria (n = 1584), West Germany (n = 2307), The 
Netherlands (n = 1201), United States (n = 1719). 

Borg and Groenen (1997, 2005) analyzed these data by ordinal MDS followed by eyeing 
to trace back the facet structure. Here, we apply metric MACP MDS with nominal facets. 
Table 4 shows the unconstrained and the MAPC Stress values. For all five countries, there is 
some extra Stress due to the multiple axial constraints, but not too much. Therefore, we 
conclude that imposing the regional constraints still fits the data well.  

The MAPC solutions for the countries are given in Figure 4 to Figure 6. The maps for 
Great Britain, The Netherlands, and the United States are pretty much the same in the sense 
that the levels for Modality and Strength appear in the same order in the MDS solutions. 
Therefore, only the map for The Netherlands is shown here. It can be seen that items at the 
Doing level of the Modality facet correlate more with items at the Approve level than with 
items at the Effective level. Furthermore, items at the Physically damaging level of the 
Strength facet correlate higher with those at the Demanding level than with those at the 
Destructive level. It can also be seen that correlations between some protest acts follow more 
or less the same pattern at different levels of Modality. For instance, Damage and Violence 
are more correlated with each other than with Slogans on walls, regardless of the level of 
Modality. For other groups of protest acts, like Block traffic, Lawful demonstrations, and 
Petitions, this does not hold. It can be seen that the Carrying out facet only makes a further 
distinction among the protest acts at Destructive level of the Strength facet. This is a direct 
consequence of the facet design in which all protests acts of at Physically damaging and the 
Demanding level are acts of commission (logically). On closer look, one can see that the line 
that separates the Omission from the Commission protest acts is not unique. As a matter of 
fact, the line can be slightly rotated (counter-clockwise) without violating the constraints that 
are implied by the Carrying out facet.   
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Table 4 Facet design: 

Item 
Facet A: 
Modality 

Facet B: 
Strength 

Facet C: 
Carrying Out 

1. Petitions 1 Approve 1 Demanding 2 Commission 
2. Boycotts 1 Approve 2 Obstructive 1 Omission 
3. Lawful demonstrations 1 Approve 1 Demanding 2 Commission 
4. Refusing rent 1 Approve 2 Obstructive 1 Omission 
5. Wildcat strikes 1 Approve 2 Obstructive 1 Omission 
6. Slogans on walls 1 Approve 3 Physically damaging 2 Commission 
7. Occ. buildings 1 Approve 2 Obstructive 2 Commission 
8. Block traffic 1 Approve 2 Obstructive 2 Commission 
9. Damage 1 Approve 3 Physically damaging 2 Commission 
10. Violence 1 Approve 3 Physically damaging 2 Commission 
11. Petitions 2 Effective 1 Demanding 2 Commission 
12. Boycotts 2 Effective 2 Obstructive 1 Omission 
13. Lawful demonstrations 2 Effective 1 Demanding 2 Commission 
14. Refusing rent 2 Effective 2 Obstructive 1 Omission 
15. Wildcat strikes 2 Effective 2 Obstructive 1 Omission 
16. Slogans on walls 2 Effective 3 Physically damaging 2 Commission 
17. Occ. buildings 2 Effective 2 Obstructive 2 Commission 
18. Block traffic 2 Effective 2 Obstructive 2 Commission 
19. Damage 2 Effective 3 Physically damaging 2 Commission 
20. Violence 2 Effective 3 Physically damaging 2 Commission 
21. Petitions 3 Doing 1 Demanding 2 Commission 
22. Boycotts 3 Doing 2 Obstructive 1 Omission 
23. Lawful demonstrations 3 Doing 1 Demanding 2 Commission 
24. Refusing rent 3 Doing 2 Obstructive 1 Omission 
25. Wildcat strikes 3 Doing 2 Obstructive 1 Omission 
26. Slogans on walls 3 Doing 3 Physically damaging 2 Commission 
27. Occ. buildings 3 Doing 2 Obstructive 2 Commission 
28. Block traffic 3 Doing 2 Obstructive 2 Commission 
29. Damage 3 Doing 3 Physically damaging 2 Commission 
30. Violence 3 Doing 3 Physically damaging 2 Commission 

 

Table 4 Stress values per country of unconstrained metric MDS and regionally constrained 
MAPC MDS with p = 2. 

Country 
Unconstrained 

Stress 

Regionally 
Constrained 

Stress 
Great Britain .086 .107 
Austria .084 .107 
West Germany .078 .106 
The Netherlands .087 .104 
United States .076 .107 
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Figure 4 MAPC MDS solution of the Levy data for Austria. 
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Figure 5 MAPC MDS solution of the Levy data for West Germany 
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Figure 6 MAPC MDS solution of the Levy data for The Netherlands. 

In the map for Austria, we see an interchange in the order of the Approve and the 
Effective level of the Modality facet, and an interchange in the order of the Physically 
damaging and Demanding level of the Strength facet. Despite these interchanges, whose 
interpretation is outside the scope of this paper, the facet structure is very clear. 

West Germany shows how things can go wrong. Although the Stress did not increase too 
much by imposing multiple axial partitioning constraints, it turns out that in the final MDS 
solution a large number of the constraints imposed by the Modality facet and the Carrying out 
facet are active. As such, many items are located on the boundary of their corresponding 
slices. In fact, the constraints even lead to a situation in which there are no locations in the 
map that uniquely correspond to the Doing level of the Modality facet. The whole slice 
coincides with the boundaries of both the Approve and the Effective level. This leads to such 
a clutter of items in the map that the map becomes virtually uninterpretable. One might argue 
that it appears that the facet structure apparently is not so dominant in the data. The fact that 
the Stress increased only slightly seems to be an indication of the flatness of the Stress-
function near the (perhaps locally) optimal solution. Unlike the other countries, Germany has 
the Doing level and the Obstructive level of the corresponding facets as middlemost levels.  
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5 Conclusion and Discussion 

We proposed the MAPC MDS model that allows for the inclusion of multiple axial regional 
constraints. In MAPC MDS it is possible to specify more constraining facets than dimensions. 
The facets are incorporated in the MDS map in such a way that each individual level can 
readily be identified and there is a unique one-to-one mapping between locations in the map 
and levels of each of the facets. 

The proposed algorithm for MAPC MDS is very flexible in the sense that the Stress 
function that is being minimized incorporates weights that can be used to control the impact 
of the misfit of the individual dissimilarities on the overall Stress. Amongst others this makes 
sure that the algorithm can both be used for MDS of dissimilarities, as well as for the 
unfolding of preferences. The latter may have strong applications in the area of marketing and 
new product development.  

It must be recognized that the expand-and-shrink operation, rewriting X as ZA′C, does 
not completely cover all possible solutions that satisfy the multiple axial-wise partitioning 
constraints. Actually, it may happen that it is advantageous for the minimization of Stress to 
confine the constraining directions to a lower-than-p-dimensional subspace of the map. For 
instance, the advantage of confining the directions to a (p–1)-dimensional subspace will be 
that the remaining dimension will be completely unrestricted. Actually, our definition of the 
constraints does not prohibit us to let all directions coincide, to let all items share the same 
coordinate on that dimension, and to actually fit the dissimilarities in (p–1) unconstrained 
dimensions! Obviously, such a solution would destroy the whole rationale behind the 
imposition of multiple axial-wise partitioning constraints. As a matter of fact, the 
attractiveness (from a Stress-minimization point of view) of such uninformative solutions in 
the illustration shown can be checked by comparing Stress values for unconstrained and 
MAPC MDS for different dimensionalities. 

A two-dimensional perceptual map gives a nice trade-off between an optimal 
representation of the data and parsimony of the map. The choice of two dimensions made it 
simple to visualize the level-separating hyperplanes, which are lines in this case, and inspect 
the MDS maps. Visualization of the level-separating hyperplanes and visual inspection of the 
maps become much more difficult in higher dimensionality. So, one line of further research 
could investigate ways in which more-than-two-dimensional perceptual maps with multiple 
axial partitioning constraints can best be visualized (cf. Buja and Swayne, 2002). Preferably 
one would carry out some empirical studies to see which ways of visualization are most easy 
to use and most appreciated by the people that will have to deal with the results of MAPC 
MDS in practice. Of course, results may amongst others depend on the particular type of 
product and the kind of constraining characteristics involved. 

A disadvantage of our multiple axial constraints, dividing the MDS map into slices, is 
that not every possible level combination of the constraining attributes can be represented by 
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a separate region. Two facets with each two levels yield a region for every combination of 
levels in two dimensions. However, three facets of two levels each give three separation lines 
yielding at most seven regions out of eight possible combinations of levels. As the number of 
facets increase with respect to the number of dimensions or the number of levels per facet 
increase, there will be a larger proportion of level combinations that can not be represented by 
separate regions. As a consequence, more and more level combinations will coincide at level-
separation lines and more and more items will be located on these boundaries, making the 
interpretation increasingly more difficult and the map less useful. Therefore, another line of 
research may aim at the specification of a different type of constraints that divide the map into 
mutually exclusive regions in such a way that all (or almost all) level combinations that can 
be represented by a separate region. To keep the interpretation of the map easy, each category 
combination should preferably correspond to one region and not to two or more disconnected 
regions. Borrowing ideas from facet theory again, one could think amongst others of radial 
and polar constraints (e.g., see Borg and Groenen, 1997, Chapter 4). 

In addition, varieties of MAPC for three-way MDS, such as the weighted Euclidean 
model (also used in INDSCAL) could be developped. The multiple axial constraints can also 
be readily implemented in other techniques, like PCA, generalized canonical correlation 
analysis, correspondence analysis, etc. 

We need some procedure that exactly determines whether we have one unique 
hyperplane or an infinite number of hyperplanes within some ‘hyper region’, separating the 
subsequent regions that correspond to the levels of a particular facet. To create unique 
hyperplanes, an extra penalty term could be used much in the same way as in support vector 
machines 
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Appendix 

Updating A 

There are several ways to update A. First, we can bring the problem back to a standard 
nonnegative least squares problem. Minimizing (7) over A is equivalent to minimizing 

 τ(ak) = ||Zak – mk||2, (A1) 

for each row, ak, of A. For orthonormal Z, the normalization constraints ||ak||2 = 1 and 
||Zak||2 = n are equivalent. Because nominal and ordinal partitioning characteristics define 
cones, τ(ak) may be minimized without the length constraint followed by proper 
normalization (De Leeuw, 1977; Gifi, 1990). 

The minization of (A1) can be transformed into a nonnegative least-squares problem as 
follows. The ordinal partioning constraints are given by tk = SkZak ≥ 0, so that Sk

-1tk = Zak. 
Thus, minimizing τ(ak) is equivalent to minimizing 

 || Sk
-1tk – mk ||2 subject to tk ≥ 0, (A2) 

a standard nonnegative least squares problem that can be solved by the analytic method of 
Lawson and Hanson (1974) or the iterative method of Groenen, Van Os, and Meulman 
(2000). 

An alternative approach to updating A is by using Dykstra's (1983) cyclic projection 
algorithm. By iterative projections onto the hyperplane defined by Z and onto the cones Ck, 
and subsequent proper normalization one obtains the normalized projection, say, M , of M 
onto the intersection of the hyperplane and the cones. The update for A is then obtained as 
n

ˆ

-1 M̂ ′Z, as Z is orthonormal. For the projections onto the hyperplane defined by Z, no 
increment has to be subtracted before projections (see Gaffke and Mathar, 1989; Von 
Neumann, 1950). The advantage of using the cyclic projection algorithm lies in the fact that 
projections onto the cones Ck can be carried out very efficiently by Kruskal's (1964) up-and-
down blocks algorithm, whereas on the other hand the Sk's in (A2) will tend to have a large 
number of rows due to the primary approach to ties. A disadvantage of the cyclic projection 
algorithm as compared to the analytic method of Lawson and Hanson (1974) is that it is 
iterative. 
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Updating Z 

To update Z we first drop the orthonormality constraints on Z, and impose them again 
afterwards. This procedure works fine, as long as the update without orthonormality 
constraints is of full rank. We do not expect Z to be of reduced rank, because that would be 
contradictory to minimization of the loss unless the dissimilarities can indeed be fitted in a p-
dimensional space with p < m. 

There are again two ways to find an update. First, the problem can be transformed into a 
standard nonnegative least squares problem. Let z = vec(Z) denote the vector of all columns 
of Z stacked under each other, and m = vec(M) denote the vector of all columns of Z stacked 
under each other. Also, let S denote the partitioned block matrix with blocks equal to aktSk, 
and G a partitioned block matrix with blocks aktI, with I the n×n identity matrix. Then, 
minimization of ||ZA′ – M||2 over Z subject to SkZak ≥ 0 can be written as 

 ||Gz – m||2 subject to Sz ≥ 0. 

Substituting t = Sz gives the standard nonnegative least-square problem of minimizing 

 ||GS-1t – m||2 subject to t ≥ 0. 

Alternatively Dykstra's (1983) cyclic projection algorithm can be used again. This time, M is 
projected onto the intersection of the hyperplane defined by A and the cones Ck. 

Assuming that the solution M  is of full rank with singular value decomposition KΛL′. 
Then choosing 

ˆ

  = nẐ 1/2K 
  = L, and Â A~

  = nĈ -1/2( ′)A~ -1LK′ M ′Cˆ A~ ~  

yields an orthonormal update for Z, while keeping ||ak||2 =1. Here, , , and C  are the 
updates for matrices Z, A, and C, and  and 

Ẑ Â ˆ

A~ C~  are the matrices A and C that were kept 
fixed while updating Z. 

For nominal axial-wise partitioning constraints we have to check all ½×Π Jm
k 1= k 

combinations of orders along the partition axes, where Jk is the number of levels for facet k. If 
the Jk or K gets larger, the number of combinations to be checked explodes, so that the 
algorithm becomes slow. When Dykstra's algorithm is used, a branch and bound strategy can 
be applied to speed up computations. This branch and bound strategy is based on the fact that, 
for instance when updating A, Dykstra's algorithm yields a series of vectors that are: i) 
successively getting closer to the projection of mk onto the intersection of the closed convex 
cones Ck and the space spanned by Z, and ii) decreasing in length, whereas this length is a 
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direct measure of the Euclidean norm of the difference between the vector and mk. So, for any 
permutation the iterations of Dykstra's algorithm can be stopped, as soon as the length of the 
vector becomes smaller than the length of the projection obtained for some other permutation. 
As the overall program approaches convergence it becomes ever more likely that the "best" 
permutation from the previous iteration updating A, will also be the "best" permutation in the 
current iteration. Therefore, it is efficient to start with the "best" permutation from the 
previous iteration, so that the change of being able to stop Dykstra's algorithm for all other 
permutations after a relatively small number of iterations is relatively high. While updating A, 
we can apply the branch and bound strategy for the orders from each characteristic, so for 
each row of A, separately. While updating Z, we have to apply the strategy for all 
combinations of orders simultaneously. 
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