4,415 research outputs found

    Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology

    Full text link
    The purpose of this paper is twofold: from one side we provide a general survey to the viscoelastic models constructed via fractional calculus and from the other side we intend to analyze the basic fractional models as far as their creep, relaxation and viscosity properties are considered. The basic models are those that generalize via derivatives of fractional order the classical mechanical models characterized by two, three and four parameters, that we refer to as Kelvin-Voigt, Maxwell, Zener, anti-Zener and Burgers. For each fractional model we provide plots of the creep compliance, relaxation modulus and effective viscosity in non dimensional form in terms of a suitable time scale for different values of the order of fractional derivative. We also discuss the role of the order of fractional derivative in modifying the properties of the classical models.Comment: 41 pages, 8 figure

    Structural identifiability of viscoelastic mechanical systems

    Get PDF
    We solve the local and global structural identifiability problems for viscoelastic mechanical models represented by networks of springs and dashpots. We propose a very simple characterization of both local and global structural identifiability based on identifiability tables, with the purpose of providing a guideline for constructing arbitrarily complex, identifiable spring-dashpot networks. We illustrate how to use our results in a number of examples and point to some applications in cardiovascular modeling.Comment: 3 figure

    The effects of localized damping on structural response

    Get PDF
    The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs

    Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

    Full text link
    Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.Comment: 31 pages, 5 figure

    Rheological Model for Wood

    Full text link
    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.Comment: 37 pages, 13 figures, 10 table

    E. Cartan's attempt at bridge-building between Einstein and the Cosserats -- or how translational curvature became to be known as {\em torsion}

    Full text link
    \'Elie Cartan's "g\'en\'eralisation de la notion de courbure" (1922) arose from a creative evaluation of the geometrical structures underlying both, Einstein's theory of gravity and the Cosserat brothers generalized theory of elasticity. In both theories groups operating in the infinitesimal played a crucial role. To judge from his publications in 1922--24, Cartan developed his concept of generalized spaces with the dual context of general relativity and non-standard elasticity in mind. In this context it seemed natural to express the translational curvature of his new spaces by a rotational quantity (via a kind of Grassmann dualization). So Cartan called his translational curvature "torsion" and coupled it to a hypothetical rotational momentum of matter several years before spin was encountered in quantum mechanics.Comment: 36 p

    Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt Approximation

    Get PDF
    In this paper we consider the Navier-Stokes equations supplemented with either the Dirichlet or vorticity-based Navier boundary conditions. We prove that weak solutions obtained as limits of solutions to the Navier-Stokes-Voigt model satisfy the local energy inequality. Moreover, in the periodic setting we prove that if the parameters are chosen in an appropriate way, then we can construct suitable weak solutions trough a Fourier-Galerkin finite-dimensional approximation in the space variables
    • …
    corecore