3,076 research outputs found

    Provability Logic and the Completeness Principle

    Full text link
    In this paper, we study the provability logic of intuitionistic theories of arithmetic that prove their own completeness. We prove a completeness theorem for theories equipped with two provability predicates □\Box and △\triangle that prove the schemes A→△AA\to\triangle A and □△S→□S\Box\triangle S\to\Box S for S∈Σ1S\in\Sigma_1. Using this theorem, we determine the logic of fast provability for a number of intuitionistic theories. Furthermore, we reprove a theorem previously obtained by M. Ardeshir and S. Mojtaba Mojtahedi determining the Σ1\Sigma_1-provability logic of Heyting Arithmetic

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    On Bisimulations for Description Logics

    Full text link
    We study bisimulations for useful description logics. The simplest among the considered logics is ALCreg\mathcal{ALC}_{reg} (a variant of PDL). The others extend that logic with inverse roles, nominals, quantified number restrictions, the universal role, and/or the concept constructor for expressing the local reflexivity of a role. They also allow role axioms. We give results about invariance of concepts, TBoxes and ABoxes, preservation of RBoxes and knowledge bases, and the Hennessy-Milner property w.r.t. bisimulations in the considered description logics. Using the invariance results we compare the expressiveness of the considered description logics w.r.t. concepts, TBoxes and ABoxes. Our results about separating the expressiveness of description logics are naturally extended to the case when instead of ALCreg\mathcal{ALC}_{reg} we have any sublogic of ALCreg\mathcal{ALC}_{reg} that extends ALC\mathcal{ALC}. We also provide results on the largest auto-bisimulations and quotient interpretations w.r.t. such equivalence relations. Such results are useful for minimizing interpretations and concept learning in description logics. To deal with minimizing interpretations for the case when the considered logic allows quantified number restrictions and/or the constructor for the local reflexivity of a role, we introduce a new notion called QS-interpretation, which is needed for obtaining expected results. By adapting Hopcroft's automaton minimization algorithm and the Paige-Tarjan algorithm, we give efficient algorithms for computing the partition corresponding to the largest auto-bisimulation of a finite interpretation.Comment: 42 page

    Lindstrom theorems for fragments of first-order logic

    Get PDF
    Lindstr\"om theorems characterize logics in terms of model-theoretic conditions such as Compactness and the L\"owenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstr\"om theorems for these languages can be challenging, as most known techniques rely on coding arguments that seem to require the full expressive power of first-order logic. In this paper, we provide Lindstr\"om theorems for several fragments of first-order logic, including the k-variable fragments for k>2, Tarski's relation algebra, graded modal logic, and the binary guarded fragment. We use two different proof techniques. One is a modification of the original Lindstr\"om proof. The other involves the modal concepts of bisimulation, tree unraveling, and finite depth. Our results also imply semantic preservation theorems.Comment: Appears in Logical Methods in Computer Science (LMCS

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page
    • …
    corecore