1,780 research outputs found

    Some results on the existence of tt-all-or-nothing transforms over arbitrary alphabets

    Get PDF
    A (t,s,v)(t, s, v)-all-or-nothing transform is a bijective mapping defined on ss-tuples over an alphabet of size vv, which satisfies the condition that the values of any tt input co-ordinates are completely undetermined, given only the values of any sts-t output co-ordinates. The main question we address in this paper is: for which choices of parameters does a (t,s,v)(t, s, v)-all-or-nothing transform (AONT) exist? More specifically, if we fix tt and vv, we want to determine the maximum integer ss such that a (t,s,v)(t, s, v)-AONT exists. We mainly concentrate on the case t=2t=2 for arbitrary values of vv, where we obtain various necessary as well as sufficient conditions for existence of these objects. We consider both linear and general (linear or nonlinear) AONT. We also show some connections between AONT, orthogonal arrays and resilient functions

    Polar Codes for the m-User MAC

    Get PDF
    In this paper, polar codes for the mm-user multiple access channel (MAC) with binary inputs are constructed. It is shown that Ar{\i}kan's polarization technique applied individually to each user transforms independent uses of a mm-user binary input MAC into successive uses of extremal MACs. This transformation has a number of desirable properties: (i) the `uniform sum rate' of the original MAC is preserved, (ii) the extremal MACs have uniform rate regions that are not only polymatroids but matroids and thus (iii) their uniform sum rate can be reached by each user transmitting either uncoded or fixed bits; in this sense they are easy to communicate over. A polar code can then be constructed with an encoding and decoding complexity of O(nlogn)O(n \log n) (where nn is the block length), a block error probability of o(\exp(- n^{1/2 - \e})), and capable of achieving the uniform sum rate of any binary input MAC with arbitrary many users. An application of this polar code construction to communicating on the AWGN channel is also discussed

    Orthogonal Codes for Robust Low-Cost Communication

    Full text link
    Orthogonal coding schemes, known to asymptotically achieve the capacity per unit cost (CPUC) for single-user ergodic memoryless channels with a zero-cost input symbol, are investigated for single-user compound memoryless channels, which exhibit uncertainties in their input-output statistical relationships. A minimax formulation is adopted to attain robustness. First, a class of achievable rates per unit cost (ARPUC) is derived, and its utility is demonstrated through several representative case studies. Second, when the uncertainty set of channel transition statistics satisfies a convexity property, optimization is performed over the class of ARPUC through utilizing results of minimax robustness. The resulting CPUC lower bound indicates the ultimate performance of the orthogonal coding scheme, and coincides with the CPUC under certain restrictive conditions. Finally, still under the convexity property, it is shown that the CPUC can generally be achieved, through utilizing a so-called mixed strategy in which an orthogonal code contains an appropriate composition of different nonzero-cost input symbols.Comment: 2nd revision, accepted for publicatio

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    On Security Properties of All-or-nothing Transforms

    Get PDF
    All-or-nothing transforms have been defined as bijective mappings on all s-tuples over a specified finite alphabet. These mappings are required to satisfy certain "perfect security" conditions specified using entropies of the probability distribution defined on the input s-tuples. Alternatively, purely combinatorial definitions of AONTs have been given, which involve certain kinds of "unbiased arrays". However, the combinatorial definition makes no reference to probability definitions. In this paper, we examine the security provided by AONTs that satisfy the combinatorial definition. The security of the AONT can depend on the underlying probability distribution of the s-tuples. We show that perfect security is obtained from an AONT if and only if the input s-tuples are equiprobable. However, in the case where the input s-tuples are not equiprobable, we still achieve a weaker security guarantee. We also consider the use of randomized AONTs to provide perfect security for a smaller number of inputs, even when those inputs are not equiprobable
    corecore