744 research outputs found

    Some results on ordered structures in toposes

    Get PDF
    A topos version of Cantor’s back and forth theorem is established and used to prove that the ordered structure of the rational numbers (Q, \u3c) is homogeneous in any topos with natural numbers object. The notion of effective homogeneity is introduced, and it is shown that (Q, \u3c) is a minimal effectively homogeneous structure, that is, it can be embedded in every other effectively homogeneous ordered structure

    Models of Type Theory Based on Moore Paths

    Full text link
    This paper introduces a new family of models of intensional Martin-L\"of type theory. We use constructive ordered algebra in toposes. Identity types in the models are given by a notion of Moore path. By considering a particular gros topos, we show that there is such a model that is non-truncated, i.e. contains non-trivial structure at all dimensions. In other words, in this model a type in a nested sequence of identity types can contain more than one element, no matter how great the degree of nesting. Although inspired by existing non-truncated models of type theory based on simplicial and cubical sets, the notion of model presented here is notable for avoiding any form of Kan filling condition in the semantics of types.Comment: This is a revised and expanded version of a paper with the same name that appeared in the proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017

    Bohrification

    Get PDF
    New foundations for quantum logic and quantum spaces are constructed by merging algebraic quantum theory and topos theory. Interpreting Bohr's "doctrine of classical concepts" mathematically, given a quantum theory described by a noncommutative C*-algebra A, we construct a topos T(A), which contains the "Bohrification" B of A as an internal commutative C*-algebra. Then B has a spectrum, a locale internal to T(A), the external description S(A) of which we interpret as the "Bohrified" phase space of the physical system. As in classical physics, the open subsets of S(A) correspond to (atomic) propositions, so that the "Bohrified" quantum logic of A is given by the Heyting algebra structure of S(A). The key difference between this logic and its classical counterpart is that the former does not satisfy the law of the excluded middle, and hence is intuitionistic. When A contains sufficiently many projections (e.g. when A is a von Neumann algebra, or, more generally, a Rickart C*-algebra), the intuitionistic quantum logic S(A) of A may also be compared with the traditional quantum logic, i.e. the orthomodular lattice of projections in A. This time, the main difference is that the former is distributive (even when A is noncommutative), while the latter is not. This chapter is a streamlined synthesis of 0709.4364, 0902.3201, 0905.2275.Comment: 44 pages; a chapter of the first author's PhD thesis, to appear in "Deep Beauty" (ed. H. Halvorson

    Characterizations of categories of commutative C*-subalgebras

    Get PDF
    We aim to characterize the category of injective *-homomorphisms between commutative C*-subalgebras of a given C*-algebra A. We reduce this problem to finding a weakly terminal commutative subalgebra of A, and solve the latter for various C*-algebras, including all commutative ones and all type I von Neumann algebras. This addresses a natural generalization of the Mackey-Piron programme: which lattices are those of closed subspaces of Hilbert space? We also discuss the way this categorified generalization differs from the original question.Comment: 24 page

    A representation theorem for integral rigs and its applications to residuated lattices

    Get PDF
    We prove that every integral rig in Sets is (functorially) the rig of global sections of a sheaf of really local integral rigs. We also show that this representation result may be lifted to residuated integral rigs and then restricted to varieties of these. In particular, as a corollary, we obtain a representation theorem for pre-linear residuated join-semilattices in terms of totally ordered fibers. The restriction of this result to the level of MV-algebras coincides with the Dubuc-Poveda representation theorem.Comment: Manuscript submitted for publicatio

    Totally distributive toposes

    Get PDF
    A locally small category E is totally distributive (as defined by Rosebrugh-Wood) if there exists a string of adjoint functors t -| c -| y, where y : E --> E^ is the Yoneda embedding. Saying that E is lex totally distributive if, moreover, the left adjoint t preserves finite limits, we show that the lex totally distributive categories with a small set of generators are exactly the injective Grothendieck toposes, studied by Johnstone and Joyal. We characterize the totally distributive categories with a small set of generators as exactly the essential subtoposes of presheaf toposes, studied by Kelly-Lawvere and Kennett-Riehl-Roy-Zaks.Comment: Now includes extended result: The lex totally distributive categories with a small set of generators are exactly the injective Grothendieck toposes; Made changes to abstract and intro to reflect the enhanced result; Changed formatting of diagram
    • 

    corecore