4 research outputs found

    Classical and quantum Merlin-Arthur automata

    Full text link
    We introduce Merlin-Arthur (MA) automata as Merlin provides a single certificate and it is scanned by Arthur before reading the input. We define Merlin-Arthur deterministic, probabilistic, and quantum finite state automata (resp., MA-DFAs, MA-PFAs, MA-QFAs) and postselecting MA-PFAs and MA-QFAs (resp., MA-PostPFA and MA-PostQFA). We obtain several results using different certificate lengths. We show that MA-DFAs use constant length certificates, and they are equivalent to multi-entry DFAs. Thus, they recognize all and only regular languages but can be exponential and polynomial state efficient over binary and unary languages, respectively. With sublinear length certificates, MA-PFAs can recognize several nonstochastic unary languages with cutpoint 1/2. With linear length certificates, MA-PostPFAs recognize the same nonstochastic unary languages with bounded error. With arbitrarily long certificates, bounded-error MA-PostPFAs verify every unary decidable language. With sublinear length certificates, bounded-error MA-PostQFAs verify several nonstochastic unary languages. With linear length certificates, they can verify every unary language and some NP-complete binary languages. With exponential length certificates, they can verify every binary language.Comment: 14 page

    Quotient Complexity Of Closed Languages

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00224-013-9515-7A language L is prefix-closed if, whenever a word w is in L, then every prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an analogous way, where by factor we mean contiguous subsequence, and by subword we mean scattered subsequence. We study the state complexity (which we prefer to call quotient complexity) of operations on prefix-, suffix-, factor-, and subword-closed languages. We find tight upper bounds on the complexity of the subword-closure of arbitrary languages, and on the complexity of boolean operations, concatenation, star, and reversal in each of the four classes of closed languages. We show that repeated applications of positive closure and complement to a closed language result in at most four distinct languages, while Kleene closure and complement give at most eight.Natural Sciences and Engineering Research Council of Canada [OGP0000871]VEGA grant [2/0183/11][APVV-0035-10

    In Memoriam, Solomon Marcus

    Get PDF
    This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him
    corecore