52,713 research outputs found

    An energy-based stability criterion for solitary traveling waves in Hamiltonian lattices

    Get PDF
    In this work, we revisit a criterion, originally proposed in [Nonlinearity {\bf 17}, 207 (2004)], for the stability of solitary traveling waves in Hamiltonian, infinite-dimensional lattice dynamical systems. We discuss the implications of this criterion from the point of view of stability theory, both at the level of the spectral analysis of the advance-delay differential equations in the co-traveling frame, as well as at that of the Floquet problem arising when considering the traveling wave as a periodic orbit modulo a shift. We establish the correspondence of these perspectives for the pertinent eigenvalue and Floquet multiplier and provide explicit expressions for their dependence on the velocity of the traveling wave in the vicinity of the critical point. Numerical results are used to corroborate the relevant predictions in two different models, where the stability may change twice. Some extensions, generalizations and future directions of this investigation are also discussed

    A Risk Management Model for Merger and Acquisitio

    Get PDF
    In this paper, a merger and acquisition risk management model is proposed for considering risk factors in the merger and acquisition activities. The proposed model aims to maximize the probability of success in merger and acquisition activities by managing and reducing the associated risks. The modeling of the proposed merger and acquisition risk management model is described and illustrated in this paper. The illustration result shows that the proposed model can help to screen the best target company with minimum associated risks in the merger and acquisition activity

    A Unifying Perspective: Solitary Traveling Waves As Discrete Breathers And Energy Criteria For Their Stability

    Get PDF
    In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a co-traveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and based on this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) HH of the model on the wave velocity cc changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H"(c0)H"(c_0) evaluated at the critical velocity c0c_0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers

    Spectral-based Propagation Schemes for Time-Dependent Quantum Systems with Application to Carbon Nanotubes

    Full text link
    Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the AC response of a (5,5) carbon nanotube within a 3D real-space mesh framework

    A polynomial eigenvalue approach for multiplex networks

    Get PDF
    We explore the block nature of the matrix representation of multiplex networks, introducing a new formalism to deal with its spectral properties as a function of the inter-layer coupling parameter. This approach allows us to derive interesting results based on an interpretation of the traditional eigenvalue problem. More specifically, we reduce the dimensionality of our matrices but increase the power of the characteristic polynomial, i.e, a polynomial eigenvalue problem. Such an approach may sound counterintuitive at first glance, but it allows us to relate the quadratic problem for a 2-Layer multiplex system with the spectra of the aggregated network and to derive bounds for the spectra, among many other interesting analytical insights. Furthermore, it also permits to directly obtain analytical and numerical insights on the eigenvalue behavior as a function of the coupling between layers. Our study includes the supra-adjacency, supra-Laplacian, and the probability transition matrices, which enable us to put our results under the perspective of structural phases in multiplex networks. We believe that this formalism and the results reported will make it possible to derive new results for multiplex networks in the future.Comment: 15 pages including figures. Submitted for publicatio
    corecore