1,246 research outputs found

    The collocation and meshless methods for differential equations in R(2)

    Full text link
    In recent years, meshless methods have become popular ones to solve differential equations. In this thesis, we aim at solving differential equations by using Radial Basis Functions, collocation methods and fundamental solutions (MFS). These methods are meshless, easy to understand, and even easier to implement

    Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

    Full text link
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity principle (DRM), this paper presents an inheretnly meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can solve nonlinear partial differential equations one-step without iteration if only boundary knots are used. The efficiency and utility of this new technique are validated through some typical numerical examples. Some promising developments of the BKM are also discussed.Comment: 36 pages, 2 figures, Welcome to contact me on this paper: Email: [email protected] or [email protected]

    Adaptive meshless centres and RBF stencils for Poisson equation

    Get PDF
    We consider adaptive meshless discretisation of the Dirichlet problem for Poisson equation based on numerical differentiation stencils obtained with the help of radial basis functions. New meshless stencil selection and adaptive refinement algorithms are proposed in 2D. Numerical experiments show that the accuracy of the solution is comparable with, and often better than that achieved by the mesh-based adaptive finite element method

    A meshless, integration-free, and boundary-only RBF technique

    Get PDF
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity method (DRM), this paper presents an inherently meshless, integration-free, boundary-only RBF collocation techniques for numerical solution of various partial differential equation systems. The basic ideas behind this methodology are very mathematically simple. In this study, the RBFs are employed to approximate the inhomogeneous terms via the DRM, while non-singular general solution leads to a boundary-only RBF formulation for homogenous solution. The present scheme is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of nonsingular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no require the artificial boundary and results in the symmetric system equations under certain conditions. The efficiency and utility of this new technique are validated through a number of typical numerical examples. Completeness concern of the BKM due to the only use of non-singular part of complete fundamental solution is also discussed

    Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection

    Full text link
    Polygonal finite elements generally do not pass the patch test as a result of quadrature error in the evaluation of weak form integrals. In this work, we examine the consequences of lack of polynomial consistency and show that it can lead to a deterioration of convergence of the finite element solutions. We propose a general remedy, inspired by techniques in the recent literature of mimetic finite differences, for restoring consistency and thereby ensuring the satisfaction of the patch test and recovering optimal rates of convergence. The proposed approach, based on polynomial projections of the basis functions, allows for the use of moderate number of integration points and brings the computational cost of polygonal finite elements closer to that of the commonly used linear triangles and bilinear quadrilaterals. Numerical studies of a two-dimensional scalar diffusion problem accompany the theoretical considerations
    • ā€¦
    corecore