6,075 research outputs found

    A variant of nested dissection for solving n by n grid problems

    Get PDF
    Nested dissection orderings are known to be very effective for solving the sparse positive definite linear systems which arise from n by n grid problems. In this paper nested dissection is shown to be the final step of incomplete nested dissection, an ordering which corresponds to the premature termination of dissection. Analyses of the arithmetic and storage requirements for incomplete nested dissection are given, and the ordering is shown to be competitive with nested dissection under certain conditions

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices
    • …
    corecore