85,302 research outputs found

    Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach

    Get PDF
    Reformulating computer vision problems over Riemannian manifolds has demonstrated superior performance in various computer vision applications. This is because visual data often forms a special structure lying on a lower dimensional space embedded in a higher dimensional space. However, since these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computationally expensive, especially when one considers the clustering analysis of massive amounts of data. To this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds. This framework implements random projections for manifold points via kernel space, which can preserve the geometric structure of the original space, but is computationally efficient. Here, we introduce three methods that follow our framework. We then validate our framework on several computer vision applications by comparing against popular clustering methods on Riemannian manifolds. Experimental results demonstrate that our framework maintains the performance of the clustering whilst massively reducing computational complexity by over two orders of magnitude in some cases

    A Landscape Analysis of Constraint Satisfaction Problems

    Full text link
    We discuss an analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring, in terms of an effective energy landscape. Several intriguing geometrical properties of the solution space become in this light familiar in terms of the well-studied ones of rugged (glassy) energy landscapes. A `benchmark' algorithm naturally suggested by this construction finds solutions in polynomial time up to a point beyond the `clustering' and in some cases even the `thermodynamic' transitions. This point has a simple geometric meaning and can be in principle determined with standard Statistical Mechanical methods, thus pushing the analytic bound up to which problems are guaranteed to be easy. We illustrate this for the graph three and four-coloring problem. For Packing problems the present discussion allows to better characterize the `J-point', proposed as a systematic definition of Random Close Packing, and to place it in the context of other theories of glasses.Comment: 17 pages, 69 citations, 12 figure

    Continuity argument revisited: geometry of root clustering via symmetric products

    Full text link
    We study the spaces of polynomials stratified into the sets of polynomial with fixed number of roots inside certain semialgebraic region Ω\Omega, on its border, and at the complement to its closure. Presented approach is a generalisation, unification and development of several classical approaches to stability problems in control theory: root clustering (DD-stability) developed by R.E. Kalman, B.R. Barmish, S. Gutman et al., DD-decomposition(Yu.I. Neimark, B.T. Polyak, E.N. Gryazina) and universal parameter space method(A. Fam, J. Meditch, J.Ackermann). Our approach is based on the interpretation of correspondence between roots and coefficients of a polynomial as a symmetric product morphism. We describe the topology of strata up to homotopy equivalence and, for many important cases, up to homeomorphism. Adjacencies between strata are also described. Moreover, we provide an explanation for the special position of classical stability problems: Hurwitz stability, Schur stability, hyperbolicity.Comment: 45 pages, 4 figure

    On Variants of k-means Clustering

    Get PDF
    \textit{Clustering problems} often arise in the fields like data mining, machine learning etc. to group a collection of objects into similar groups with respect to a similarity (or dissimilarity) measure. Among the clustering problems, specifically \textit{kk-means} clustering has got much attention from the researchers. Despite the fact that kk-means is a very well studied problem its status in the plane is still an open problem. In particular, it is unknown whether it admits a PTAS in the plane. The best known approximation bound in polynomial time is 9+\eps. In this paper, we consider the following variant of kk-means. Given a set CC of points in Rd\mathcal{R}^d and a real f>0f > 0, find a finite set FF of points in Rd\mathcal{R}^d that minimizes the quantity fF+pCminqFpq2f*|F|+\sum_{p\in C} \min_{q \in F} {||p-q||}^2. For any fixed dimension dd, we design a local search PTAS for this problem. We also give a "bi-criterion" local search algorithm for kk-means which uses (1+\eps)k centers and yields a solution whose cost is at most (1+\eps) times the cost of an optimal kk-means solution. The algorithm runs in polynomial time for any fixed dimension. The contribution of this paper is two fold. On the one hand, we are being able to handle the square of distances in an elegant manner, which yields near optimal approximation bound. This leads us towards a better understanding of the kk-means problem. On the other hand, our analysis of local search might also be useful for other geometric problems. This is important considering that very little is known about the local search method for geometric approximation.Comment: 15 page
    corecore