4,095 research outputs found

    Nonmonotonic Probabilistic Logics between Model-Theoretic Probabilistic Logic and Probabilistic Logic under Coherence

    Full text link
    Recently, it has been shown that probabilistic entailment under coherence is weaker than model-theoretic probabilistic entailment. Moreover, probabilistic entailment under coherence is a generalization of default entailment in System P. In this paper, we continue this line of research by presenting probabilistic generalizations of more sophisticated notions of classical default entailment that lie between model-theoretic probabilistic entailment and probabilistic entailment under coherence. That is, the new formalisms properly generalize their counterparts in classical default reasoning, they are weaker than model-theoretic probabilistic entailment, and they are stronger than probabilistic entailment under coherence. The new formalisms are useful especially for handling probabilistic inconsistencies related to conditioning on zero events. They can also be applied for probabilistic belief revision. More generally, in the same spirit as a similar previous paper, this paper sheds light on exciting new formalisms for probabilistic reasoning beyond the well-known standard ones.Comment: 10 pages; in Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-2002), Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, pages 265-274, Toulouse, France, April 200

    On Properties of Update Sequences Based on Causal Rejection

    Full text link
    We consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under answer set semantics. New information is incorporated into the current knowledge base subject to a causal rejection principle enforcing that, in case of conflicts, more recent rules are preferred and older rules are overridden. Such a rejection principle is also exploited in other approaches to update logic programs, e.g., in dynamic logic programming by Alferes et al. We give a thorough analysis of properties of our approach, to get a better understanding of the causal rejection principle. We review postulates for update and revision operators from the area of theory change and nonmonotonic reasoning, and some new properties are considered as well. We then consider refinements of our semantics which incorporate a notion of minimality of change. As well, we investigate the relationship to other approaches, showing that our approach is semantically equivalent to inheritance programs by Buccafurri et al. and that it coincides with certain classes of dynamic logic programs, for which we provide characterizations in terms of graph conditions. Therefore, most of our results about properties of causal rejection principle apply to these approaches as well. Finally, we deal with computational complexity of our approach, and outline how the update semantics and its refinements can be implemented on top of existing logic programming engines.Comment: 59 pages, 2 figures, 3 tables, to be published in "Theory and Practice of Logic Programming

    Casimir Energy and Entropy between perfect metal Spheres

    Full text link
    We calculate the Casimir energy and entropy for two perfect metal spheres in the large and short separation limit. We obtain nonmonotonic behavior of the Helmholtz free energy with separation and temperature, leading to parameter ranges with negative entropy, and also nonmonotonic behavior of the entropy with temperature and with the separation between the spheres. The appearance of this anomalous behavior of the entropy is discussed as well as its thermodynamic consequences.Comment: 10 pages and 8 figures. Accepted for publication in the Proceedings of the tenth conference on Quantum Field Theory under the influence of external conditions - QFEXT'1

    Probabilistic Default Reasoning with Conditional Constraints

    Full text link
    We propose a combination of probabilistic reasoning from conditional constraints with approaches to default reasoning from conditional knowledge bases. In detail, we generalize the notions of Pearl's entailment in system Z, Lehmann's lexicographic entailment, and Geffner's conditional entailment to conditional constraints. We give some examples that show that the new notions of z-, lexicographic, and conditional entailment have similar properties like their classical counterparts. Moreover, we show that the new notions of z-, lexicographic, and conditional entailment are proper generalizations of both their classical counterparts and the classical notion of logical entailment for conditional constraints.Comment: 8 pages; to appear in Proceedings of the Eighth International Workshop on Nonmonotonic Reasoning, Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, Breckenridge, Colorado, USA, 9-11 April 200

    Cotunneling through quantum dots coupled to magnetic leads: zero-bias anomaly for non-collinear magnetic configurations

    Full text link
    Cotunneling transport through quantum dots weakly coupled to non-collinearly magnetized leads is analyzed theoretically by means of the real-time diagrammatic technique. The electric current, dot occupations, and dot spin are calculated in the Coulomb blockade regime and for arbitrary magnetic configuration of the system. It is shown that an effective exchange field exerted on the dot by ferromagnetic leads can significantly modify the transport characteristics in non-collinear magnetic configurations, in particular the zero-bias anomaly found recently for antiparallel configuration. For asymmetric Anderson model, the exchange field gives rise to precession of the dot spin, which leads to a nonmonotonic dependence of the differential conductance and tunnel magnetoresistance on the angle between magnetic moments of the leads. An enhanced differential conductance and negative TMR are found for certain non-collinear configurations.Comment: 12 pages, 9 figgure
    corecore