221 research outputs found

    An effective heuristic for project scheduling with resource availability cost

    Full text link
    [EN] The resource constrained project scheduling problem (RCPSP) is widely studied in the literature and has a host of applications in practice. As a variant of the RCPSP, the resource availability cost problem (RACP), which has the aim of minimizing the availability costs of renewable resources in order to complete a project subject to a given deadline, is considered in this paper. We divide the RACP into two sub-problems: the sequencing problem and the resource decision problem, and propose a multi-start iterative search heuristic (MSIS) to solve it. For the sequencing problem, an iterative search framework is constructed to effectively search the activity sequences. A two stage resource adjustment procedure and a backward peak elimination procedure is developed for solving the resource decision problem. MSIS is compared with three existing algorithms on both PSPLib and RanGen data sets involving 1380 instances. A complete calibration of the different parameters and operators of MSIS by means of a design of experiments approach is given. Experimental and statistical results show that MSIS outperforms the other three algorithms in both effectiveness and efficiency by a significant margin. (C) 2016 Published by Elsevier B.V.This work is supported by the National Natural Science Foundation of China (Nos. 61572127, 61272377), the Key Research & Development program in Jiangsu Province (No. BE2015728) and the Collaborative Innovation Center of Wireless Communications Technology. Rubén Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project SCHEYARD - Optimization of Scheduling Problems in Container Yards with reference DPI2015-65895-R co-financed with FEDER funds.Zhu, X.; Ruiz García, R.; Li, S.; Li, X. (2017). An effective heuristic for project scheduling with resource availability cost. European Journal of Operational Research. 257(3):746-762. https://doi.org/10.1016/j.ejor.2016.08.049S746762257

    Railway scheduling reduces the expected project makespan.

    Get PDF
    The Critical Chain Scheduling and Buffer Management (CC/BM) methodology, proposed by Goldratt (1997), introduced the concepts of feeding buffers, project buffers and resource buffers as well as the roadrunner mentality. This last concept, in which activities are started as soon as possible, was introduced in order to speed up projects by taking advantage of predecessors finishing early. Later on, the railway scheduling concept of never starting activities earlier than planned was introduced as a way to increase the stability of the project, typically at the cost of an increase in the expected project makespan. In this paper, we will indicate a realistic situation in which railway scheduling improves both the stability and the expected project makespan over roadrunner scheduling.Railway scheduling; Roadrunner scheduling; Feeding buffer; Priority list; Resource availability;

    A random key based genetic algorithm for the resource constrained project scheduling problem

    Get PDF
    This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm

    Optimization Algorithms in Project Scheduling

    Get PDF
    Scheduling, or planning in a general perspective, is the backbone of project management; thus, the successful implementation of project scheduling is a key factor to projects’ success. Due to its complexity and challenging nature, scheduling has become one of the most famous research topics within the operational research context, and it has been widely researched in practical applications within various industries, especially manufacturing, construction, and computer engineering. Accordingly, the literature is rich with many implementations of different optimization algorithms and their extensions within the project scheduling problem (PSP) analysis field. This study is intended to exhibit the general modelling of the PSP, and to survey the implementations of various optimization algorithms adopted for solving the different types of the PSP

    ROBUST RESOURCE INVESTMENT PROBLEM WITH TIME-DEPENDENT RESOURCE COST AND TARDINESS PENALTY

    Get PDF
    The Resource Investment Problem (RIP) is a variant of the well-known Resource Constraint Project Scheduling Problem (RCPSP) that requires finding the optimal resource allocation, given a preset completion date, with the objective of minimizing the total cost. The practical relevance of RIP is very obvious; since the decision maker (the project manager for example) wants to know what resources are required to achieve the targeted project completion date. RIP helps to decide the amount of investment in resources that yield the optimal solution, in addition to the optimal tradeoff between completion time and resource investment. In practice, most of the projects are associated with due dates beyond which a tardiness penalty may be applied. To avoid the tardiness penalty, project managers sometimes decide to add more resources, thereby increasing resource investment cost, to the project to finish earlier. In this thesis the (RIP) has been extended to consider time-depended resource cost instead of time-independent resource cost in the classical RIP. The problem was named Resource Investment Problem with Time-Dependent Resource Cost and Tardiness Penalty, abbreviated as (RIP-TDRC). A mathematical model was introduced to simultaneously find the optimal resource assignment and activity staring times. The objective is to minimize the sum of the resources and tardiness cost. Two versions of this problem are addressed in this thesis: the deterministic version of RIP-TDRC and the stochastic version. For the latter, it is assumed that the activity durations are subject to many uncertainties such as (bad weather conditions, material shortage, employee’s absences …etc.). To solve this problem, a simulation-optimization based algorithm is proposed. This algorithm solves the deterministic problem version iteratively through all possible project completion times and simulates the project considering the uncertainties to find the optimal solution. The performance of the proposed algorithm and the effect of some problem parameters on the solution are assessed through computational experiments. The experiments revealed the usefulness of the algorithm in finding relatively robust solution for small problem sizes

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    An examination of heuristics for the shelf space allocation problem.

    Get PDF
    Wong, Mei Ting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (p. 115-120).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Our Contributions --- p.4Chapter 1.3 --- Framework of Shelf Space Allocation Problem --- p.4Chapter 1.4 --- Organization --- p.6Chapter 2. --- Literature Review --- p.7Chapter 2.1 --- Introduction --- p.7Chapter 2.2 --- Commercial Approaches --- p.7Chapter 2.3 --- Experimental Approaches --- p.8Chapter 2.4 --- Optimization Approaches --- p.11Chapter 2.4.1 --- Exact Approaches --- p.11Chapter 2.4.2 --- Heuristics Approaches --- p.16Chapter 2.5 --- Summary --- p.19Chapter 3. --- Overview of Shelf Space Allocation Problem --- p.21Chapter 3.1 --- Introduction --- p.21Chapter 3.2 --- Problem description --- p.22Chapter 3.2.1 --- Mathematical Model --- p.24Chapter 3.2.1.1 --- Notations --- p.25Chapter 3.2.1.2 --- Model --- p.25Chapter 3.2.1.3 --- Assumption --- p.26Chapter 3.2.1.4 --- Notations of final model --- p.27Chapter 3.2.1.5 --- Final model --- p.27Chapter 3.3 --- Original Heuristic --- p.28Chapter 3.3.1 --- Yang (2001) Method --- p.28Chapter 3.3.2 --- Remarks on Original Heuristic --- p.29Chapter 3.4 --- Original Heuristic with Yang's Adjustment --- p.30Chapter 3.4.1 --- Remarks on Yang's Adjustment --- p.32Chapter 3.5 --- New Neighborhood Movements --- p.33Chapter 3.5.1 --- New Adjustment Phase --- p.33Chapter 3.6 --- Network Flow Model --- p.35Chapter 3.6.1 --- ULSSAP --- p.35Chapter 3.6.2 --- Transforming shelf space allocation problem (SSAP) --- p.38Chapter 3.7 --- Tabu Search --- p.41Chapter 3.7.1 --- Tabu Search Algorithm --- p.42Chapter 3.7.1.1 --- Neighborhood search moves --- p.42Chapter 3.7.1.2 --- Candidate list strategy --- p.45Chapter 3.7.1.3 --- Tabu list --- p.46Chapter 3.7.1.4 --- Aspiration criteria.........................................: --- p.47Chapter 3.7.1.5 --- Intensification and Diversification --- p.48Chapter 3.7.1.6 --- Stopping criterion --- p.49Chapter 3.7.1.7 --- Probabilistic choice --- p.50Chapter 3.7.2 --- General Process of Tabu Search --- p.51Chapter 3.7.3 --- Application of Tabu Search to SSAP --- p.54Chapter 3.7.4 --- Analysis of Tabu Search --- p.58Chapter 4. --- Tabu Search with Path Relinking --- p.60Chapter 4.1 --- Introduction --- p.60Chapter 4.2 --- Foundations of path relinking --- p.62Chapter 4.3 --- Path Relinking Template --- p.65Chapter 4.4 --- Identification of Reference set --- p.69Chapter 4.5 --- Choosing initial and guiding solution --- p.73Chapter 4.6 --- Neighborhood structure --- p.74Chapter 4.7 --- Moving along paths --- p.81Chapter 4.8 --- Application of Tabu Search with Path Relinking --- p.87Chapter 4.9 --- Conclusion --- p.90Chapter 5. --- Computational Studies --- p.92Chapter 5.1 --- Introduction --- p.92Chapter 5.2 --- General Parameter Setting --- p.92Chapter 5.3 --- Parameter values for Tabu search --- p.94Chapter 5.4 --- Sensitivity test for Tabu search with Path Relinking --- p.95Chapter 5.4.1 --- Reference Set Strategies and Initial and Guiding Solution Criteria --- p.96Chapter 5.4.2 --- Frequency of Path Relinking --- p.99Chapter 5.4.3 --- Size of reference set --- p.101Chapter 5.4.4 --- Comparison with Tabu Search --- p.102Chapter 5.5 --- Comparison with other heuristics --- p.105Chapter 5.6 --- Conclusion --- p.109Chapter 6. --- Conclusion --- p.111Chapter 6.1 --- Summary of achievements --- p.112Chapter 6.2 --- Future Works --- p.113Bibliography --- p.11

    An Accelerating Two-Layer Anchor Search With Application to the Resource-Constrained Project Scheduling Problem

    Full text link

    A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags

    Full text link
    [EN] The efficient use of resources is a key factor to minimize the cost while meeting time deadlines and quality requirements; this is especially important in construction projects where field operations take fluctuations of resources unproductive and costly. Resource Leveling Problems (RLP) aim to sequence the construction activities that maximize the resource consumption efficiency over time, minimizing the variability. Exact algorithms for the RLP have been proposed throughout the years to offer optimal solutions; however, these problems require a vast computational capability ( combinatorial explosion ) that makes them unpractical. Therefore, alternative heuristic and metaheuristic algorithms have been suggested in the literature to find local optimal solutions, using different libraries to benchmark optimal values; for example, the Project Scheduling Problem LIBrary for minimal lags is still open to be solved to optimality for RLP. To partially fill this gap, the authors propose a Parallel Branch and Bound algorithm for the RLP with minimal lags to solve the RLP with an acceptable computational effort. This way, this research contributes to the body of knowledge of construction project scheduling providing the optimums of 50 problems for the RLP with minimal lags for the first time, allowing future contributors to benchmark their heuristics meth-ods against exact results by obtaining the distance of their solution to the optimal values. Furthermore, for practitioners,the time required to solve this kind of problem is reasonable and practical, considering that unbalanced resources can risk the goals of the construction project.This research was supported by the FAPA program of the Universidad de Los Andes (Colombia). The authors would like to thank the research group of Construction Engineering and Management (INgeco), especially J. S. Rojas-Quintero, and the Department of Systems Engineering at the Universidad de Los Andes. The authors are also grateful to the anonymous reviewers for their valuable and constructive suggestions.Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E. (2017). A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING. 32:474-498. doi:10.1111/mice.12233S47449832Adeli, H. (2000). High-Performance Computing for Large-Scale Analysis, Optimization, and Control. Journal of Aerospace Engineering, 13(1), 1-10. doi:10.1061/(asce)0893-1321(2000)13:1(1)ADELI, H., & KAMAL, O. (2008). Parallel Structural Analysis Using Threads. Computer-Aided Civil and Infrastructure Engineering, 4(2), 133-147. doi:10.1111/j.1467-8667.1989.tb00015.xAdeli, H., & Kamal, O. (1992). Concurrent analysis of large structures—II. applications. Computers & Structures, 42(3), 425-432. doi:10.1016/0045-7949(92)90038-2Adeli, H., Kamat, M. P., Kulkarni, G., & Vanluchene, R. D. (1993). High‐Performance Computing in Structural Mechanics and Engineering. Journal of Aerospace Engineering, 6(3), 249-267. doi:10.1061/(asce)0893-1321(1993)6:3(249)Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)Adeli, H., & Kumar, S. (1995). Concurrent Structural Optimization on Massively Parallel Supercomputer. Journal of Structural Engineering, 121(11), 1588-1597. doi:10.1061/(asce)0733-9445(1995)121:11(1588)ADELI, H., & VISHNUBHOTLA, P. (2008). Parallel Processing. Computer-Aided Civil and Infrastructure Engineering, 2(3), 257-269. doi:10.1111/j.1467-8667.1987.tb00150.xAdeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)Alsayegh, H., & Hariga, M. (2012). Hybrid meta-heuristic methods for the multi-resource leveling problem with activity splitting. Automation in Construction, 27, 89-98. doi:10.1016/j.autcon.2012.04.017Anagnostopoulos, K., & Koulinas, G. (2012). Resource-Constrained Critical Path Scheduling by a GRASP-Based Hyperheuristic. Journal of Computing in Civil Engineering, 26(2), 204-213. doi:10.1061/(asce)cp.1943-5487.0000116Anagnostopoulos, K. P., & Koulinas, G. K. (2010). A simulated annealing hyperheuristic for construction resource levelling. Construction Management and Economics, 28(2), 163-175. doi:10.1080/01446190903369907Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.xBandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource leveling using non-serial dyanamic programming. European Journal of Operational Research, 78(2), 162-177. doi:10.1016/0377-2217(94)90380-8Benjaoran, V., Tabyang, W., & Sooksil, N. (2015). Precedence relationship options for the resource levelling problem using a genetic algorithm. Construction Management and Economics, 33(9), 711-723. doi:10.1080/01446193.2015.1100317Bianco, L., Caramia, M., & Giordani, S. (2016). Resource levelling in project scheduling with generalized precedence relationships and variable execution intensities. OR Spectrum, 38(2), 405-425. doi:10.1007/s00291-016-0435-1Chakroun, I., & Melab, N. (2015). Towards a heterogeneous and adaptive parallel Branch-and-Bound algorithm. Journal of Computer and System Sciences, 81(1), 72-84. doi:10.1016/j.jcss.2014.06.012Christodoulou, S. E., Ellinas, G., & Michaelidou-Kamenou, A. (2010). Minimum Moment Method for Resource Leveling Using Entropy Maximization. Journal of Construction Engineering and Management, 136(5), 518-527. doi:10.1061/(asce)co.1943-7862.0000149Clausen, J., & Perregaard, M. (1999). Annals of Operations Research, 90, 1-17. doi:10.1023/a:1018952429396Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2010). A Branch-and-Price Algorithm for Multi-mode Resource Leveling. Lecture Notes in Computer Science, 226-238. doi:10.1007/978-3-642-13193-6_20Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2015). A branch-price-and-cut algorithm for multi-mode resource leveling. European Journal of Operational Research, 245(1), 70-80. doi:10.1016/j.ejor.2015.02.043Crainic, T. G., Le Cun, B., & Roucairol, C. (s. f.). Parallel Branch-and-Bound Algorithms. Parallel Combinatorial Optimization, 1-28. doi:10.1002/9780470053928.ch1Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038Damci, A., Arditi, D., & Polat, G. (2013). Multiresource Leveling in Line-of-Balance Scheduling. Journal of Construction Engineering and Management, 139(9), 1108-1116. doi:10.1061/(asce)co.1943-7862.0000716Damci, A., Arditi, D., & Polat, G. (2015). Impacts of different objective functions on resource leveling in Line-of-Balance scheduling. KSCE Journal of Civil Engineering, 20(1), 58-67. doi:10.1007/s12205-015-0578-7De Reyck, B., & Herroelen, W. (1996). On the use of the complexity index as a measure of complexity in activity networks. European Journal of Operational Research, 91(2), 347-366. doi:10.1016/0377-2217(94)00344-0Hossein Hashemi Doulabi, S., Seifi, A., & Shariat, S. Y. (2011). Efficient Hybrid Genetic Algorithm for Resource Leveling via Activity Splitting. Journal of Construction Engineering and Management, 137(2), 137-146. doi:10.1061/(asce)co.1943-7862.0000261Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper bounds for the resource investment problem. Journal of the Operational Research Society, 52(3), 340-351. doi:10.1057/palgrave.jors.2601099Easa, S. M. (1989). Resource Leveling in Construction by Optimization. Journal of Construction Engineering and Management, 115(2), 302-316. doi:10.1061/(asce)0733-9364(1989)115:2(302)El-Rayes, K., & Jun, D. H. (2009). Optimizing Resource Leveling in Construction Projects. Journal of Construction Engineering and Management, 135(11), 1172-1180. doi:10.1061/(asce)co.1943-7862.0000097Florez, L., Castro-Lacouture, D., & Medaglia, A. L. (2013). Sustainable workforce scheduling in construction program management. Journal of the Operational Research Society, 64(8), 1169-1181. doi:10.1057/jors.2012.164Gaitanidis, A., Vassiliadis, V., Kyriklidis, C., & Dounias, G. (2016). Hybrid Evolutionary Algorithms in Resource Leveling Optimization. Proceedings of the 9th Hellenic Conference on Artificial Intelligence - SETN ’16. doi:10.1145/2903220.2903227Gather, T., Zimmermann, J., & Bartels, J.-H. (2010). Exact methods for the resource levelling problem. Journal of Scheduling, 14(6), 557-569. doi:10.1007/s10951-010-0207-8Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573-583. doi:10.1016/j.autcon.2007.10.005Hariga, M., & El-Sayegh, S. M. (2011). Cost Optimization Model for the Multiresource Leveling Problem with Allowed Activity Splitting. Journal of Construction Engineering and Management, 137(1), 56-64. doi:10.1061/(asce)co.1943-7862.0000251Harris, R. B. (1990). Packing Method for Resource Leveling (Pack). Journal of Construction Engineering and Management, 116(2), 331-350. doi:10.1061/(asce)0733-9364(1990)116:2(331)Hegazy, T. (1999). Optimization of Resource Allocation and Leveling Using Genetic Algorithms. Journal of Construction Engineering and Management, 125(3), 167-175. doi:10.1061/(asce)0733-9364(1999)125:3(167)Heon Jun, D., & El-Rayes, K. (2011). Multiobjective Optimization of Resource Leveling and Allocation during Construction Scheduling. Journal of Construction Engineering and Management, 137(12), 1080-1088. doi:10.1061/(asce)co.1943-7862.0000368Hiyassat, M. A. S. (2000). Modification of Minimum Moment Approach in Resource Leveling. Journal of Construction Engineering and Management, 126(4), 278-284. doi:10.1061/(asce)0733-9364(2000)126:4(278)Hiyassat, M. A. S. (2001). Applying Modified Minimum Moment Method to Multiple Resource Leveling. Journal of Construction Engineering and Management, 127(3), 192-198. doi:10.1061/(asce)0733-9364(2001)127:3(192)Ismail, M. M., el-raoof, O. abd, & Abd EL-Wahed, W. F. (2014). A Parallel Branch and Bound Algorithm for Solving Large Scale Integer Programming Problems. Applied Mathematics & Information Sciences, 8(4), 1691-1698. doi:10.12785/amis/080425Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1Koulinas, G. K., & Anagnostopoulos, K. P. (2013). A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities. Automation in Construction, 31, 169-175. doi:10.1016/j.autcon.2012.11.002Lai, T.-H., & Sahni, S. (1984). Anomalies in parallel branch-and-bound algorithms. Communications of the ACM, 27(6), 594-602. doi:10.1145/358080.358103Leu, S.-S., Yang, C.-H., & Huang, J.-C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27-41. doi:10.1016/s0926-5805(99)00011-4Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling Policies for the Stochastic Resource Leveling Problem. Journal of Construction Engineering and Management, 141(2), 04014072. doi:10.1061/(asce)co.1943-7862.0000936Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073Menesi, W., & Hegazy, T. (2015). Multimode Resource-Constrained Scheduling and Leveling for Practical-Size Projects. Journal of Management in Engineering, 31(6), 04014092. doi:10.1061/(asce)me.1943-5479.0000338Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources. doi:10.1007/978-3-540-24800-2Neumann, K., & Zimmermann, J. (1999). Methods for Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent Time Windows. International Series in Operations Research & Management Science, 261-287. doi:10.1007/978-1-4615-5533-9_12Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425-443. doi:10.1016/s0377-2217(99)00498-1Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381. doi:10.1007/pl00013357Perregaard, M., & Clausen, J. (1998). Annals of Operations Research, 83, 137-160. doi:10.1023/a:1018903912673Ponz-Tienda, J. L., Pellicer, E., Benlloch-Marco, J., & Andrés-Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering, 30(11), 872-891. doi:10.1111/mice.12166Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach. Management Science, 16(1), 93-108. doi:10.1287/mnsc.16.1.93Ranjbar, M. (2013). A path-relinking metaheuristic for the resource levelling problem. Journal of the Operational Research Society, 64(7), 1071-1078. doi:10.1057/jors.2012.119Rieck, J., & Zimmermann, J. (2014). Exact Methods for Resource Leveling Problems. Handbook on Project Management and Scheduling Vol.1, 361-387. doi:10.1007/978-3-319-05443-8_17Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221(1), 27-37. doi:10.1016/j.ejor.2012.03.003Saleh, A., & Adeli, H. (1994). Microtasking, Macrotasking, and Autotasking for Structural Optimization. Journal of Aerospace Engineering, 7(2), 156-174. doi:10.1061/(asce)0893-1321(1994)7:2(156)Saleh, A., & Adeli, H. (1994). Parallel Algorithms for Integrated Structural/Control Optimization. Journal of Aerospace Engineering, 7(3), 297-314. doi:10.1061/(asce)0893-1321(1994)7:3(297)Son, J., & Mattila, K. G. (2004). Binary Resource Leveling Model: Activity Splitting Allowed. Journal of Construction Engineering and Management, 130(6), 887-894. doi:10.1061/(asce)0733-9364(2004)130:6(887)Son, J., & Skibniewski, M. J. (1999). Multiheuristic Approach for Resource Leveling Problem in Construction Engineering: Hybrid Approach. Journal of Construction Engineering and Management, 125(1), 23-31. doi:10.1061/(asce)0733-9364(1999)125:1(23)Tang, Y., Liu, R., & Sun, Q. (2014). Two-Stage Scheduling Model for Resource Leveling of Linear Projects. Journal of Construction Engineering and Management, 140(7), 04014022. doi:10.1061/(asce)co.1943-7862.0000862Wah, Guo-jie Li, & Chee Fen Yu. (1985). Multiprocessing of Combinatorial Search Problems. Computer, 18(6), 93-108. doi:10.1109/mc.1985.1662926Yeniocak , H. 2013 An efficient branch and bound algorithm for the resource leveling problem Ph.D. dissertation, Middle East Technical University, School of Natural and Applied SciencesYounis, M. A., & Saad, B. (1996). Optimal resource leveling of multi-resource projects. Computers & Industrial Engineering, 31(1-2), 1-4. doi:10.1016/0360-8352(96)00116-
    corecore