2,479 research outputs found

    In-network Sparsity-regularized Rank Minimization: Algorithms and Applications

    Full text link
    Given a limited number of entries from the superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, recovery of the low-rank and sparse components is a fundamental task subsuming compressed sensing, matrix completion, and principal components pursuit. This paper develops algorithms for distributed sparsity-regularized rank minimization over networks, when the nuclear- and â„“1\ell_1-norm are used as surrogates to the rank and nonzero entry counts of the sought matrices, respectively. While nuclear-norm minimization has well-documented merits when centralized processing is viable, non-separability of the singular-value sum challenges its distributed minimization. To overcome this limitation, an alternative characterization of the nuclear norm is adopted which leads to a separable, yet non-convex cost minimized via the alternating-direction method of multipliers. The novel distributed iterations entail reduced-complexity per-node tasks, and affordable message passing among single-hop neighbors. Interestingly, upon convergence the distributed (non-convex) estimator provably attains the global optimum of its centralized counterpart, regardless of initialization. Several application domains are outlined to highlight the generality and impact of the proposed framework. These include unveiling traffic anomalies in backbone networks, predicting networkwide path latencies, and mapping the RF ambiance using wireless cognitive radios. Simulations with synthetic and real network data corroborate the convergence of the novel distributed algorithm, and its centralized performance guarantees.Comment: 30 pages, submitted for publication on the IEEE Trans. Signal Proces

    When Social Influence Meets Item Inference

    Full text link
    Research issues and data mining techniques for product recommendation and viral marketing have been widely studied. Existing works on seed selection in social networks do not take into account the effect of product recommendations in e-commerce stores. In this paper, we investigate the seed selection problem for viral marketing that considers both effects of social influence and item inference (for product recommendation). We develop a new model, Social Item Graph (SIG), that captures both effects in form of hyperedges. Accordingly, we formulate a seed selection problem, called Social Item Maximization Problem (SIMP), and prove the hardness of SIMP. We design an efficient algorithm with performance guarantee, called Hyperedge-Aware Greedy (HAG), for SIMP and develop a new index structure, called SIG-index, to accelerate the computation of diffusion process in HAG. Moreover, to construct realistic SIG models for SIMP, we develop a statistical inference based framework to learn the weights of hyperedges from data. Finally, we perform a comprehensive evaluation on our proposals with various baselines. Experimental result validates our ideas and demonstrates the effectiveness and efficiency of the proposed model and algorithms over baselines.Comment: 12 page
    • …
    corecore