
A Study on Map-Matching and Map Inference Problems

Pingfu Chao

Master of Engineering

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2020

School of Information Technology and Electrical Engineering

Abstract

The recent upsurge of GPS(Global Positioning System)-equipped devices has enabled the tracking

of users’/vehicles’ locations. Meanwhile, the emergence of various location-based services empha-

sises the crucial role of the underlying digital map. However, the intrinsic inaccuracy of both maps and

GPS trajectories has been a major issue that hinders the development of location-based applications,

like navigation, location-based recommendation and traffic analysis. Several techniques are proposed

to deal with the data quality issues in maps and GPS trajectories, respectively: (1) To avoid the exces-

sive cost of ground surveying for map construction, the map inference algorithm aims to construct a

digital map from GPS trajectories automatically. (2) To ensure the recency of digital maps, the map

update algorithm focusses on updating an existing map using recent GPS trajectories. (3) To get rid

of the GPS trajectory errors, the map-matching algorithm aligns a trajectory to the underlying map to

find the user’s actual travel path. In our thesis, we mainly focus on surveying the above techniques

as well as proposing new solutions for solving the aforementioned data quality issues. Overall, our

contributions are listed below.

• We conduct a comprehensive survey and experimental study of existing map inference algo-

rithms. Due to the labour intensity of traditional map creation and the frequent road changes

nowadays, map inference is deemed to be a promising solution to automatic map construc-

tion and updates. However, existing map inference algorithms suffer from low GPS accuracy,

which makes the quality of the constructed map unsatisfactory. In this thesis, different from

previous surveys, we (1) include the most recent solutions and propose a new categorisation

of methods; (2) we study how different types of GPS errors affect the quality of inference re-

sults; (3) we compare the existing map inference quality measures on both real dataset and

synthetic datasets, which are generated by our proposed data generators, regarding their ability

to identify map quality issues. Overall, our study provides a guideline about (1) which inference

method should be considered for each type of applications, (2) what trajectory quality should be

guaranteed for map inference and (3) the direction of future work for quantitative map quality

measures.

• We review the existing map-matching algorithms and study their performance under different

data quality scenarios. As an indispensable pre-processing step for trajectories, the trajectory

map-matching problem has been an ongoing research topic for more than two decades. In this

thesis, we summarise and classify the existing map-matching algorithms based on their map-

matching models, working scenarios and input data features. In addition, we conduct extensive

experiments on several representative map-matching algorithms to compare their performance

ii

under various working scenarios, data settings and performance requirements. The experiments

are done on both real and synthetic datasets with different scales to (1) characterise the strengths

and weaknesses of each algorithm category, (2) reveal how data quality issues affect the map-

matching performance and (3) identify the remaining challenges in map-matching problems.

• We propose a co-optimisation framework that aims to solve the data quality of both GPS tra-

jectories and maps simultaneously. Despite that many map-matching and map inference/update

techniques have been proposed to deal with data quality issues on GPS trajectories and maps,

respectively, calibrating one of the datasets relies on the other as a reference. Those reference

data are required to be accurate, which is unobtainable in practice. Therefore, we propose a

map-trajectory co-optimisation framework that takes the inaccurate map and trajectory data as

inputs and mutually increases the accuracy of both. In our framework, both map-matching and

map updates are run iteratively, and we propose two scores for each new map update, namely

influence score and confidence score, to ensure the map is updated correctly and in a consistent

way. Besides, our framework accepts most of the existing map-matching and map inference

algorithms as candidate solutions in matching and update phases and receives straightforward

performance boost through our framework.

• We develop a map service platform that supports the aforementioned data preprocessing/cleaning

procedures. Considering the close relationship between map-matching and map inference/update

and their broad applications, there is a lack of open-source tools providing those map-based data

cleaning processes. In this thesis, we introduce the main features and functionalities of our map

service platform, which supports multiple data cleaning processes, including map-matching,

map inference and co-optimisation. Our platform provides various solutions for each type of

cleaning process, which can be used for both future research comparisons and industrial appli-

cations.

iii

Declaration by Author

This thesis is composed of my original work, and contains no material previously published or written

by another person except where due reference has been made in the text. I have clearly stated the

contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance,

survey design, data analysis, significant technical procedures, professional editorial advice, financial

support and any other original research work used or reported in my thesis. The content of my thesis

is the result of work I have carried out since the commencement of my higher degree by research

candidature and does not include a substantial part of work that has been submitted to qualify for the

award of any other degree or diploma in any university or other tertiary institution. I have clearly

stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has

been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s)

of that material. Where appropriate I have obtained copyright permission from the copyright holder to

reproduce material in this thesis and have sought permission from co-authors for any jointly authored

works included in the thesis.

iv

Publications included in this thesis

Pingfu Chao, Wen Hua, Rui Mao, Jiajie Xu, and Xiaofang Zhou. A survey and quantitative study

on map inference algorithms. Accepted by IEEE Transactions on Knowledge and Data Engineering

(TKDE), 2020. –incorporated as Chapter 3.

Contributor Statement of contribution

Pingfu Chao (Candidate)

Experiment design (60%)

Experiment implementation (100%)

Paper writing (70%)

Idea discussion (30%)

Wen Hua

Experiment design (20%)

Paper writing (30%)

Proofreading (30%)

Idea discussion (20%)

Rui Mao
Experiment design (20%)

Idea discussion (20%)

Jiajie Xu
Proofreading (40%)

Idea discussion (10%)

Xiaofang Zhou
Proofreading (30%)

Idea discussion (20%)

Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-matching algorithms.

In Australasian Database Conference (ADC). Springer, 2020. –incorporated as Chapter 4

Pingfu Chao, Wen Hua, and Xiaofang Zhou. Trajectories know where map is wrong: an iter-

ative framework for map-trajectory co-optimisation. In World Wide Web Journal (WWWJ), 2019.

–incorporated as Chapter 5.

Pingfu Chao, Wen Hua, and Xiaofang Zhou. An iterative map-trajectory co-optimisation frame-

work based on map-matching and map update. In International Conference on Database Systems for

Advanced Applications (DASFAA), pages 305–309. Springer, 2019. –incorporated as Chapter 5.

Submitted manuscripts included in this thesis

Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. Classification and Comparison of Map-

Matching Algorithms: An Experimental Study. Expected to submit to WWWJ, 2020. –incorporated

v

Contributor Statement of contribution

Pingfu Chao (Candidate)

Experiment design (60%)

Experiment implementation (60%)

Paper writing (100%)

Proofreading (80%)

Idea discussion (40%)

Yehong Xu

Experiment design (20%)

Experiment implementation (40%)

Idea discussion (30%)

Wen Hua
Experiment design (20%)

Proofreading (20%)

Xiaofang Zhou Idea discussion (30%)

Contributor Statement of contribution

Pingfu Chao (Candidate)

Algorithm design (70%)

Experiment implementation (100%)

Paper writing (70%)

Proofreading (40%)

Wen Hua

Algorithm design (30%)

Paper writing (30%)

Proofreading (30%)

Xiaofang Zhou Proofreading (30%)

as Chapter 4

Other publications during candidature

• Junhua Fang, Pingfu Chao, Rong Zhang, and Xiaofang Zhou. Integrating workload balanc-

ing and fault tolerance in distributed stream processing system. World Wide Web Journal

(WWWJ), pages 1–26, 2019.

• Pingfu Chao, Dan He, Shazia Sadiq, Kai Zheng, and Xiaofang Zhou. A performance study

on large-scale data analytics using disk-based and in-memory database systems. In 2017 IEEE

International Conference on Big Data and Smart Computing (BigComp), pages 247–254. IEEE,

2017.

vi

Contributor Statement of contribution

Pingfu Chao (Candidate)

Experiment design (60%)

Experiment implementation (100%)

Paper writing (70%)

Proofreading (40%)

Idea discussion (40%)

Wen Hua

Experiment design (40%)

Paper writing (30%)

Proofreading (40%)

Idea discussion (30%)

Xiaofang Zhou
Proofreading (20%)

Idea discussion (30%)

Contributor Statement of contribution

Pingfu Chao (Candidate)

Experiment design (50%)

Experiment implementation (60%)

Paper writing (60%)

Proofreading (30%)

Idea discussion (40%)

Yehong Xu

Experiment design (30%)

Experiment implementation (40%)

Paper writing (30%)

Proofreading (30%)

Idea discussion (20%)

Wen Hua

Experiment design (20%)

Proofreading (10%)

Idea discussion (20%)

Xiaofang Zhou

Paper writing (10%)

Proofreading (30%)

Idea discussion (20%)

• Jiwon Kim, Kai Zheng, Sanghyung Ahn, Marty Papamanolis, and Pingfu Chao. Graph-based

analysis of city-wide traffic dynamics using time-evolving graphs of trajectory data. In Aus-

tralasian Transport Research Forum (ATRF), 38th, 2016.

vii

• Mengxuan Zhang, Lei Li, Pingfu Chao, Wen Hua and Xiaofang Zhou. Path Query Processing

Using Typical Snapshots in Dynamic Road Networks. Accepted by International Conference

on Database Systems for Advanced Applications (DASFAA), 2020.

• Zhicheng Pan, Junhua Fang, Pingfu Chao, Wei Chen, Zhixu Li and An Liu. Real-time Trajec-

tory Similarity Processing Using Join-matrix. Accepted by the 4th APWeb-WAIM International

Joint Conference on Web and Big Data (APWeb-WAIM), 2020.

Other submissions during candidature

• Zonglei Zhang, Junhua Fang, Pingfu Chao, Wei Chen, Pengpeng Zhao and Zhixu Li. A dis-

tributed spatial index with high update efficiency for real-time processing system. Submitted to

Information Sciences, 2020.

Contributions by others to the thesis

In all of the presented research in this thesis, Prof. Xiaofang Zhou, as my principal advisor, and

Dr. Wen Hua and Prof. Kai Zheng, as my associate advisors, have provided technical guidance for

formulating the problems, refining ideas as well as reviewing and polishing the presentation.

Statement of parts of the thesis submitted to qualify for the award of another degree

No works submitted towards another degree have been included in this thesis.

Research Involving Human or Animal Subjects

No animal or human subjects were involved in this research

viii

Acknowledgements

It has been a long journey since the start of my PhD, and I believe I couldn’t have gone this far

without all the support from the people around me. Therefore, it is a great pleasure to convey my

gratitude to them all in my humble acknowledgement.

First and foremost, I would like to give my earnest appreciation to my principal supervisor, Prof.

Xiaofang Zhou, for offering me the opportunity to study here and for guiding me with great patience

and kindness throughout my PhD period. Academically, his excellent research sense and professional

knowledge helped me quickly overcome the early struggle of my study and build up my knowledge

base. He made many suggestions and decisions were very critical and helpful to me and my goal of

completing my PhD. Personally, his charming personality has always been the role model for me to

learn from. Overall, it is truly a great honour and pure luck to be his student, and I wish I could repay

him someday in the future.

I am deeply grateful to my associate advisors, Dr. Wen Hua and Prof. Kai Zheng, who have

been supportive since the start of my PhD. I have not published or submitted any paper without their

continual help in terms of problem discussion, paper writing, technical support and guidance. In

addition, their excellence and success in research have set good examples for me and encourage me

to continue my career as an academic researcher. Also, as good friends of mine, their kindness and

companionship have helped me relieve the stressfulness and confusion during my study, which I can

never thank them enough for.

Recalling these years of study in the Data Science group at UQ, so many names come to mind

that I will never forget and would like to thank. Specifically, it is my pleasure to acknowledge Prof.

Yufei Tao, Prof. Xue Li, A/Prof. Helen Huang (and her family), Prof. Shazia Sadiq, A/Prof. Gianluca

Demartini, Dr. Lei Li (and his family), Dr. Junhao Gan (and his family), Dr. Hongzhi Yin (and his

family), Dr. Sen Wang, Dr. Tony Chen, A/Prof. Sibo Wang, Dr. Jiwon Kim and Dr. Mohamed

Sharaf. I also want to thank all my colleagues in our group, especially my office mates Mr Yu Liu, Mr

Boyu Ruan, Mr Ruiyuan Zhang, Mr Runhui Wang, Ms Kexuan Xin, Mr Xuanyi Zhang, Ms Fengmei

Jin, Ms Yehong Xu, Mr Douglas Alves Peixoto and Mr Mateusz Michalkiewicz with whom I have

shared countless memorable and emotional moments. Their presence in my life has made my PhD

study colourful and enjoyable.

Amongst all my colleagues, my special thanks go to Ms Dan He and Dr. Junhua Fang. Starting

and finishing our PhDs at the same time, Dan and I have been fighting alongside each other the whole

way and will continue to do so in the next few years. It is a blessing to have such a companion

who always supports, encourages and pushes you and shares happiness and sorrow with you. As my

former colleague and my best friend, Junhua has been helping me throughout my PhD and has been

ix

my best partner in terms of publications and cooperation. I wish my friendship with both of them

(and of course our family members) will last forever.

Last but not least, my deepest gratitude goes to my family, including my darling Ms Wei Mao.

Although my parents have no idea what I am doing and what the purpose of this acknowledgement

is, they have always trusted, supported and protected me throughout my lifetime. I can never thank

them enough for bringing me into this beautiful world, teaching me how to be a man and giving me

such a chance to study overseas and explore a new nation. I feel sorry for not accompanying them

for almost seven years after graduation and I really appreciate them being healthy all the time so I

can concentrate on developing my own career. I wish they will stay healthy, and I will work harder to

relieve the burden on their shoulders in the future.

As for my dear love, you are the only one to whom I don’t know how to express my sincere

gratefulness in full. You are the one who cheers every progress I make and soothes every pain I gain;

You are the one who blames me for not working hard but forces me to go to bed when I work too

hard; You are the one who laughs at me, cries for me, leans on me, argues with me, takes care of me

and fights alongside me; You are the one who witnesses what I witness, enjoys what I enjoy, hates

what I hate and loves what I love; You are the one with whom I have shared the best five years of my

life, and I know, you are the best I could ever have in my life.

x

Financial support

No financial support was provided to fund this research.

Keywords

map inference, map update, map-matching, map-trajectory co-optimisation, survey and experi-

mental study

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080604, Database Management, 100%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems 100%

xi

xii

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 GPS Trajectory and Road Map . 2

1.1.2 Data Quality Issues . 2

1.1.3 Data Preprocessing Techniques . 4

1.2 Problem Statement . 5

1.3 Motivations . 6

1.3.1 Map Inference Algorithms . 6

1.3.2 Map-Matching Algorithms . 7

1.3.3 Map-Trajectory Co-optimisation Framework 8

1.3.4 Map Service Platform . 8

1.4 Main Contributions . 9

1.4.1 Map Inference Algorithms . 9

1.4.2 Map-Matching Algorithms . 9

1.4.3 A Co-optimisation Framework . 10

1.4.4 Map Service Platform . 11

1.5 Thesis Organisation . 11

2 Literature Review 13

2.1 Data Quality Issues . 13

2.1.1 Spatial Trajectories and Trajectory Quality 14

2.1.2 Maps and Map Quality . 15

2.2 Map-Matching . 18

2.3 Map Inference . 20

2.4 Map Update . 22

2.5 Summary . 23

xiii

3 Map Inference Algorithms 25

3.1 Introduction . 25

3.2 Algorithm Survey . 27

3.2.1 Problem Statement . 27

3.2.2 Survey and Categorisation . 27

3.2.3 Road Abstraction . 29

3.2.4 Incremental Branching . 33

3.2.5 Intersection Linking . 35

3.3 Quantitative Measure Evaluation . 36

3.3.1 Map Quality Issues . 37

3.3.2 Quantitative Measures . 39

3.4 Synthetic Data Generator . 41

3.4.1 Artificial Map Generator . 41

3.4.2 Synthetic Trajectory Generator . 44

3.5 Experiments . 45

3.5.1 Experimental Settings . 45

3.5.2 Evaluation of Measures . 46

3.5.3 Evaluation of Inference Algorithms . 48

3.5.4 Experiment Findings . 52

3.6 Summary . 52

4 Map-Matching Algorithms 55

4.1 Introduction . 55

4.2 Preliminaries . 56

4.3 Map-Matching Models . 57

4.3.1 Similarity Model . 59

4.3.2 State-Transition Model . 60

4.3.3 Candidate-Migration Model . 62

4.3.4 Scoring Model . 64

4.4 Tuning Techniques . 65

4.4.1 Parameter Tuning . 65

4.4.2 Data Preprocessing . 65

4.5 Evaluation Metrics . 66

4.5.1 Point-based Metrics . 66

xiv

4.5.2 Route-based Metrics . 67

4.5.3 Metrics without Ground-Truth . 67

4.6 Experiments . 68

4.6.1 Dataset Settings . 69

4.6.2 Experimental Design and Results . 71

4.6.3 Experiment Findings . 75

4.7 Remaining Challenges . 75

4.7.1 Trajectory Systematic Error . 76

4.7.2 Parallel Road . 76

4.8 Summary . 77

5 A Co-optimisation Approach 79

5.1 Introduction . 79

5.2 Framework Overview . 81

5.2.1 Problem Definition . 81

5.2.2 Co-Optimisation Framework . 83

5.3 Co-Optimisation Model Design . 86

5.3.1 Co-optimisation Quality Evaluation . 86

5.3.2 Road Correctness Identification . 88

5.3.3 Result Refinement . 90

5.4 Running Time Optimisation . 90

5.4.1 Direct Matching Area (DMA) . 93

5.4.2 Shortest Transition Area (STA) . 93

5.5 Evaluations . 95

5.5.1 Experimental Settings . 96

5.5.2 Evaluation Metrics . 97

5.5.3 Map-Matching Evaluation . 98

5.5.4 Co-optimisation Algorithm Evaluation . 99

5.6 Summary . 104

6 Map Service Platform 105

6.1 Introduction . 105

6.2 Framework Overview . 107

6.3 Implementation Details . 109

xv

6.3.1 Data Preprocessing . 109

6.3.2 Map Services . 111

6.3.3 Result Evaluation . 112

6.3.4 Utilities . 113

6.4 Case Study . 114

6.4.1 Data Preprocessing . 114

6.4.2 Map-matching and Evaluation . 115

6.4.3 Visual Comparison . 115

6.5 Conclusion . 117

7 Final Remarks 119

7.1 Conclusions . 119

7.2 Directions for Future Work . 121

7.2.1 Trajectory Reconstruction on Low-Quality AVI Data 121

7.2.2 Pattern Learning for Map Intersection Inference 121

xvi

List of Figures

1.1 Example of map from Google Maps [51] . 3

1.2 Example of GPS trajectory and its actual travel path 3

2.1 Example of travel route and sampled trajectory . 16

3.1 Example of a wrong connection . 31

3.2 Visually compare two constructed maps, no clear winner 37

3.3 Various map errors generated by synthetic map generator 43

3.4 Summary of experimental results of map inference algorithms 49

4.1 Summary of experimental results . 72

4.2 Map-matching error caused by systematic errors . 76

4.3 Different matching results on parallel road (HMM and SCO) 77

5.1 Framework overview . 84

5.2 Example of two map-matching cases . 93

5.3 Example of STA-Circle and STA-Route . 95

5.4 Map-matching performance by varying θc . 98

5.5 Effectiveness test for co-optimisation model . 100

5.6 Efficiency and scalability test for co-optimisation model 102

6.1 Framework overview . 107

6.2 Example of map-matching parameters . 115

6.3 Quantitative evaluation of map-matching . 116

6.4 Map-matching result visualisation on Google Maps 116

6.5 Map-matching result on Microsoft satellite image 117

xvii

xviii

List of Tables

2.1 Differences between online and offline map-matching scenario 19

2.2 Existing map-matching surveys . 20

3.1 Summary of map inference methods . 28

3.2 Comparison of public and private datasets . 46

3.3 Measurement results under different topological error (TE) and road loss (RL) ratios 48

3.4 Measurement results under various other error types 48

4.1 Categorisation of map-matching algorithms in different scenarios 58

4.2 Summary of experiment datasets . 70

5.1 Main symbols and associated meanings . 84

5.2 Dataset specification . 96

xix

xx

Chapter 1

Introduction

In recent years, the increasing popularity of positioning units, especially GPS-equipped (Global Posi-

tioning System) devices, has enabled the continuous tracking of users’/vehicles’ locations. Operating

as the sampling of objects’ historical locations, trajectory data have become the backbone of various

location-based applications, like navigation, fleet tracking, traffic management and location-based

recommendation, which also heavily rely on the availability of high-quality digital maps. However,

despite the ubiquity, the quality of both GPS trajectories and maps are unsatisfactory: (1) as a result of

the instability of GPS signals [97], GPS trajectories usually represent objects’ locations inaccurately;

(2) there are still plenty of regions with blank or low-resolution maps around the world due to their

low profitability and commercial interest; (3) since the maps are rarely updated given the extensive

update cost, they are usually outdated and erroneous. In fact, without data correction, these quality

issues can significantly affect the performance of downstream applications. For instance, navigating

on an erroneous map may cause accidents, and insightful knowledge from the recorded trajectory is

unusable if the corresponding travel path is not identified.

Different from common data quality issues, like data duplication and missing/incorrect values, the

data quality issues occurring in GPS trajectory and road map data cannot be solved by generic data

cleaning processes. Therefore, to eliminate the influence of GPS errors, the map-matching technique

is proposed for trajectory data calibration. By matching the trajectory to the underlying map, it can

identify the actual travel path of a trajectory. On the other hand, the map inference and map update

techniques utilise trajectory data as the source to construct or update the road map automatically,

which ensures map recency. Despite various solutions proposed in each category, there is a lack of

research on how those techniques interact with each other and how the quality issues that occur in one

type of data (e.g. road map) affect the correction process of another data type (e.g. GPS trajectory).

Therefore, in our thesis, we first study the main features of GPS trajectory errors and map errors; then,

1

we analyse the aforementioned techniques and propose our solution, which corrects both data types

in one operation, termed as map-trajectory co-optimisation.

1.1 Background

1.1.1 GPS Trajectory and Road Map

A GPS trajectory is usually represented by a sequence of geographical locations sampled from a

GPS-equipped device on the earth. To generate location samples, a GPS module communicates with

multiple GPS satellites periodically and calculates its location each time by measuring its relative

distances to them. Nowadays, as the GPS module is widely installed in mobile phones, vehicles

and other portable devices, a massive amount of trajectory data is generated every day representing

users’ travel history. The samples from the same trajectory are generated by the same GPS device and

are stored chronologically, with each sample recording the coordinates (< longitude, latitude > or

< x, y > according to the coordinate system) and the corresponding timestamp t.

In terms of a road map, a map (also known as a road network) refers to a digital map that stores

the geographical and topological information of a map region on the earth, an example shown in

Figure 1.1. Different from traditional paper maps, a road map is stored as a graph whose vertices (red

dots) represent the road intersections, and edges (green lines) depict the roads connecting them. Each

road contains information, like road width, speed limit and number of lanes, while the intersections

store attributes, like turning restrictions and traffic signals. In addition, some road maps also mark the

locations with unique utilities, termed as Point-Of-Interest (POI, shown as pinned locations in Figure

1.1). As the map is the foundation of location-based services, it is widely used in various applications

like navigation, route planning and traffic analysis.

1.1.2 Data Quality Issues

Despite the ubiquity of GPS trajectories and maps, the quality of both datasets is deficient. As the

GPS device measures its distance to the satellites by tracking the GPS signals sent to them, which

pass through the atmosphere, the measurement accuracy is always affected by multiple factors, like

receiver/satellite clock synchronisation, ionosphere disturbance, path block/reflection and Dilution

Of Precision (DOP) [40]. In addition to the measurement errors caused by unstable GPS signals, the

sampling errors caused by low sampling rate also introduce uncertainty into the trajectories as the

travel path between every two consecutive trajectory samples is completely unknown. As shown in

Figure 1.2, the green dots are the sampled locations of the vehicle, which deviate from the actual

2

FIGURE 1.1: Example of map from Google Maps [51]

location (red dots) due to measurement error. Therefore, the combination of measurement errors and

sampling errors makes the current GPS trajectories hard to represent the actual travel path of an object

precisely.

FIGURE 1.2: Example of GPS trajectory and its actual travel path

On the other hand, previously, road maps were constructed and updated through comprehensive

ground surveys, which ensured high map accuracy and completeness. However, since ground surveys

3

are usually labour-intensive and time-consuming, nowadays, the maps are updated less frequently

such that the recent changes on road networks cannot be updated timely. In fact, several reports [116,

134] have pointed out that up to 15% of the road changes each year in some way around the world. The

map recency issue has become a crucial factor affecting the reliability of location-based applications

and causes problems, like incorrect navigation results and vehicle tracking failure. Therefore, there

is a strong need for an automatic map update process that ensures frequent map updates with quality

guaranteed.

1.1.3 Data Preprocessing Techniques

Due to data quality issues, both GPS trajectories and maps are required to go through a data pre-

processing procedure for data correction. In addition to some generic data cleaning processes, like

data deduplication and outlier detection, several techniques are proposed to deal with the data quality

issues happening specifically in GPS trajectories and maps.

To address the trajectory quality issues, the map-matching problem is proposed to find the actual

travel path for each trajectory. Following the idea that a vehicle usually travels on the road network,

the trajectory samples should always be close to their actual locations on roads. Therefore, the map-

matching process aims to align the trajectory samples to the nearby roads on the map and connect

them so as to infer the actual path. With the help of the map-matching process, an actual travel path

can be extracted from each trajectory, which is useful in various applications, such as traffic analysis,

driving behaviour analysis, vehicle tracking and navigation.

To address the map recency issue, the map inference and map update techniques are proposed for

map construction and updates automatically. Regarding the map inference, two major resources are

being used as input for map inference: the aerial imagery [31] and GPS trajectory. Different from the

aerial imagery inference which detects the map layout from static satellite images, the map inference

on GPS trajectories utilises the idea that a road may occur in an area where multiple trajectories pass

through it. As a GPS trajectory dataset has a larger volume than aerial images and contains more

information, such as road connectivity, turning restriction and road speed, it helps improve the quality

of the constructed map. Similar to map inference, the map update using GPS trajectories assumes

that an initial map is given, the main goal of the map update is to infer the missing intersections/roads

in the initial map as well as remove map components that no longer exist. The major difference

between map inference and map update is that only the GPS trajectories that are believed to run

on new roads are used in the map update process. Therefore, the main process of the map update

is to first filter out the trajectories that run on the existing map, using map-matching methods, and

4

then generate new roads by map inference algorithms. In general, most of the existing map update

solutions [111, 133, 134, 143] are the combination of map-matching and map inference problems

together with other data processing techniques, like map conflation and noise reduction [133, 134].

1.2 Problem Statement

As mentioned above, the main focus of this thesis is to study the data quality issues in GPS trajectories

and road network, and the corresponding preprocessing techniques, namely map inference, map-

matching and map update. Since all those techniques rely on both trajectory and road network data,

we first give formal definitions of two data types. Typically, a trajectory is defined as follows:

Definition 1 (Trajectory). A trajectory Tr is a sequence of spatial points Tr : p1 → p2 → ... → pn

sampled from a continuously moving object. Each point pi consists of a 2-dimensional coordinate

〈xi, yi〉 ∈ R2 and a timestamp ti, i.e.: pi = 〈xi, yi, ti〉. Points in Tr are chronologically ordered,

i.e.: ∀i < j s.t. ti < tj , and every two consecutive points pipi+1 are connected and form a trajectory

segment.

In this thesis, we mainly focus on GPS trajectories, which are objects’ trajectories sampled by

GPS-equipped devices. Meanwhile, we give the definition of road network, which is also known as

road map:

Definition 2. (Road Network) A road network (also known as road map) is a directed graph G =

(V,E), in which a vertex v = (x, y) ∈ V represents an intersection or a road end, and an edge

e = (s, e, l) is a directed road connecting vertices s and e with a polyline represented by a sequence

of spatial points, termed as mini nodes, i.e.: l : s→ n1 → n2 → ...→ nk → e.

The road network is a highly geographical graph, storing actual locations of intersections, shapes

of road segments, the length of paths, etc. Normally, an edge is used to represent a complete road

which starts from and ends at an intersection/road end, with no entry or exit in between. However,

since most roads in real-world are not straight, a road is usually represented by a polyline l illustrating

its actual shape.

The detailed definitions of the preprocessing techniques will be introduced in respective chapters.

Here, we briefly show the ideas of them to help better distinguish those research problems. In terms

of the map-matching, the objective of a map-matching algorithm is to find the object’s actual on-road

moving path by aligning its GPS trajectory to the underlying road network. Hence, the input of a map-

matching process consists of both the trajectory and the road network, while the output is a sequence

5

of road edges representing the object’s actual travel path. On the contrary, both the map inference and

map update aim to generate a road network from GPS trajectories. The core input of them is the GPS

trajectories, and their output is a road network. In map inference, the GPS trajectories are merged

into road edges and intersections to form the road network, whereas, in map update, it also takes an

old map as input and use GPS trajectories to improve the quality of the obsolete map.

1.3 Motivations

In recent years, the pervasive use of GPS-enabled devices has produced massive number of users’ ve-

hicular trajectories. Since every vehicle must run on actual roads, on the one hand, these trajectories

can be aligned to road networks via map-matching techniques [103] in order to support map-based

applications, such as traffic congestion prediction and online navigation. On the other hand, they

can potentially be used to automatically construct or update digital maps [5, 134]. In fact, despite

their different objectives, the map-matching and map inference/update problems are correlated tech-

nically. Specifically, in most map update methods, a map-matching process is conducted in the first

place to obtain trajectories that cannot be matched to the current map and hence used to generate

new roads [111, 133, 134, 143]. Some map inference methods also leverage map-matching as a post-

processing step to evaluate the quality of the constructed roads [18]. However, the intrinsic inaccuracy

of both maps and GPS trajectories poses great challenges to all the above research problems: (1) maps

that contain missing roads and inaccurate layout can cause GPS trajectories to be map-matched incor-

rectly; and (2) the measurement errors and sampling errors in GPS trajectories incur great uncertainty

to the map inference and map update process, which leads to inaccurate map construction/updates.

Therefore, in our thesis, we mainly study the data quality issues in GPS trajectories and maps,

together with the solutions, including map-matching, map inference and our proposed map-trajectory

co-optimisation. Besides, to ensure our contributions are useful practically, we develop an open-

source map service platform which supports map-matching, map inference and our proposed map-

trajectory co-optimisation processes.

1.3.1 Map Inference Algorithms

The map inference problem was first studied in early 2000s [43] when high-quality Differential GPS

(DGPS) trajectories were used as inputs to infer maps by a simple clustering method (k-means clus-

tering). Since then, various types of solutions have been proposed aiming to construct high-quality

maps using GPS trajectories with lower accuracy. Meanwhile, several survey papers [4, 5, 17, 42, 55]

6

have been published summarising existing map inference algorithms from different perspectives. In

particular, Ahmed et al. [4, 5] present a well-rounded introduction to previous algorithms based on

their categorisation, together with evaluation measures, experiments and comparison. These works

provide us with a great overview of the existing solutions and help new researchers quickly dive into

this area with some available codes [5]. However, as they mainly focus on delivering the idea of

map inference, most of their experiments are conducted through visualisation. Although other sur-

veys compare the solutions via quantitative measures, they all lack sufficient candidates [5, 17, 55]

and proper reasoning for their measures. Overall, none of the existing work clearly illustrates the

advantages of each type of solutions, and there is no research on how GPS data quality affects their

performance. As plenty of new solutions [44, 78, 100, 131, 132, 147, 161] have emerged since the last

survey [5] and many of them are not able to be classified into any of the existing categorisations, in

our thesis, we review the existing map inference methods and propose a new categorisation based on

their methodologies. More importantly, we focus on the influence of data quality issue in GPS trajec-

tories to the map inference solutions. Therefore, we conduct extensive experiments on map inference

algorithms from different categories and identify their weakness to certain types of trajectory errors.

1.3.2 Map-Matching Algorithms

As the essential data preprocessing step, the map-matching problem has been studied for more than

two decades [14]. However, despite the massive number of map-matching algorithms proposed, only

a few surveys [28,56,74,103,114,136] classify or compare them. Quddus [103] et al. first summarised

the early algorithms in 2007. It categorises the methods based on the matching principles (geomet-

rical/topological) or the computation model (probability/advanced) adopted in the algorithms. Such

categorisation was widely accepted but is now obsolete as it fails to classify most of the new meth-

ods proposed afterwards. Nevertheless, apart from some recent topic-specific surveys [56, 74], this

categorisation is still widely adopted by recent papers [73, 101, 118, 122] and surveys [114], which

indicates the need of a review in this field. Besides, recent works bring various new matching frame-

works [112, 119] and tuning techniques [57, 63, 81, 95] to solve the map-matching problem on new

types of positioning data (DGPS, inertial sensor, laser scanner [86], camera [71]) and new queries

(lane-level map-matching [41,71,86]). Hence, it is worth conducting a comprehensive survey so as to

classify the existing solutions and identify the strength/weakness of each type of methods. Therefore,

in our thesis, we summarise the existing methods and propose a new categorisation according to their

map-matching model, the working scenarios and data input. In addition, we experimentally compare

the representative solutions from those categories and evaluate how trajectory data quality affects the

7

map-matching result and the effectiveness of existing tuning methods.

1.3.3 Map-Trajectory Co-optimisation Framework

Although the map-matching and map inference have been extensively studied in the last two decades,

there is still a lack of research on the map update, and the existing solutions are mainly simple

combinations of map-matching and map inference processes. Overall, the current solutions in map-

matching, map inference and map update are still defective: (1) To the best of our knowledge, all of

the existing map-matching methods are based on an assumption that the underlying map is correct,

which is not the real case. In practice, the chance of trajectory mismatch caused by the incomplete

roadmap is significant; (2) Due to the trajectory noise and disparity, the accuracy of the state-of-

the-art map inference methods is too low to be practical and there is a lack of evaluation steps for

result pruning; (3) The existing map update method utilises the map-matching methods in an ineffi-

cient way. The current map update process spends most of the running time on map-matching only

for finding unmatched trajectory points, while the original matching results are completely wasted.

Therefore, in our thesis, we propose a map-trajectory co-optimisation framework which considers

both the map and GPS trajectory quality issues and improve the quality of map-matching and map

inference simultaneously through our iterative process.

1.3.4 Map Service Platform

In recent years, both map-matching and map inference/update have become hot research topics due to

their crucial roles in spatial and spatial-temporal data management. Therefore, on the one hand, new

research works in these fields are required to compare with existing solutions to show their perfor-

mance superiority, on the other hand, as important data preprocessing procedures, these techniques

are widely used in various applications in practice. Considering the popularity and the close relation-

ship between these techniques, it is good to have a platform that supports these data preprocessing

procedures for data quality improvement. However, to the best of our knowledge, despite the mas-

sive number of map-matching and map inference solutions proposed, no existing work tries to build

a public platform that provides those map-based services. Therefore, in this thesis, we introduce

our open-source map service platform for map and trajectory quality improvement, evaluation and

comparison.

8

1.4 Main Contributions

The main contributions included in our thesis consist of three main aspects: (1) the insights of existing

works, (2) the proposal of new solutions and (3) the development of a new practical platform.

1.4.1 Map Inference Algorithms

As mentioned in Section 1.3.1, in our thesis, we summarise the existing map inference methods

and propose a new categorisation. To evaluate the major differences between various categories,

we conduct a comprehensive experimental study on different map inference algorithms. The cho-

sen candidates, including both up-to-date and classical solutions, are more diverse in terms of their

methodology. Moreover, by introducing datasets with different scales and characteristics and de-

ploying the solutions under the same platform, we are able to evaluate both their effectiveness and

efficiency under different input features, which has never been done by any previous work. In the

experiments, we study how the input GPS data quality affects the performance of various inference

algorithms. To this end, we propose a synthetic dataset generator to simulate different types of GPS

errors. Meanwhile, we discuss the difficulty of map inference evaluation and the weaknesses of cur-

rent map quality evaluation system. To address the issues of existing quality measures, we elaborate

on the possible map quality issues of constructed maps and propose an artificial map generator for

evaluation, which produces maps with certain types of errors.

This work was submitted to the IEEE Transactions on Knowledge and Data Engineering (TKDE)

in September, 2019. It received minor revision decision in January, 2020 and is currently being

revised.

1.4.2 Map-Matching Algorithms

According to Section 1.3.2, in our thesis, we introduce the recent map-matching methods proposed

since the last comprehensive survey [103] in 2007 and propose a new categorisation that classifies

them according to their map-matching models, working scenarios and input data features. Besides,

we decompose each algorithm into a core map-matching model and tuning techniques, which can

better differentiate the existing solutions and identify the main contributor to their respective perfor-

mance. Our proposed categorisation can better distinguish the existing methods from the technical

perspective and apply to all existing methods which are impossible for previous categorisations. In

addition to the survey, we conduct extensive experiments on representative algorithms of different

categories and compare their strengths/weaknesses under both online/offline working scenarios. Our

9

experiments mainly provide insight for (1) finding the best trade-off between online matching accu-

racy and latency, (2) evaluating the influence of input trajectory quality and map density to the map-

matching performance and (3) testing the effectiveness of the existing tuning techniques. Finally, we

analyse the common weaknesses and remaining challenges of the existing map-matching solutions

and demonstrate them through visualisation and experiments. Furthermore, we further discuss the

reasons and potential fixes for future research guidance.

The survey part of this work was published at the Australasian Database Conference (ADC) 2020.

The full version is under submission to the World Wide Web: Internet and Web Information Systems

(WWWJ), 2020.

1.4.3 A Co-optimisation Framework

Combining the solutions mentioned in Section 1.3.1, 1.3.2 and our objectives in Section 1.3.3, in

our thesis, we propose an iteration-based map-trajectory co-optimisation framework to improve the

quality of both maps and trajectories. To fulfil this goal, we propose quality measures to quantify

the map-matching quality and the map quality, respectively, and our goal is to maximise the quality

score. In fact, to guarantee the performance improvement, the most crucial part of our framework is

to ensure the correctness of new map updates. Therefore, we propose two scores, namely confidence

score and influence score, for road correctness evaluation. For each new road, the confidence score

evaluates our confidence in inferring it, while the influence score measures its contribution to the

improvement of map-matching results. Experimental results show that these scores can help better

identify correct road updates over other outliers and meanwhile detect one-way roads. Regarding

the framework, our iterative framework consists of a map-matching phase, a map update phase and

our proposed co-optimisation model. Through the road filtering process and the control of quality

measurements, the framework can guarantee a gradual improvement on both the map and trajectory-

matching quality and overall superior performance after the iteration. Moreover, our framework is

generalised to support existing map-matching/map inference/update methods and achieve even better

quality results. Besides, we utilise a spatial index on trajectories to boost the process while preserving

its correctness. Overall, the experiments on multiple-scale real datasets show the quality improvement

upon the state-of-the-art map update methods with affordable overheads after being plugged into our

framework. In addition to the quality improvement, our method can also run in a reasonable time

compared with the existing map inference/update methods.

A portion of this work was published at the International Conference on Database Systems for

Advanced Applications (DASFAA), 2019. The full version was published at the World Wide Web:

10

Internet and Web Information Systems (WWWJ), 2019.

1.4.4 Map Service Platform

Given the motivation mentioned in Section 1.3.4, we develop a map service platform that sup-

ports data preprocessing/cleaning processes, including map-matching, map inference and our pro-

posed map-trajectory co-optimisation. To the best of our knowledge, our proposed platform is the

first open-source system that both supports map-matching and map inference/update processes with

multiple solutions. The platform enables the data quality improvement solely on GPS trajectories

(map-matching), map (map inference/update) or on both datasets simultaneously (map-trajectory co-

optimisation). Furthermore, the variety of options of different map-matching/map inference solutions

ensures the best data preprocessing performance under different data inputs and provides a general

platform for easy performance comparison for future research. In addition to the basic functionality,

our proposed platform provides abundant toolkits for data conversion, data cleaning, data visualisa-

tion and data quality evaluation for both GPS trajectories and maps. Moreover, we implement various

spatial tools, like different spatial indices (R-tree, grid, kd-tree, etc.), different coordination systems

(WGS84 [142], GCJ-02 [141] and Mercator projection [140]) and different shortest-path algorithms

(Dijkstra, A*, etc.), for ease-of-use and future research convenience. The platform is designed and

implemented under clear modularisation, which supports easy plug-in for multiple programming lan-

guages (Java, Python, Go, etc.) and easy extensions. Therefore, future research on map-matching and

map inference/update can be introduced and compared with existing solutions easily.

This project is released on Github (https://github.com/Hellisk/map-service) as

a public repository.

1.5 Thesis Organisation

The rest of this thesis is organised as follows. In Chapter 2, we review the literature related to our

topics. Chapter 3 introduces our study on map inference algorithms. Likewise, the survey and ex-

perimental study of the map-matching algorithm is presented in Chapter 4. In Chapter 5, we propose

our map-trajectory co-optimisation framework, which utilises both map-matching and map inference

algorithms. The map service platform is then elaborated on in Chapter 6. Finally, we conclude the

thesis and discuss future works in Chapter 7.

11

12

Chapter 2

Literature Review

As aforementioned, the thesis mainly focusses on three research topics: map-matching, map inference

and map updates. In fact, as the data preparation step of many downstream applications, all three

topics are closely related to data quality problems occurring in trajectory and map data. Therefore, in

this section, we will review the related literature of the following topics:

• Data Quality Issues: Data quality issues occur in both GPS trajectory and map data, which af-

fects the processes of map-matching, map inference and map updates in different ways. There-

fore, we first define these two data types and introduce their main features and quality issues.

• Map-Matching: In Chapter 4, we conduct a comprehensive survey on the existing map-

matching algorithms. Therefore, in this section, we mainly introduce the existing surveys on

these topics and the relationship between map-matching and other topics mentioned in our the-

sis.

• Map Inference: There are several map inference surveys conducted recently. To emphasise the

importance of our experimental study elaborated in Chapter 3, we discuss the existing surveys

in this section.

• Map Update: The map update can be regarded as a special case of map inference, so, in this

section, we mainly explain the main idea of the map update and its relation to the map inference,

the major works and their weaknesses.

2.1 Data Quality Issues

There are two types of data relevant to our research, namely spatial trajectories and road networks

(also known as maps), which are defined in Section 1.2. In fact, both of the datasets contain quality

13

issues when they are obtained. In this subsection, we mainly introduce the characteristics, the main

causes of those quality issues and related research.

2.1.1 Spatial Trajectories and Trajectory Quality

Nowadays, various types of positioning systems, like the Global Positioning Systems (GPS), Wi-

Fi, Bluetooth and cellular radio, have been vastly integrated into various types of portable devices,

including vehicles, mobile phones, electric watches and other wearable equipment. These devices

generate a wealth of trajectory data that record vehicle and pedestrian movement. Amongst all other

alternatives, GPS data is the most popular data source due to its coverage and data quality. Ideally, a

GPS trajectory should precisely describe the object’s location. However, due to the low precision of

the GPS devices [76], the trajectory points are always sampled inaccurately, which becomes the main

challenge for all trajectory-based applications.

To better understand GPS errors, we first introduce the mechanism of the Global Positioning

System. The GPS is comprised of 24 satellites at a semi-synchronous altitude around the earth trans-

mitting signals to GPS devices. Since each GPS device communicates with multiple satellites simul-

taneously and their pairwise distances (device to satellite, satellites to satellite) are measurable, the

device’s position can be estimated after a complex calculation. As communication and calculations

happen periodically, the device’s location is sampled and stored discretely. In general, each GPS

positioning sample consists of four basic values: the < x, y, z, t >, where < x, y, z > represent the

geographical coordinates and t marks the timestamp when the position is sampled. However, the al-

titude z is usually omitted due to the lack of a three-dimensional underlying map and the hardness of

calculating point-wise distance on 3D terrain surface [138]. In addition to the coordinates, most of the

current GPS devices also contain speed and heading information for each sample, which is obtained

from the gyroscope embedded alongside the GPS module. However, to sample the object’s location,

the GPS device must receive position measures from at least four satellites at the same time [87].

More importantly, the accuracy of the sample is proportionate to the number of satellites connected

simultaneously, which is expounded in [76]. Since the signal between GPS devices and satellites can

be blocked or reflected by the object’s surrounding environment, the quality of the sampled trajectory

points is quite unstable. In general, the current GPS data contains two types of errors [68, 126]:

• Measurement Error: In a GPS, the location of a device is calculated by its relative distance to

multiple satellites. However, since the number and the stability of satellite connections oscillate

from time to time, the sampled trajectory point usually lands in an arbitrary place near the

actual location. According to the study from Leick et. al [76], although the accuracy of GPS

14

positioning can be affected significantly in certain situations, in most cases, the error is deemed

to follow the Gaussian distribution [126]N(µ, σ2), whose µ = 0 and σ ∈ (0, 50] are determined

by the accuracy of positioning system and the operational environment (signal blocked/reflected

by complex road infrastructure and surrounding buildings).

• Sampling Error: Although an object is moving continuously, its position can only be sampled

periodically by the GPS device. Hence, the frequency of GPS position sampling, which is

called the sampling rate, is an influential factor in the accuracy of GPS trajectory representation.

For example, considering a vehicle runs at a speed less than 50km/h and is sampled every 30

seconds, the maximum travelled distance between two consecutive samples p1 and p2 is already

417 meters. Therefore, instead of the straight-line representation p1p2, the actual trajectory

over the past 30 seconds is missing. The sampling frequency is measured by its sampling rate,

denoted by ∆t, which is equivalent to the maximum time interval between two consecutive

samples. Usually, the GPS trajectories are sampled periodically, and we regard the trajectory

whose ∆t ≤ 30 as a high-sampling-rate trajectory while ∆t > 30 as a low sampling rate.

However, it is also common in practice when the sampling interval is not fixed due to signal

loss or trajectory compression.

As shown in Fig. 2.1, these two types of errors combined make the trajectory (red) much different

from its actual route (cyan). Apart from GPS trajectories, other positioning systems also generate

similar types of errors with different scales. For instance, with the help of a ground-based calibration

system, the DGPS has a much smaller measurement error of roughly 1-3 meters but the same sampling

error. The measurement error of WiFi is around the same level as DGPS but with a much lower

sampling rate due to the rarity of outdoor WiFi devices. On the contrary, a cellular network has more

significant measurement error (≈ 100 meter) but a much higher sampling rate [108].

2.1.2 Maps and Map Quality

In general, a digital map is a virtual image that contains a graph structure representing the road

network, including the major road arteries and other points of interest. In our study, we only focus

on the road layout on the map, so it is regarded as a road network. The road network is a highly

geographical graph, storing actual locations of intersections, shapes of road segments, the length of

paths, etc. Different from general graphs, a map used in practice can have multiple variations:

• Planar/Non-planar: A planar map is defined as a graph that can be mapped on a plane such that

a point crossed by at least two edges are guaranteed to be a vertex. Inversely, graphs that cannot

15

FIGURE 2.1: Example of travel route and sampled trajectory

be mapped on a plane are called non-planar graphs. Intuitively, a road network should be a

non-planar graph since plenty of tunnels and interchanges allow one road to underpass another.

Also, the experiment results from [46] show that this type of edge crossing happens frequently.

However, it is quite challenging to detect such uncrossed roads in some of the map inference

methods, especially the grid-based methods [18, 37], which will be introduced in Chapter 3.

• Weighted/Unweighted Graph: A weighted graph is a graph whose elements are given numer-

ical weight. In a road network, both vertices and edges can be weighted. Ordinarily, the road

length can be calculated for each road so that the distance between two vertices can be calcu-

lated. Besides, the weights of graph elements can be other values, like the capacity of traffic

flow, travel time and traffic loads, to characterise specific topological features of a transport

system.

• Directed/Undirected Graph: A graph is directed when edges are oriented from one vertex to

another, while the edges in an undirected graph are bidirectional. Intuitively, most of the road

networks are naturally directed graphs as plenty of roads are shown as one-way roads. However,

a directed graph is more complicated than an undirected graph in terms of solving various

of graph problems, like diameter calculation [35], graph partitioning [9], etc. For simplicity,

some works use an undirected graph instead when unidirectional edges only take up a small

portion of the network. Additionally, in map inference problem, it is difficult for some of the

inference methods [18, 37] to identify the direction of each road. Therefore, they only generate

an undirected road network instead.

16

Similar to the trajectory, the map data is also facing different quality issues. Optimally, a correct

map should satisfy the following three features:

• Accuracy: The map is required to be accurate, which means the map should represent the

real-world topological structure and geographical location precisely. In other words, for a road

network G, all the vertices in G should have the correct location information; moreover, all

edges in G should have the corresponding real-world links between vertices, and the shape of

the links should remain the same.

• Completeness: The map is required to have accurate and complete attributes. The elements

in a map require not only the geographical information but also other attributes, like the speed

limit, road width, turning restriction of an intersection, etc. All these attributes are useful in

many map-based applications so that their accuracy and completeness is crucial.

• Recency: The map is required to be up-to-date. In fact, change to the roads happens frequently

due to rapid construction of roads, road maintenance and so on. Therefore, the update of maps

should be done accordingly with a short delay so that the analyses can reflect the real-time

scenario.

Amongst these three issues, the recency issue is the most difficult one due to the sophisticated

process and expensive cost of map updates. Therefore, most of the real-world road map is not fully

precise due to the low map update frequency. According to an online report [93], although some open

maps, like the OpenCycleMap (the cyclist map in OpenStreetMap [94]), updates every few days,

most of the updates for commercial maps are not that frequent, ranging from weekly and monthly

to quarterly and yearly. The update frequency is tightly related to the cost/benefit efficiency of the

update, which varies depending on what sources are used:

• Ground Survey: The ground survey is the typical way of updating maps, which is performed

by a mapper, on foot, on bicycle or in a car or other vehicles carrying a GPS unit. It is the most

reliable way of updating maps and is commonly used in commercial map maintenance due to

their high map quality requirement. For instance, Google Maps and Google Street View send

camera cars to capture the road feature and take images for visualisation and measurement pur-

poses. However, sending vehicles to scan all road segments is an expensive and time-consuming

process. Thus the update frequency is very low.

• Satellite Imagery: The images taken by satellites can be the auxiliary resources for map cal-

ibration. The high-resolution images can depict the road width, centre line and other road

17

features. However, processing the high-resolution image is time-consuming, and the weather

conditions can affect the image quality, so it is not feasible to be the major source for a map

update.

• GPS Trace Data: The GPS trajectory data is another main source for the map update. As

the vehicles are running on the road equipped with the GPS devices every day, a huge number

of GPS trajectories are captured, and they cover most of the existing roads. Therefore it is

viable to calibrate the map accordingly. For instance, the OpenStreetMap [94], which is the

world’s largest open-licensed map, is updated based on users’ GPS trajectories. Initially, the

map was generated from scratch by volunteers performing systematic ground surveys, then it

became editable to end-users who can modify the map by providing their own GPS records

as evidence. Although with the help of end-users, this update approach is usually fast and

frequent. However, the quality of the updates is not guaranteed as the GPS data itself contains

lots of noise caused by the systematic deviation of GPS devices and other factors, like weather

conditions, tall buildings nearby, etc.

2.2 Map-Matching

Map-matching algorithms aim to find the object’s moving trace by aligning its trajectory to the under-

lying road network. Hence, the input of a map-matching process consists of both the trajectory and

the road network, while the output is a sequence of road edges representing the object’s actual travel

path. As defined above, a trajectory Tr is regarded as a sequence of 2-dimensional points (optionally

with speed and heading attributes), while the road network G = (V,E) is stored as a weighted graph

whose edge weights are measured by their length. The output of map-matching is usually represented

as a route, which is a sequence of connected edges representing the actual path the object takes.

According to the problem statement, the main goal of the map-matching process is to find the

object’s actual locations given its trajectory samples, which is unnecessary if the object is always

sampled accurately and the map is correct. However, unless the map makes an error that happens

less frequently and can be addressed by map inference and update process [5,26,27,134], the quality

issues in trajectories are pervasive, which makes map-matching a challenging task.

The research on the map-matching problem started in the early 1990’s [14]. According to the

applications, the existing map-matching solutions run on either online or offline scenarios. In online

map-matching, the vehicle positions are sampled continuously and are processed in a streaming fash-

ion, which means each time the map-matching is only performed on the current sample, optionally

18

with a limited number of preceding or succeeding (which incurs latency [50, 129, 156]) samples as

references. Besides, the process is done quickly to ensure interactive performance. On the contrary,

the offline map-matching is performed on the entire trajectory to find the globally optimal matching

result with no constraint on the efficiency. Therefore, the online/offline map-matching is also termed

as incremental/global map-matching in some papers [50, 74, 135]. Table 2.1 summarises the major

differences:

TABLE 2.1: Differences between online and offline map-matching scenario
Matching mode Online mode Offline mode

Objective
Find the matching road Find the matching route

of the current location of a given trajectory

Applications
Navigation, location sharing Vehicle tracking, traffic management

autonomous driving map update

Trajectory feature (x, y, t) + additional features Usually (x, y, t)

Sampling rate Very High (< 10s) High (< 30s) or low (1 5min)

Reference Some or all preceding points Entire trajectory

Matching quality Fast but less accurate Slow but more accurate

Route continuity Not guaranteed Guaranteed unless break occurred

Major challenges
Initial point matching Break point process

Road change detection Uncertainty modelling

According to Table 2.1, since the online map-matching cannot foresee the succeeding samples, it

usually requires additional features, such as altitude z, speed spd, and heading θ, for better matching

quality. However, regardless of online and offline scenarios, the difficulty of map-matching prob-

lems mainly depends on the quality of the input trajectories. For example, the map-matching on a

high sampling-rate DGPS trajectory (less than 3m error radius and less than 5s sample interval) can

be trivially achieved by matching each point to its closest road. In fact, many early solutions that

claimed to have outstanding map-matching accuracy (> 95% [92, 102] correct road identification)

are mostly done on high accuracy trajectories (DGPS [21, 41]) and/or high-sampling-rate trajecto-

ries [92,102], but their performance deteriorates quickly when lowering the accuracy or sampling fre-

quency. Hence, the current research on map-matching problems focusses on more challenging tasks:

(1) achieving high performance on low quality inputs (low sampling rate, less trajectory features and

low measurement accuracy), (2) enabling map-matching on low-quality data types (WiFi, cellular

network and Bluetooth [88]) and (3) performing finer-grained map-matching (lane-level [41, 71, 86])

on trajectories.

Overall, several papers have been proposed to survey the existing map-matching algorithms,

shown in Table 2.2. Quddus et al. [103] give the first comprehensive review in this field. The pa-

per classifies the methods according to their matching principle (geometric, topology) and technical

framework (probabilistic, advanced). Besides, the paper enumerates the performance claimed in

19

those papers and further discusses the remaining challenges in this field, like map quality, match-

ing at Y-junctions and parameter tuning. Although those challenges became the main focus of the

subsequent works, the proposed categorisation fails to classify new methods due to the lack of com-

pleteness and has become out-dated. A few other surveys proposed afterwards review the methods

from different perspectives. Hashemi et al. [56] give a very detailed overview of online map-matching

algorithms. Considering their simplicity and poor performance, the paper merges the geometry and

topology categories into simple solutions. It also proposes a weight-based category, which is equiv-

alent to probability in [103], and adds various recent solutions to the advanced class. Kubička et

al. classify the solutions based on their applications [74], namely navigation, tracking and mapping.

However, none of the surveys categorise existing methods in a comprehensive and informative way.

They either propose categories that are obsolete due to underwhelming performance, like geomet-

ric [103], or provide categories that are not distinctive to each other (many methods are used in both

navigation and tracking [74] and advanced category [56,103] cannot be clearly defined), which is the

motivation of our work introduced in Chapter 4

TABLE 2.2: Existing map-matching surveys
Author Year Main focus/features Weakness

Quddus et. al. [103] 2007

• First comprehensive review • Obsolete categorisation

• Algorithm categorisation • No evaluation

•Main challenges analysis

Hashemi et al. [56] 2014
• Online map-matching only •Missing offline scenario

• Adjusted categorisation • Categorisation too simple

Kubička et al. [74] 2018 • Application-based categorisation • No technical differences between categories

2.3 Map Inference

Map-matching algorithms not only identify the vehicle trajectories to the corresponding road network

but also improves the accuracy of those trajectory points, provided the road maps are correct [92].

This means the trajectory matching heavily relies on the quality of the road map regardless of what

map-matching algorithm is used. Unfortunately, as aforementioned, the quality of road map data is

not satisfactory due to the low update frequency, not to mention that many regions around the world

are still lacking a usable map. Since map construction/updates were previously done by extensive

ground surveys and labour-intensive post-processing, which were expensive and less efficient, many

researchers are looking for an effective and efficient algorithm that automatically constructs and/or

updates maps.

The current automatic map inference algorithms are mainly built upon two types of data sources:

20

the aerial imagery and the GPS trajectory. The map inference from aerial imagery tries to identify the

roads in the input aerial images using the techniques of image processing and pattern recognition. It

has been an active research topic and recent trend leads to deep learning solutions, like Convolutional

Neural Network (CNN) [31], for better detection performance. The main challenge for image-based

map inference is that many of the roads are partially or completely occluded by tree canopies, the

shade of the tall buildings, bridges and interchanges. Also, the images are not updated frequently,

making timely map updates impossible. On the contrary, GPS trajectories do not have the continuity

issue. Moreover, as plenty of trajectories are generated every day, they enable timely new road de-

tection. Therefore, some recent works combine both aerial imagery and GPS trajectory data for map

inference. One simple but effective solution is to add trajectory points as a feature layer to the existing

deep learning model for aerial imagery inference.

On the other hand, map inference on GPS trajectories has been studied for 20 years and is still a

hot topic [24, 78, 161]. Intuitively, as all vehicles are running on the actual roads, their GPS records

combined can somehow sketch the road network both topologically and geographically. Ideally, it

can eliminate the cost of ground surveys and manual checks. However, the quality of map inference

is strongly affected by the quality of GPS trajectories. As mentioned above, the GPS trajectory

data suffer from measurement errors and sampling errors. In addition to the GPS errors, another

problem of trajectory data, trajectory disparity (also known as trajectory sparsity), affects the

performance of the map inference process as well, which is caused by different popularities of roads.

The trajectory disparity problem is a common challenge for many different trajectory applications,

like destination prediction [148,149,150,154] and travel cost estimation [34,151] Regarding the map

inference problem, a road that is never travelled is impossible to be inferred as it does not appear

in the trajectory dataset. Hence, the trajectory disparity makes the rarely travelled road harder to be

inferred.

To the best of our knowledge, currently, three papers [4, 17, 55] and a book [5] are published

surveying the existing methods. Regarding the surveys, Biagioni et al. [17] first reviewed the map in-

ference methods in 2012, and the author classifies the existing methods into three categories, namely

k-means clustering [43, 54], Kernel Density Estimation (KDE) [1, 37] and trace merging [25, 91].

The authors choose three representative solutions [25, 37, 43] from the categories and compare their

inference results through both visualisation and a new quantitative measure proposed in the paper. Re-

sults show that the KDE-based methods have overall better accuracy and much lower running time,

which is one of the motivations of their follow-up work on the KDE method [18]. [4] and [5] com-

bine the k-means and KDE into clustering-based method category. They add another recent work [6]

to the trace merging and propose the intersection linking [69] category. They also summarise the

21

existing quantitative measures, including the graph sampling proposed in Biagioni’s survey [17],

direct Hausdorff distance and path [3]/shortest-path-based [69] distances. Seven representative meth-

ods are introduced in detail and compared visually, which is by far the most comprehensive work

in surveying the map inference methods. Also, as they share their implementation publicly, it en-

ables subsequent authors to easily compare their solution with the representatives. However, since

they focus more on the visual comparison, and the quantitative measures [3, 17, 69] are only con-

ducted with three of the algorithms [6, 18, 69] on one small dataset. There is a lack of evidence to

draw any conclusion on those candidates and methodologies. Instead of conducting extensive evalu-

ations, [55] briefly summarise the main features of existing methods and publish plenty of datasets,

with detailed specifications, for future map inference evaluation. As a great number of new meth-

ods [24,38,39,59,70,78,100,116,132,160,161] and new directions, like parallel processing [39,44],

online map inference [116] and certain map types [19], have been proposed after the last comprehen-

sive survey, it is worth revisiting the existing categorisation and conducting a more comprehensive

experimental study on both new and classical methods to comprehensively contrast their performance

in more dimensions.

2.4 Map Update

Unlike map inference, which constructs a map from scratch, map updates aim to modify a given map

using the trajectories provided. In general, most of the state-of-the-art map update solutions follow

the same pattern [134,143], which consists of three steps: (1) extract unmatched trajectories via map-

matching; (2) conduct map inference to generate new road edges; (3) and merge road edges to the

existing map. Besides some early algorithms that focussed on map inference but also claim their

viability for map updates [43], CrowdAtlas [134] was the first work that dedicated on map update in

the recent years. Other methods, including Glue [143], COBWEB [111] and HyMU [133], follow the

same idea with slight changes to the map influence and map merge solutions. In general, two main

issues remain in map update methods: (1) they all require a time-consuming map-matching step (95%

of the total algorithm time as shown in [134]) to extract unmatched parts of the trajectories (account

for only 1% of the original trajectory set); however, the matching result is completely wasted; and

(2) due to the performance issue in map inference phase, the quality of the updated map components

is also questionable, which might bring more spurious road nodes/edges than the number of errors it

corrects. Besides some general parameter tuning or threshold-based filtering methods, there is still a

lack of road correctness evaluation in existing methods to further filter the noisy output, which is the

main reasons for us to propose the map-trajectory co-optimisation method.

22

2.5 Summary

In this chapter, we introduce the data quality issues occurring in map and GPS trajectory data, the

respective characteristics of each error type and the existing solutions addressing them, namely map-

matching, map inference and map updates. We explain the main idea of each class of solution and

the current research progress. Note that we do not provide detailed summarisation of the algorithms

for map inference and map-matching problems as they will be introduced and compared in Chap-

ters 3 and 4, respectively. Instead, we review the existing surveys in those fields and discuss their

contributions/weaknesses, which are the motivation of our work.

23

24

Chapter 3

Map Inference Algorithms

3.1 Introduction

Nowadays, digital maps have been used as the foundation of various map services, such as navigation,

vehicle tracking and location-based advertising. Previously, digital maps were constructed by labour-

intensive field survey, which required long processing times and huge labour investment. Hence, most

of the map data vendors, like TomTom [124] and Google [51], only focus on constructing and up-

dating maps of urban areas for maximum commercial profit. The recent emergence of Volunteered

Geographic Information (VGI) complements maps with the contribution from voluntary users. As a

successful example, OpenStreetMap [94] has been the largest free editable map created by VGI. How-

ever, since volunteered information may contain inaccurate input or even intentional errors, dedicated

editors are still necessary to manually validate the map. Moreover, as the road network changes fre-

quently over time, neither field survey nor volunteered information can update the map timely, which

motivates the research of automatic map inference (also known as map construction [5]) and map

updates [134].

Currently, two major resources are being used for automatic map inference: aerial imagery [31]

and GPS trajectories. Different from aerial imagery inference, which detects the map layout from

static satellite images, the map inference on GPS trajectories utilises the users’ vehicular traces ob-

tained from GPS-enabled devices. As GPS trajectory datasets have a larger volume than aerial im-

ages and contain more information, such as road connectivity, turning restriction and road speed,

they help improve the quality of the constructed map. However, since the trajectories obtained from

GPS devices are intrinsically inaccurate, inferring maps from the noisy trajectories is still challenging

nowadays and has been an ongoing research task.

Several survey papers [4, 17, 55] and a book [5] have been published summarising existing map

25

inference algorithms from different aspects. In particular, Ahmed et al. [4, 5] present a well-rounded

introduction to previous algorithms based on their categorisation, together with evaluation measures,

experiments and comparison. These works provide us with a great overview of the existing solutions

and help new researchers quickly dive into this area with some available codes [5]. However, as they

mainly focus on delivering the idea of map inference, most of their experiments are conducted through

visualisation. Although some surveys compare the solutions via quantitative measures, they all lack

enough candidates [5, 17, 55] and proper reasoning for their measures. Overall, none of the existing

work clearly illustrates the advantages of each type of solution, and there is no research on how GPS

data quality affects their performance. As plenty of new solutions [44, 78, 100, 131, 132, 147, 161]

have emerged since the last survey [5], in this chapter, we briefly review the existing map inference

methods and propose a new categorisation. More importantly, we discuss the main factors that affect

map inference quality and address the issues in the current quantitative evaluation system. We conduct

a comprehensive experimental study on representative algorithms to quantify the advantages of each

type of method under different datasets and application scenarios. In general, our contributions over

the existing surveys are as follows:

• We conduct a comprehensive experimental study on the existing map inference algorithms. The

chosen candidates, including both up-to-date and classical solutions, are more diverse in terms

of their methodology. Moreover, by introducing datasets with different scales and character-

istics and deploying the solutions under the same platform, we are able to evaluate both their

effectiveness and efficiency under different input features, which has never been done by any

previous work.

• We study how the input GPS data quality affects the performance of various inference algo-

rithms. To this end, we propose a synthetic dataset generator to simulate different types of

GPS errors. We evaluate the candidate algorithms on the synthetic datasets to test the influ-

ence of noisy data to the constructed map quality and draw conclusions on what type of noisy

trajectories should be removed from the input to achieve better map quality.

• We discuss the difficulty of map inference evaluation and the weaknesses of the current map

quality evaluation system. To address the issues of existing quality measures, we elaborate on

the possible map quality issues of constructed maps and propose an artificial map generator

which produces maps, each of which contains a certain type of errors. Then, the synthetic

maps are used to evaluate the effectiveness of the current quantitative measures in identifying

different map problems.

26

3.2 Algorithm Survey

In this section, we summarise and classify the existing map inference methods according to our cate-

gorisation. Prior to this, we first introduce the related data formats.

3.2.1 Problem Statement

As introduced in Section 2.3, the map inference is the process of inferring road network using GPS

trajectories. Therefore, similar to the definitions in Section 1.2, the input of map inference problem is

the trajectory dataset, while the output is a road network.

It is worth noting that, in addition to the basic trajectory definition, many trajectories used in

map inference also contains the speed (spdi) and heading (θi) information for each trajectory point

pi. Those attributes are utilised in some of the map inference solutions [70, 116] for better inference

accuracy. Regarding the road network, networks generated by different inference algorithms may

contain various features. Most of the algorithms [18,37] and evaluation measures [3] are only able to

construct/measure planar maps, which require that any two roads traversing each other must generate

a vertex. The issue of planar maps is that they fail to represent bridges and tunnels where two roads

overlap without connection. In addition, some of the map inference algorithms can only generate

undirected maps and are unable to infer features like turning restriction and speed limit, which should

be remedied by a post-processing step such as trajectory map-matching [103].

3.2.2 Survey and Categorisation

The recent upsurge of map inference solutions has introduced new techniques to this field, which

forces a review of the current categorisation. We observe that some solutions improve the existing

methods by providing new alternative sub-modules [30, 38], while others belong to neither of the

existing categories [59]. Therefore, we propose a new categorisation, which consists of three classes:

road abstraction, intersection linking and incremental branching. The major difference between these

classes is their map inference procedures. Both road abstraction and intersection linking take the en-

tire trajectory dataset as input and construct the map in one shot, whereas the incremental branching

starts from an empty map and incrementally expands the map by inserting one or multiple trajectories

at a time. Meanwhile, road abstraction aims to directly extract the map skeleton by finding represen-

tative points/edges from the trajectories, while the intersection linking first identifies the intersections

and then connects them based on the knowledge from trajectories. In summary, we present most of the

existing map inference algorithms in Table 3.1 based on our classification. In this table, we summarise

27

TABLE 3.1: Summary of map inference methods
Category Name Input Features Sampling Rate Map Feature Evaluation Evaluated in

Road Abstraction

Point-based,

k-means

Edelkamp03 [43] high(1-15s) directed V [18, 82, 116]

Elleuch15 [44] undirected V

Qiu16 [100] heading low(45s) directed V, GM

Stanojevic2018 [116] heading high(1-5s) directed,planar V, GS [59]

Point-based,

mean-shift

Chen16 [30] heading,speed high(1-5s) directed,non-planar V, GS, PD [116]

Dorum17 [39] heading directed V, GM

Point-based,

others

Li16 [78] high(15s) directed V, GM

Agamennoni11 [1] heading high(<3s) directed V

Line-based,

KDE

Davies06 [37] high(1s) undirected V [18, 78, 146]

Biagioni12 [18] high(2-6s) undirected V, GS, GM [4, 59, 78, 82, 100, 116, 161]

Ahmed15 [2] low(60-180s) undirected,planar V

Wang15&Dey18 [38, 132] low(40s) undirected,planar V

Line-based, LDA Zheng17 [161] high(1-15s) undirected V, GS

Line-based, others Liu12 [82, 83] heading low(16-60s) directed V, GS

Incremental Branching

Trace merging

Cao09 [25] directed V [18, 82, 116, 146]

Niehoefer09 [91] high(1s) undirected V

Li12 [79] low(30s) directed V

Ahmed12 [6] low(30s) undirected V, GM [161]

Buchin [24] undirected V

Zheng18 [160] low(10-300s) undirected V

Map expansion He18 [59] heading directed,non-planar V, GS, PD

Intersection Linking

Fathi10 [48] high(1-5s) directed V

Karagiorgou17 [69, 70] heading,speed low(15-90s) directed V, GM, PD [161]

Wu13 [144] heading low(30-120s) directed V

Xie141516 [146, 147] heading,speed high(1-5s) directed V, GM

Wang15Novel [131] heading high(1s) directed V

the solutions and their details in terms of input trajectory feature (location only/heading/speed), tra-

jectory sampling rate, output map type, evaluation method (V=visual, GM=Graph Item Matching,

GS=Graph Sampling, PD=Path/shortest-path-based Distance; details in Section 3.3) and if they are

evaluated or compared in other works. Note that, the input trajectory feature does not include those

used in pre-processing or post-processing.

In the following, we will summarise the major differences between these categories. We will also

introduce the representative methods in each category and highlight some of them (with aliases) as

the candidate in our experiments.

28

3.2.3 Road Abstraction

The road abstraction regards the regions where more trajectories passing through to be more likely

roads or intersections. Given that trajectory measurement errors are usually modelled by 2D Gaus-

sian distribution, there is a higher probability that the trajectory sample is closer to the road cen-

treline it travels. Therefore, the main process of road abstraction is to find the densest areas on

the map and extract a road network from them. The clustering technique, which divides the input

points/segments into groups and finds the representative point/segment for each group, is the major

technique used in this category. Due to its simple idea, plenty of solutions have been proposed under

this category with various types of clustering algorithms. Most of the work from k-means cluster-

ing [43, 44, 54, 82, 100] and KDE-based clustering [2, 17, 18, 37] mentioned by previous surveys fall

into this category, together with some new solutions [30,39,161]. The existing road abstraction meth-

ods can be further classified based on their input data types (trajectory point/segment) and clustering

methods (k-means/KDE/mean-shift/etc.). In general, the road abstraction method mainly contains the

following three steps.

Data preparation: An input trajectory can be regarded as either a set of points or a set of trajectory

segments. For point clustering, besides the point coordinates, the heading of the point is also utilised

in most clustering algorithms [30, 39, 100, 116] to distinguish roads with opposite directions and the

intersections. For segment clustering, one of the major concerns is that the trajectory segment cannot

correctly depict the object’s movement trace when the sampling rate is low, which gets even worse

when the object makes a turn around intersections. Hence, some line-based methods [83] remove

the segments around intersections by their heading changes while others, especially the KDE-based

methods [2, 17, 37], filter out such errors when generating the skeleton map.

Clustering: The purpose of the clustering is to find the representative points/segments from the in-

put points/segments so that the final map can be obtained by linking them. K-means is the most

widely used algorithm for point-based clustering [43, 44, 54, 100] due to its simplicity and effective-

ness. Starting from a set of random seeds on the map, the algorithm iteratively adds GPS points to

”closest” clusters, relocates cluster centres, and removes distant points until no more adding or re-

moving happens. In fact, the performance of the k-means clustering is sensitive to the number of

initial seeds and their locations, so [100] first identified the straight lines in the map by clustering the

trajectory points using the DBSCAN algorithm and continuously sampled points as seeds alongside

the straight lines, which ensures the k-means clusters are close to the road centreline. Mean-shift

clustering works in a similar fashion as k-means but is claimed to be less vulnerable to low sampling

trajectories [30, 39]. Most of the line-based clustering utilises the idea of image processing. It first

29

rasterises the map region into a grid whose grid cells correspond to pixels in an image. The trajectory

segments are then drawn on the map and each cell receives a count of trajectories passing it. As the

trajectory segments may distort around intersections due to low sampling rate, a smoothing process,

the Kernel Density Estimator (KDE) [2,18,37,38,132], is usually applied to reduce the significance of

noisy cells and emphasise the road centreline. Finally, the dense area on the map is regarded as roads

and intersections. The simplest way of extracting the road areas is to binarise each cell using a global

threshold [37]. However, it does not work well as the trajectories are not evenly distributed on the

map. Hence, other works improve the threshold by providing multiple thresholds for different road

popularities [18] and road widths [2]. Alternatively, the discrete Morse theory is introduced for better

centreline extraction [38, 132] especially for less popular roads. Note that although the KDE-based

methods are proven to be effective [78, 82, 100, 161], their output map does not have direction and

other map features apart from the road skeleton since only the trajectory locations are preserved after

converting the map region into an image.

Road generation: After the representative points/segments are found, the final step is to connect

them and form the output map. For point-based clusters, one simple solution utilises the trajectory

continuity and connects clusters with consecutive GPS points from one trajectory [43]. Li et al. [78]

further improve this idea by calculating a representative point sequence from trajectories that connect

the same sets of clusters as a road. Other works directly create roads without the help of trajectory

information. The principal curve method, which creates a representative curve from a set of points,

is perfect for this scenario [1, 39]. Qiu et al. [100] assumes that most of the real-world roads are

near straight, so it connects the nearby clusters with a similar direction and extends the road until the

direction changes. For line-based clustering, the density-based image obtained from KDE methods

can be further thinned to extract road centrelines using the techniques like spline fitting [37] and

skeletonisation [18]. After the map skeleton is obtained, a scan of the image is needed to identify

intersections based on the value of nearby pixels and edges to be obtained subsequently.

Overall, the road abstraction algorithms regard trajectory as a set of points or segments. One

advantage is its ability for parallel processing [44] as most of the operations are localised. However,

one major problem is the potential connectivity issue. As exemplified in Fig. 3.1, two parallel roads

can be incorrectly connected if the trajectories are broken down into points/segments. Although

some effort has been devoted to rectifying such errors using the knowledge from typical intersection

design [30] or additional map-matching in post-processing [18], it is still challenging for such methods

to infer non-planar features in the map.

Six methods are introduced as representatives and three of them are included in our experimental

study as follows.

30

FIGURE 3.1: Example of a wrong connection

Stanojevic and Abbar 2018 (RA-K-MEANS)

The RA-K-MEANS [116] is the most recent k-means solution with a bunch of optimisations. It

regards map inference as a multiple network alignment problem (MNAP), which aims to infer the

underlying graph given a set of observable sub-graphs (GPS trajectories). For the k-means clustering,

the pair-wise point distance considers both geographical distance and heading difference, and each

initial seed is selected along the trajectories with no less than a certain distance away from existing

seeds. Moreover, to further reduce the inference of spurious roads, a graph spanner is applied during

the road generation to remove roads that are potentially generated by noisy or low-sampling-rate tra-

jectories. Besides, it also provides an online model for stream-based map inference and map updates.

In general, as the most recent k-means solution, this paper adopts several optimisations on top of the

classical k-means clustering [43, 100]. Hence, we use it as a representative of the k-means category.

Li and Kulik 2016

As a point-based method, instead of using k-means for clustering, Li et al. [78] proposes a spatial-

linear clustering based on the idea that most of the real-world roads are close to a straight line or

a combination of several straight lines. Initially, the algorithm starts by randomly selecting a point,

named as the anchor point. The anchor point gathers all points that are within a certain distance and

similar direction and forms a cluster; then, in the current cluster, it finds the furthest points along the

cluster’s average direction (both forward and backward) to form new anchor points. By incrementally

applying this process until no anchor point is discovered and starts another seed randomly, all the

straight roads should be covered by the clusters. Therefore, it connects the clusters according to the

trajectories crossing it. Besides, this method claims its high performance and its ability to identify

31

parallel roads.

Davie and Beresford 2006

[37] is the first work proposed in this category. As a density-based map inference algorithm, it first

obtains the density for each grid cell. Instead of directly counting the number of passing trajectories,

the grid density in this work is defined based on the gross length of the trajectories segments that

cross the grid. After blurring the grid values, the algorithm binarises the grids into bit values by a

global threshold so that only grids with high density are set to 1. Then, the contour of the bit map

is calculated through the contour follower algorithm [157], and the centrelines are extracted by the

Voronoi diagram algorithm. Finally, a post-processing step is performed to remove the unconnected

centrelines and assign road directions by analysing the direction trend in each grid cell separately.

Compared with the follow-up solutions in this category [2, 18, 29, 113], Davie’s algorithm filters the

grid density by a simple threshold, which can potentially cause a great loss of road coverage or

introduce a large number of spurious roads, depending on the threshold chosen. However, although

improved by the later methods [17], we still find that some recent experimental results show that

it is not outperformed by its follower in some cases, which is the main reason why we choose it

as our candidate. Moreover, due to the contour follower and Voronoi diagram algorithms used in

centreline generation, roads generated by this algorithm have many zigzags [82], which helps evaluate

the performance of the quantitative measures in identifying such road shape problems.

Biagioni and Eriksson 2012 (RA-KDE)

The RA-KDE [18] is a typical KDE-based method with a focus on tackling trajectory disparity prob-

lems. Instead of setting a global threshold when binarising the grid density, it proposes a grey-scale

multilayer solution so that grids with different densities fall into different density layers. By doing

so, roads with fewer visits can be preserved in low-density layers. After smoothing the map by the

kernel density estimator, the algorithm generates centrelines from each layer using the skeletonisa-

tion method and merges them to form a final map. The algorithm also further post-processes the map

to merge unnecessary intersections, remove unmatched roads, simplify road shapes and assign road

directions. Currently, the RA-KDE [18] is regarded as the representative method in this category. As

shown in Table 3.1, it has been compared the most times with various methods in different categories

and performs well in both effectiveness and efficiency.

32

Zheng and Liu 2017 (RA-LDA)

Although being rasterised into grids, the paper does not leverage the KDE method. Instead, it utilises

the grid-trajectory relationship generated during the trajectory projection. Therefore, each trajectory

is represented by a set of grid cells. Since the constructed roads are also derived from a set of grids,

such a relationship is equivalent to the topic model in NLP, where a document (trajectory) is built up

by a set of words (cell) and each word (cell) is related to some topic (road segment). After convert-

ing the problem, the paper utilises LDA [22] and pLDA [61], which are two famous models in topic

extraction, to extract topics (road segments) from documents (trajectories). In this paper, the idea

of solving the map inference problem is quite novel, and the experiments show that it outperforms

various map inference solutions, including trace merging [6], density-based algorithm [17] and inter-

section linking [69] in terms of both accuracy (slightly) and performance (significantly). However,

the experiment results are insufficient for a solid conclusion, and there is a big concern about the

space complexity of the algorithm as the cell-trajectory Boolean matrix may become very large when

the map is huge especially when the cell size is set to a small value (less than 10m2). Hence, as a

new method inspired by a completely different topic, we plan to conduct more experiments to better

compare with the traditional methods.

Liu and Zhu 2012

[83] is the only line-based clustering method that does not rasterise into an image. The algorithm

first filters out segments that have significant heading changes between start and end points. Remain-

ing segments are then clustered using single-linkage clustering, which merges nearby segments with

similar orientation. It further proposes a Y-split separation method to detect Y-splits (a forked branch

from the main road with similar orientation). Eventually, a B-spline fitting is applied to generate cen-

trelines from the clusters and form the final map. In [83], the algorithm is empirically verified to be a

good candidate for line-based clustering with low-sampling-rate trajectories.

3.2.4 Incremental Branching

The idea of incremental branching is to incrementally insert new roads to an empty map until all

trajectories are examined. Overall, a map can be constructed in two incremental ways:

Trace merging: The trace merging method incrementally inserts trajectories into the map. For a new

trajectory, the algorithm first tries to merge it to existing roads by map-matching or distance measure

calculation, such as the simple pairwise distance [25,79] or Fréchet distance [6,24,160]. Successfully

matched trajectory segments are utilised to adjust road shape by introducing physical attractions [25].

33

Meanwhile, the unmatched portion either forms a new road from the existing map (partially matched)

or creates a completely new road (completely isolated). As one of the early works in this field, Cao

et al. [25] merges new trajectories by only considering their segment-based distance and direction

difference. Once the merge process is completed, the algorithm defines the physical attraction force

between pair-wise points so that the matched roads run towards the newly merged trajectory whereas

the unmatched roads run against it. Considering that roads have different lengths in the real world,

Buchin et al. [24] proposes a method that predefines multiple road lengths and generates roads with

different scales accordingly. This helps to infer small roads that are dominated by nearby main roads.

Map expansion: Map expansion is a new type of method initiated by He et al. [59]. Instead of

iterating on the trajectories, it starts from a map node. The major process of map expansion is to

incrementally infer new roads from the starting node based on the trajectories passing through it.

After the current node is visited, the map has branched out and generated multiple new starting nodes,

which are the starting points of new iterations. Different from other incremental solutions, since all

the trajectories passing the same node are processed once, it is much easier to infer the outgoing

directions correctly. Therefore, it performs better when inferring complex map elements, such as

complex intersections, non-planar tunnels and interchanges.

Overall, different from road abstraction which treats each trajectory point/segment separately, the

incremental branching methods fully utilise the continuity of an entire trajectory so that neighbouring

roads that lead to different destinations can be better separated. However, it is hard for such incre-

mental methods to run in parallel. In addition, the scalability of these iterative methods, especially

the trace merging, can be really poor as the size of the input dataset increases. In our experimental

study, we choose the following two methods as the representative of this category.

Ahmed and Wenk 2012 (IB-TM)

The IB-TM [6] is the only trace merging solution whose performance has been quantitatively eval-

uated [5]. The algorithm utilises the Fréchet distance to merge a new trajectory with existing roads.

It can efficiently extract matched trajectory parts via a maximum distance threshold ε, and generate

new representative roads using minimum-link paths algorithm. Unmatched portions are inserted into

the map as new roads and connected to the matched road to form a new branch and intersection. This

method has a theoretical quality guarantee that the inferred roads are well-separated.

34

He and Bastani 2018 (IB-ME)

As the only candidate in map expansion, He et al.’s solution [59] mainly focus on high inference

precision and non-planar map features, which are the two main weakness of existing methods. Instead

of generating a low-accuracy initial graph and refininge it to improve performance, this method aims

to infer a partial map correctly without worrying about the recall. Instead, it achieves a high recall

by merging the constructed map portion to another map inferred by other high recall methods [17,

116]. As introduced above, the method starts from an initial map node and grows until covering

the entire map region. For trajectories that pass a certain active node, the algorithm matches them

to the node and its preceding edges, then the node expands according to the directions appearing

in the trajectory set. As shown in their results, the solution performs much better than the existing

methods in inferring complex regions like overpasses/underpasses, stacked roads, parallel roads and

complex intersections as it fully utilises the long-term travel information from the trajectories. Since

the inference of complex intersection has been a challenging problem for most of the solutions, we

choose it as our candidate for more experimental study.

3.2.5 Intersection Linking

The intersection linking approaches emphasise the correct detection of intersections. Once the inter-

sections are inferred, the remaining step is to link intersections using the information from trajectories.

Different from the points on roads, trajectories passing intersections usually have different heading

or speed, and more importantly, their headings or speeds may change significantly during a short pe-

riod. Therefore, the intersections can be identified based on either trajectory movement characteristics

(speed, direction) [69, 70, 146] or point density [144]. The main steps include the following:

(1) Scan the input trajectory points and extract the point sequences around intersections, which satisfy

the heading and speed requirements (for example, the heading changes more than 15◦ and average

speeds under 40km/h [69]).

(2) Cluster the intersection points based on their proximity using k-means [131]/random sampling

[146] or based on turn similarity [48, 69] to extract the intersection region.

(3) Link intersections connected directly by trajectories. In addition, since each intersection covers a

region instead of a point, the actual type of the intersection (crossing, T-junction, roundabout, etc.) is

also considered when connecting the edges inside the intersection region.

As the intersections are usually very complex in real life, a correct inference of intersection, espe-

cially its turning pattern, can significantly improve the usefulness of the constructed map. Moreover,

this can be conducted concurrently, and the machine learning technique, which has been used in road

35

abstraction methods [1, 30], is also applicable. We consider the following algorithm in our experi-

ments.

Karagiorgou and Pfoser 2017 (IL-TURN)

The IL-TURN [69] is a typical intersection linking approach. Intuitively, a vehicle is making a turn

at an intersection when its trajectory sees a significant direction change at a low speed. Hence, this

method first calculates the direction change for each trajectory point and finds all points likely to be

near an intersection (significant direction change and low speed). The turning points are then clustered

according to their proximity and a given maximum intersection radius. One intersection is generated

from one cluster, and the intersections are finally linked based on the trajectories connecting them. To

avoid large intersections, the algorithm is further improved [70] by sorting turning points according

to proximity and adaptively deciding the intersection size. Moreover, in the preprocessing step, it

categorises the input trajectories according to their speed to infer three maps for different speed level,

ranging from highways to low-level lanes, which are conflated to form a final map.

3.3 Quantitative Measure Evaluation

As the performance of map inference algorithms is evaluated by the quality of its constructed map,

measuring the map quality is crucial especially when comparing the performance of multiple infer-

ence methods. Note that most map inference datasets come with a ground-truth map (usually obtained

from public map providers like Google Map and OpenStreetMap) for validation, so the core of the

evaluation is to quantify the similarity between the constructed map and the ground-truth. Previ-

ously, most of the map inference algorithms demonstrate their performance by visually overlaying

their maps with the ground-truth. Despite its simplicity, intuition and usefulness in troubleshooting,

visual comparison cannot quantify the map difference, as illustrated in Fig. 3.2, making it hard to

compare the performance of different algorithms. Moreover, many road features, such as road direc-

tion, turning restriction and road connectivity, are not displayable. Therefore, there is a strong need

for quantitative measures in the map inference field.

However, the design of the quantitative measure is challenging. Intuitively, since the ground-

truth map is usually obtainable, the quality of a constructed map should be measured based on its

differences to the ground-truth. It is obvious that a map with better quality should be more similar

to the ground-truth. However, the definition of similarity is ambiguous. Note that a map is usually

represented as a graph, this problem is related to the graph matching problem [45] in graph theory,

which is associated with some difficult problems, like subgraph isomorphism (NP-complete), graph

36

FIGURE 3.2: Visually compare two constructed maps, no clear winner

edit distance (NP-hard) and network alignment. Moreover, Cheong et al. [32] proved that the problem

is still NP-hard even with the geometric information embedded. Therefore, all the existing map

quality measures evaluate the map similarity heuristically based on various intuitions, such as the

vertex/edge closeness [17] and the navigation correctness [3, 69]. However, since each measure only

focuses on one or few map features, there is a lack of discussion that treats the map quality as a

compounded problem that is determined by multiple factors. In this section, we will first elaborate on

the current map quality issues, introduce the state-of-the-art measures, and then propose our design

to experimentally evaluate the existing measures.

3.3.1 Map Quality Issues

Note that in this section, the map quality issues we refer to are not the general issues in real-world

maps; instead, we focus on the map errors that (1) can possibly be produced by inference algorithms

and (2) may cause quality issues when the map is used in applications such as navigation and location-

based services. The main features of the applications include the following:

Navigation: In navigation systems, a map with high quality is expected to provide a correct shortest

route (or fastest route according to user preference) given a pair of origin-destination locations on the

map. One of the fundamental techniques used in navigation is map-matching [74], which aligns a

trajectory to the underlying map. In order to find the correct matching route, the map components

(intersections/roads) should be close to their actual locations, and their connectivity should also be

preserved. Besides, different roads/intersections are not equally important. Roads that are irreplace-

able, like the only bridge across the river, are more important to navigational accuracy.

37

Location-based Service: Location-based services require the map to be more accurate in terms

of the location proximity. Since location-based services heavily rely on the spatial queries, such

as the range queries and nearest neighbour queries, the location accuracy of the map component is

crucial. Unlike the navigation system, map components usually have equal importance in location-

based services.

In general, considering the above requirements from the applications and possible errors from

existing map inference algorithms, the map quality issues can be categorised as follows:

Topological Error: Topological correctness is crucial for navigation systems. However, it hap-

pens quite often that two roads connected in the ground-truth map happen to be disconnected in

the constructed map, or vice versa, as exemplified in Fig. 3.1. Moreover, most inference meth-

ods [18,37]/map quality measures [3] are only able to generate/evaluate a planar map, which does not

match the real-world scenario where transverse roads do not necessarily generate intersections, such

as underpass tunnels and interchanges.

Geographical Error: Since the input trajectories suffer from GPS errors, it is common that the

inferred road nodes/edges deviate from their actual locations. These errors can affect the correctness

of both navigation applications and location-based queries. Besides, the severity of a geographical

error is not only determined by its absolute deviation, but also relative distance, which considers the

map density of the surrounding area.

Road Loss and Spurious Road: Due to the trajectory disparity [18], many of the roads in ground-

truth map are not travelled by any vehicle. Hence, there is no chance for them to be constructed. Also,

since the input trajectories contain outliers, many inference algorithms remove the roads constructed

from fewer trajectories to avoid generating spurious roads. Therefore, the constructed map usually

contains only a subset of roads in the ground-truth map, while the road coverage is an important

indicator of algorithm effectiveness. Meanwhile, even with the noise reduction, it is still common

to have spurious roads constructed in the map especially around the intersections. Those roads are

usually caused by incorrect linking between intersections or non-existent shortcuts. Both road loss

and spurious road insertion can affect the navigation and location-based services significantly.

Other Errors: These errors may not affect the quality of map navigation and location-based services

considerably, but it can still cause confusion and misunderstanding to map users. For example, many

inference algorithms generate roads and intersections with odd shapes, like the zigzag road pattern

occurring frequently in the KDE-based method [37] or wrong intersection layout. Besides, it is chal-

lenging to infer/measure parallel roads as their distance is usually similar to the GPS error radius.

Overall, these errors should also be measured.

38

3.3.2 Quantitative Measures

Several quantitative measures have been proposed recently for map comparison, which falls into three

categories according to their methodologies: graph item matching, graph sampling and path-based

distance.

Graph Item Matching (GM)

In this category, the constructed map G = (V,E) is regarded as a set of nodes V and a set of edges

E, and the ground-truth map is G∗ = (V ∗, E∗). Hence, the quantitative measure can be converted

to a set similarity problem and answered using the well-known measures of precision/recall/F-score

as long as the match of nodes (match(v, v∗)) and edges (match(e, e∗)) is properly defined. In fact,

match(v, v∗) andmatch(e, e∗) are defined differently in various papers. We present a basic definition

[70] as follows: for match(v, v∗), Eq. 3.1 defines that two points are matched only when their

distance is less than a threshold ε; meanwhile, the match(e, e∗) in Eq. 3.2 defines that two edges

are matched only when both endpoints are matched, respectively. Based on these definitions, the

precision/recall/F-score can be evaluated separately for nodes and edges [70] or combined.

match(v, v∗) =

true, if dist(v, v∗) ≤ ε

false, otherwise,
(3.1)

match(e, e∗) =

true, if match(vi, v
∗
i) ∧match(vj, v

∗
j)

false, otherwise,
(3.2)

In general, the graph item matching is the simplest way of evaluating the map quality in terms

of road loss and spurious road insertion. However, it also faces several issues: (1) Nodes are not

one-to-one matched, which means multiple nodes can be mapped to the same ground-truth node.

It can potentially lead to some undetectable connectivity issues. (2) The value of threshold ε used

for defining node matching may significantly affect the evaluation results. (3) Since the edges are

defined by polylines, it is possible that two edges with extremely different shapes may share the

same endpoints, which is undetectable in this metric. Although some distance metrics, like Fréchet

distance [6] and Hausdorff distance [83], were introduced to further restrict the edge matching to

solve the issue (3), it is still hard to measure both the topological and geographical features of the

map simultaneously.

39

Graph Sampling (GS)

This method was first proposed in [17] and adopted in [4, 5, 59, 82, 116, 161]. The main idea is to

randomly extract a set of subgraphs from both the constructed and ground-truth maps and compare

their similarity. The whole process consists of four steps: (1) randomly select a set of points on

the constructed map as seeds and find the corresponding seed points on the ground-truth map, each

of which is the closest point on road to a seed location; (2) Traverse the constructed map starting

from each seed point and generate a new point, named as marble, each time a certain distance is

passed. Stop the traversal until a given maximum distance is reached; (3) do the same process for

seed points in the ground-truth map, and name the generated points as holes; and (4) match the

marbles with holes to generate the matching ratio. The graph sampling method is able to detect

topological errors, especially its variation (TOPO method [116]), as the disconnect edges are not

traversed when generating the marbles/holes. Meanwhile, it is also good at evaluating geographical

precision through the matching ratio. However, as pointed by Hashemi [55], the performance relies

on the number of samples and the traverse distance. It may overestimate the connectivity and incur

a huge computational cost if the extracted subgraphs overlap a lot. In addition, since a marble and

a hole is a defined match if their pair-wise distance is under the threshold, it cannot detect the road

shape errors as long as it is close enough to the ground-truth. The spurious roads may also be hard to

be detected through such a process.

Path-based Distance (PD)

This category [3, 59, 69] assesses the map correctness by its navigational performance. In the path-

based evaluation, the algorithm first picks up a set of source and destination location pairs, which are

randomly selected on the map [69] or from existing trajectories [59], and projects them onto the clos-

est road on both constructed and ground-truth maps. For each pair, the shortest paths on both maps

are then obtained and their pair-wise distance is calculated using Discrete Fréchet distance [59,69,70]

or average vertical distance [70]. Overall, the map which has less gross pair-wise distance is deemed

to be more similar to the ground-truth. This type of methods mainly targets the topology correctness

of the map. The map with high correctness in path-based evaluation can better serve navigation pur-

poses. However, since the pair-wise distance is usually dominated by the most significant difference

along the path, it has weak power to detect the geographical error, spurious roads and other errors.

Moreover, as the quality is measured by a distance value without a proper way of normalisation, it is

hard to compare the performance over different algorithms on maps with various scale and density.

Moreover, since it requires a large number of sampled pairs to evaluate the road coverage, it can be

40

very expensive computationally considering the complexity of the shortest path calculation.

3.4 Synthetic Data Generator

To evaluate how quantitative measures react to different map quality issues and how data quality

affects the map inference methods, we propose two synthetic data generators, namely the artificial

map generator and the synthetic trajectory generator.

3.4.1 Artificial Map Generator

Although introduced above, we think the current study on the quantitative measures is still insuffi-

cient: (1) Given that the existing measures are designed for different purposes, no research has studied

what types of map quality issues each measure can actually identify. The measures are always used by

previous works blindly. (2) Some of the map errors, like the road shape error and wrong intersection

layout, are not mentioned by previous works. Hence, they may not be detected by any of the existing

measures. (3) Evaluation results from some measures, like the path-based evaluation, are not quite

informative as the significance of the distance value does not justify the quality of the map without

proper reasoning. Therefore, to evaluate the existing measures regarding their ability in identifying

different types of map errors, we propose a synthetic data tool: the artificial map generator.

The idea of the map generator is to generate a set of maps, each of which contains only one specific

type of error mentioned above that may occur in a constructed map. Note that the map constructed

by map inference algorithms usually contains multiple types of map errors; these synthetic maps can

help evaluate how the quantitative measures react to a certain type of error. Given a ground-truth map

G∗ = (V ∗, E∗) and a set of trajectories running on it, the map generator produces an artificial map

for each error by modifying the ground-truth map respectively as follows.

Topological Error (TE)

The topological error implies the case that an edge exists at the right location without connecting to

the right node. To simulate such error, we randomly select a pct% of roads Ete = e1, e2, ..., en from

E∗ to be the candidates. For each candidate ei ∈ Ete, we disconnect one of its endpoints, va for

example, and find a new endpoint va′ on ei whose distance to va is:

dist(va′ , va) = min(ε, µei.length) (3.3)

41

where ε refers to the GPS measurement error threshold, which is used in various map inference

and quantitative measures. µ ∈ (0, 1) is a weight that ensures the distance is too long compared with

the original road length. Then, we set va′ as the new endpoint, add va′ to V ∗, remove the adjacency

information in va and eventually remove va from V ∗ if it is no longer an intersection. By doing so,

the map is barely changed geographically, while the roads are disconnected topologically.

Geographical Error (GE)

We generate such an error by introducing randomness into the intersections. Here, we first set an error

radius r and select a pct% percent of vertices from V ∗ as Vge. For each vertex vi ∈ Vge, we randomly

choose a location within the error radius as its new position. Then for each edge inE∗ whose endpoint

has been shifted, we offset its mini nodes proportionate to the drifted amount to maximally preserve

the road shape. Without changing the road connectivity, it is clear that the modified map Gge is

topologically isomorphic to G∗.

Road Loss (RL) and Spurious Road (SR)

The introduction of the spurious road (SR) requires the use of trajectories. Following the idea that

most of the spurious roads are inferred from some noisy trajectories, we aim to find the noisy trajec-

tories by performing the following two steps: (1) we perform a map-matching algorithm [90] on the

trajectory dataset and select the trajectories whose matching result contains breakpoints; and (2) for

each consecutive breakpoint sequence, we extract the matching roads of its preceding and succeeding

points and create a spurious road to connect them directly. We then randomly select a set of spurious

roads and insert them into the ground-truth map. The rate of outliers is controlled by the total length

of the spurious road inserted. Regarding the road loss (RL) error, we remove a pct% of the roads

according to their total length over the total map length.

Other errors

We simulate the zigzag road shape error (RSE) by interpolating mini nodes on the roads. For each

road in the ground-truth map, we interpolate a new point p′ for every θ meters along the road. In fact,

the actual interpolated mini point p is not at p′. Instead, it is chosen randomly with two constraints: (1)

pp′ is perpendicular to the road direction at p′; (2) pp′.length = θ where θ is a distance threshold that

is very small to avoid introducing too many geographical errors. Therefore, the severity of the road

shape problem is determined by the distance θ, since more interpolated mini points lead to a more

serrated road shape. For the intersection layout error (ILE), we create the spurious intersections by

42

splitting the existing intersections. Specifically, we select a pct% of vertices Vil from V ∗ whose degree

is no less than four. For each vi ∈ Vil, we split it into two points vi1 and vi2 which are symmetric,

centred at vi, and satisfy that dist(vi1, vi) = dist(vi2, vi) ≤ θ. Lastly, the previously connected edges

are redirected to the vertex that is closer and vi1 and vi2 are connected to each other eventually.

(a) Original intersection (b) Topological error (pct = 30%)

(c) Geographical error (pct = 30%) (d) Spurious road (pct = 30%)

(e) Intersection error (pct = 30%) (f) Zigzag road shape (θ = 2m)

FIGURE 3.3: Various map errors generated by synthetic map generator

In Fig. 3.3, we visualise different types of map errors generated by our artificial map generator.

Besides, all the pct% used in the aforementioned road-related cases (TE, RL) requires a random

selection, which can be achieved in two modes: complete random (CR) and weighted random (WR).

Different from the complete randomness, the weighted random assigns a weight to each edge/vertex

so that higher weight items are more likely to be selected. Here, the weight for each edge/vertex

43

is calculated by the following steps: (1) we perform map-matching on the trajectory dataset to the

ground-truth map, and each trajectory is converted to a sequence of road edges; (2) for each road

edge, we count the total number of appearance in the map-matching results as its weight; (3) the

weight of each vertex is the sum of all the weights of its adjacent edges. Therefore, the weighted

random considers the popularity of road. Such randomness can help test if the measures are sensitive

to road importance.

3.4.2 Synthetic Trajectory Generator

Since GPS trajectories usually contain multiple types of GPS errors, it is impossible to evaluate how

a certain type of error affects map inference algorithms. Therefore, we propose a synthetic trajectory

generator to simulate different types of GPS trajectory errors, respectively, while preserving the sta-

tistical features of the trajectory dataset. To make sure the synthetic datasets follow the same pattern

as the actual vehicle movements, instead of generating trajectories randomly, our generator takes the

actual road sequence that a vehicle travelled as input to generate a synthetic trajectory. To achieve

this, we first conduct map-matching [90] on a real trajectory dataset to obtain the actual travel route of

each trajectory (this step can be skipped if the ground-truth map-matching result is available). Then,

for each trajectory Tr and its matching result M(Tr), we perform the following process:

(1) For each point pi ∈ Tr, we find its matching point M(pi) on M(Tr). M(pi) is regarded as the

estimated location of the vehicle at time ti.

(2) For each pair of matching pointsM(pi),M(pi+1) of two consecutive points pi, pi+1, we find ∆t−1

intermediate points along the route betweenM(pi) andM(pi+1) (∆t = ti+1− ti) which evenly divide

the route into ∆t pieces. Therefore, each intermediate point represents the estimated location of the

vehicle at a certain timestamp.

(3) We collect all points of M(pi) and intermediate points to form a point sequence. The sequence is

sorted chronologically and form a trajectory, called primitive trajectory.

Here, the primitive trajectory is the estimated vehicle locations at every moment during the trip.

According to Section 2.3, map inference algorithms could encounter the following types of data

quality issues: (1) inaccurate trajectory point caused by measurement errors; (2) low sampling rate

which makes the shape of a trajectory very different from the actual vehicle movement trace; (3)

trajectory disparity which causes unpopular roads harder to be inferred. To evaluate the impact of

these issues on the performance of map inference, our generator produces corresponding synthetic

trajectory datasets by manipulating primitive trajectories in certain ways:

• To simulate the GPS measurement errors, we follow a bivariate normal distribution withN(0, σ2)

44

on both axes. By varying the standard deviation σ, we are able to generate trajectories with dif-

ferent measurement accuracies. Hence, for each point in primitive trajectory, we randomly

choose a new location according to the distribution and finally form a synthetic trajectory.

• For sampling errors, we re-sample the primitive trajectory by sampling periodically based on

the sampling rate ∆t.

• As each primitive trajectory is derived from a set of roads, to achieve a certain percentage pct%

of road coverage, we incrementally add primitive trajectory that passes new roads until a certain

pct% of the total map’s roads are travelled.

These synthetic datasets will be used in our experiments to evaluate the robustness of the inference

algorithms when facing different types of errors.

3.5 Experiments

Our experimental study consists of two main components: (1) evaluate the ability of the current

quantitative measures to identify various types of map errors; (2) conduct comprehensive experiments

on the representative map inference algorithms and compare their performance under both synthetic

and real GPS data.

3.5.1 Experimental Settings

Datasets

There are a few public datasets available, like the Chicago [4, 17, 70, 100, 116, 132, 161] and Berlin

[38, 132] which are widely adopted in existing map inference algorithms. However, they both suffer

from severe trajectory disparity issues, as shown in Table 3.2, where the Chicago and Berlin dataset

both have more than 75% of roads that are rarely travelled (96.81% in Chicago and 78.60% in Berlin).

Such datasets are good for visual comparison, because you only need to focus on a certain region of

the map, which is how previous surveys conduct their experiments. However, they are not applicable

to quantitative experiments as more than 75% of the recall is already lost. Since we mainly focus on

quantitative evaluation, in our experiments, we mainly use the Beijing dataset, which is a commercial

dataset collected by our industry collaborator. It contains trajectories of 5,000 taxis in Beijing for

5 days. From the original map Beijing-L, we further extract two sub-areas, namely Beijing-S and

Beijing-M, which represent two urban areas with different scales. Table 3.2 compares these datasets

and shows their specifications. In addition to basic information, we also provide three additional

45

statistics for each dataset: (1) map density: the average length of roads (km) in a unit of map area

(km2); (2) trajectory density: the average number of trajectory points in a unit of map area (km2);

and (3) trajectory disparity: the percentage of roads that are never or rarely (≤ 5 times) visited by

trajectories. Overall, compared with Chicago and Berlin, the Beijing datasets contain multiple advan-

tages: (1) the variety of map scale and map/trajectory density enables testing algorithms’ efficiency

and scalability; (2) most of the roads (> 63%) in the urban area (Beijing-S and Beijing-M) are trav-

elled by at least one trajectory, which is much higher than Chicago (3.2%) and Berlin (21.4%); and

(3) they provide heading and speed information for each trajectory point, which is required by some

of our candidate algorithms.

TABLE 3.2: Comparison of public and private datasets
Name Input Trajectory Road Network Statistics

Trajectory Trajectory Sampling # of vertices # of Area Map Density Trajectory Visit Count Visit Count

Count Point Count rate(sec) + mini nodes edges Size(km2) (km/km2) Density(pts/km2) = 0(%) ≤ 5(%)

Chicago 889 118,360 3.62 9,391 23,602 31.48 38.47 3759.34 94.63% 2.18%

Berlin 27,185 192,194 41.65 5,894 13,678 31.16 22.96 6,168.74 39.70% 38.90%

Beijing-S 55,215 1,329,606 9.67 7,672 4,484 9.92 27.26 134,058.86 9.34% 27.55%

Beijing-M 268,492 8,837,029 11.20 41,353 22,580 56.99 24.18 155,075.62 8.11% 21.50%

Beijing-L 1,994,770 126,929,547 7.66 2,459,768 602,455 33404.56 2.58 3799.77 39.37% 23.69%

Environment

We perform our experiment on a single server, which consists of two Intel(R) Xeon(R) CPU E5-

2630 with 10 cores/20 threads at 2.2GHz each, 378GB memory and Ubuntu 16.04. The server has

large enough memory to ensure the algorithms can be fully processed in memory. Algorithms run on

Python-2.7 (RA-K-MEANS, RA-KDE, RA-TOPIC and IB-ME), Java-1.11 (IB-TM and IL-TURN) and

Go-1.12.5 (IB-ME)). The reason for algorithms being implemented in different languages is mainly

due to their respective dependency requirements. However, it does not affect our experiments as we

mainly focus on their self scalability rather than direct efficiency comparison.

3.5.2 Evaluation of Measures

Before comparing the map inference algorithms, we first evaluate the existing quantitative measures in

identifying map errors discussed in Section 3.3. Our candidate measures include graph item matching

[69] (GM), graph sampling [17] (GS) and path-based distance [3] (PD). We test them on six types

of generated maps (GE, TE, RL, SR, RSE, ILE) with two of them using both complete-random and

weighted-random sampling strategies (TE-CR, TE-WR, RL-CR, RL-WR). Tables 3.3 and 3.4 show

the evaluation results under different error types. Due to the space limit, we only list the F-score

46

for vertex graph item matching (GMV), edge graph item matching (GME) and graph sampling (GS),

and we calculate the average Fréchet distance for path-based distance (PD). In general, it is clear

that each measure has its weakness in identifying certain types of errors. For instance, it is expected

that the vertex-based graph matching is not able to identify the topological error, road loss, spurious

roads and road shape errors as the intersections remain unchanged in those maps. However, it is

also less sensitive to the cases where the intersections shift slightly (GE), or are duplicated (ILE)

since most of those noises do not escape the radius of vertex match and duplicate intersections can be

matched to the same ground-truth without penalty. On the other hand, edge-based graph matching and

graph sampling are capable of detecting topological changes. In particular, both measures decrease

considerably when more topological errors (TE) or road removal (RL) takes place. Interestingly,

the decline becomes less significant when the errors are introduced based on road popularity. The

reason is that in the weighted random, we tend to remove a fewer number of roads but with higher

importance. However, both GME and GS scores only reflect the reduced number of removals; in other

words, these measures do not take into account the importance of different roads.

Overall, the path-based measure is underwhelming in most scenarios, except SR and GE, due to

multiple reasons: (1) different from a percentage, an absolute value of distance sometimes cannot

measure the difference between two maps, especially when comparing the results between maps with

different scaled and road densities; (2) since the measure tries to find the matching ground-truth to

each path in a constructed map, it can hardly detect the road coverage and connectivity problems, like

RL and TE. Instead, it can better detect spurious roads (SR) rather than other measures as those roads

are usually hard to match to ground-truth; and (3) as it compares each generated link to all possible

links on the map to find the one with minimum Fréchet/Hausdorff distance, the complexity is at the

level of O(V 3) [3]. Due to the high complexity of the Fréchet distance calculation and candidate

generation, the measure runs extremely slow even with a medium map size.

In general, the graph sampling and edge-based graph item matching have better overall perfor-

mance in most error types. Compared with graph item matching, graph sampling is slightly more

sensitive to the noise and is very sensitive to low road coverage. However, none of these measures

takes into consideration of road importance, which defines how crucial a road is with respect to the

road network. It is sometimes given as the road level in road network datasets or calculated based

on the centrality indices (degree centrality, betweenness centrality, etc.) in graph analysis. As an

incorrect inference of an arterial road can lead to more serious problems than a missing rural road, es-

pecially in the navigation system, the lack of sensitivity to road importance can be a critical problem to

map quality evaluation. Moreover, they have a hard time identifying intersection layout errors (ILE)

and are unable to detect road shape changes. Since both errors happen quite often in various inference

47

algorithms [17, 37], it is clear that the current measurement system still requires more attention and

further development.

TABLE 3.3: Measurement results under different topological error (TE) and road loss (RL) ratios
Pct TE-CR TE-WR RL-CR RL-WR

(%) GMV (%) GME (%) GS(%) PD (m) GMV GME GS PD GMV GME GS PD GMV GME GS PD

10 99.35 96.94 91.54 1.07 99.49 97.29 94.88 1.03 98.93 95.76 93.13 1.02 99.54 96.72 96.69 1

20 98.77 94.16 83.31 1.16 99.27 95.20 90.86 1.05 97.97 91.01 86.71 1.01 99.40 93.78 93.78 1

30 98.39 90.89 73.58 1.39 99.22 92.47 85.69 1.09 97.27 86.19 81.88 1.01 99.06 88.56 91.23 1

40 97.91 88.40 65.41 1.60 99.04 89.74 80.20 1.17 96.61 81.25 77.94 1.01 98.64 82.38 88.14 1

50 97.71 85.98 60.92 1.81 98.85 87.03 74.66 1.32 95.92 74.55 76.32 1.01 98.21 74.77 85.27 1

60 97.39 82.66 57.11 2.00 98.64 84.14 68.34 1.54 95.78 68.37 75.06 1.01 97.96 65.35 81.61 1

TABLE 3.4: Measurement results under various other error types
Pct SR ILE σ GE θ RSE

(%) GMV GME GS PD GMV GME GS PD (m) GMV GME GS PD (m) GMV GME GS PD

5 99.09 97.43 98.42 1.41 1.0 99.77 97.84 1.45 5 1.0 1.0 95.01 6.80 2 1.0 1.0 86.95 13.91

10 98.16 94.95 97.02 2.32 1.0 99.46 95.11 1.88 10 1.0 1.0 91.84 8.12 4 1.0 1.0 87.74 13.37

15 97.75 93.20 95.29 3.33 1.0 99.20 92.27 2.31 15 1.0 1.0 90.74 9.37 6 1.0 1.0 87.75 13.03

20 97.51 91.81 93.80 3.82 1.0 99.14 90.38 2.63 20 1.0 1.0 89.08 10.74 8 1.0 1.0 88.20 12.92

25 97.24 90.49 92.04 4.61 1.0 98.94 87.87 2.88 30 1.0 1.0 85.71 13.48 10 1.0 1.0 88.47 12.93

30 97.00 89.57 90.38 5.50 1.0 98.80 84.53 3.11 40 1.0 1.0 83.09 16.33 12 1.0 1.0 88.70 13.06

3.5.3 Evaluation of Inference Algorithms

We evaluate our candidate inference algorithms on the Beijing dataset using the above quantitative

measures. Note that the parameters used in the algorithms are mostly set to default value according

to their original paper unless it is related to the expected GPS measurement error range. As all the

algorithms assume the input is always inaccurate, they always set a threshold for tolerable error radius

which is usually between 0 50 meters. In this case, we set it as 20 meters after we analyse our Beijing

dataset. Overall, we conduct the experiments from three perspectives: robustness, scalability and

overall performance comparison.

Robustness

We test the robustness of the algorithms based on how they perform under different qualities of tra-

jectories. Therefore, we generate synthetic trajectory datasets through our generator on Beijing-S

map, which only contains measurement error, sampling error and trajectory disparity issues, respec-

tively. Note that we do not evaluate RA-K-MEANS and IL-TURN as they require speed and heading

as inputs, which is not available in synthetic datasets. Fig. 3.4a shows the inference quality of the

candidate algorithms under different GPS measurement accuracies. It is shown that the increase of

48

(a) Synthetic measurement error (b) Synthetic road coverage (c) Map quality when varying input

size

(d) Running time when varying in-

put size

(e) Running time on different data

scales

(f) Map quality comparison (Beijing-

S)

FIGURE 3.4: Summary of experimental results of map inference algorithms

measurement error does not affect the overall performance significantly until the error exceeds the

preset error radius (20m). The reason is that when a GPS sample exceeds the tolerable error range,

it is likely to be treated as a new road element, so its precision drops quickly as the graph sampling

measure is sensitive to spurious roads. However, in another experiment we have done, we set the error

radius to a higher value (50m) and found that the overall F-score of most algorithms dropped by a

visible amount due to a significant decrease in recall. The combined results show that a proper preset

error radius that matches the input is crucial. A strict preset value on a low-quality input can cause low

inference accuracy, while a loose preset range guarantees an incomplete map, even with high-quality

input. Nowadays, as the accuracy of GPS positioning devices keeps improving, the performance of

map inference algorithms can also benefit from high accuracy in the future. On the other hand, we

also vary the sampling rate while removing the measurement errors entirely. It is clear that the map

quality gradually decreases when the sampling rate drops. This happens more seriously to line-based

methods, namely RA-KDE and RA-TOPIC, as the lines can no longer represent the road shape when

the sampling rate is very low. In terms of the trajectory disparity, we test the algorithms by providing

various percentages of the road coverage which contains neither measurement nor sampling error, as

shown in Fig. 3.4b. Note that although the road coverage reaches up to 60% in our experiment, most

of the roads are travelled on a few times since the input trajectory set is chosen by maximising the

road coverage while minimising the input size. As shown in the figure, although we can clearly see

49

the improvement of map recall, only less than half of the roads can be inferred, which means that

finding the rarely travelled roads is still a challenging task. Many of them are either removed as noise

or merged with neighbouring roads. Amongst all the candidates, the trace merging method has the

best detection rate. Since it processes every trajectory individually, it is more likely to find new road

segments as long as the trajectory is partially different from the existing roads.

Scalability

The main objective of the scalability test is to answer three questions: (1) how the quality of the

constructed map improves as the size of the input trajectory increases; (2) how the efficiency of al-

gorithms scales with the size of trajectory dataset; and (3) how the map size affects the efficiency of

algorithms. Figs. 3.4c, 3.4d and 3.4e answer these questions, respectively. In Fig. 3.4c, we use graph

sampling F-score to evaluate the map quality. Interestingly, not all algorithms’ performance benefits

from increasing the trajectory dataset, in particular, the KDE, k-means and intersection linking meth-

ods. The main reason is that although the increase of the trajectory size can slightly improve the road

coverage, due to the poor denoise mechanism, more spurious roads are also introduced, which affect

the precision significantly. For example, in the KDE method, the increase in input size can lead to

more ambiguous road intersections, which can potentially create more incorrect branches after the

skeletonisation process. Therefore, increasing input dataset is not always a good idea unless the qual-

ity of input is ensured by data preprocessing or a more robust algorithm is chosen. The quality of

intersection linking suffers from low input size, especially when the trajectory sampling rate is low

where the intersections are difficult to detect. Besides, although two of the algorithms have a very

poor F-score, namely RA-TOPIC and IB-ME, their actual performance is not as bad as indicated.

The main reason for their poor performance is the low recall. Plus, the result from graph sampling

measures usually further decreases the score for lower recall solution since most of the seed points

from ground-truth cannot find their correspondents on the inferred map. In fact, these two methods

can achieve the best accuracy amongst all solutions, making them the perfect choices for larger input

dataset thanks to strict noise control. However, during our experiments, we found that IB-ME and

IB-TM can barely generate reasonable results when the trajectory size is too low. The reasons are dif-

ferent. For IB-ME, the algorithm always starts from some random locations on the map, and explore

the whole map. When the trajectory size is too small, the starting seeds can not find neighbouring

trajectories to start with, which prevent the algorithm to generate any result. Meanwhile, in IB-TM,

the trajectories are well separated due to the sparsity, which means the final map becomes a set of

individual edges rather than a connected graph. However, there is no clear bottom line, in terms of the

50

trajectory size, for each algorithm to generate reasonable map as it determined by multiple factors,

like the trajectory length, spatial distribution, map size, etc., but it is better to try algorithms like KDE,

k-means and intersection linking when the trajectory size is considerable small.

In terms of efficiency, since our algorithms are implemented in various languages, we mainly fo-

cus on their scalability when changing the input size rather than comparing the efficiency between

algorithm directly. Fig. 3.4d shows the scalability of those methods with fixed map size and in-

creasing trajectory input. To our surprise, the trace merging algorithm has the second-best scalability

amongst all candidates, which shows that the cost of the Fréchet distance calculation between every

new trajectory and the map has been fully optimised. On the other hand, the topic model method

has the worst scalability since topic extraction algorithms (LDA and pLDA) are all computationally-

extensive operations, which rely heavily on iterations. On the contrary, the k-means-based method is

very efficient and also scales perfectly. The same applies to Fig. 3.4e where the map size increases

to Beijing-M and Beijing-L with the same or larger trajectory size. Most of the solutions struggle to

finish the task within a reasonable time (< 5 hours) even on the Beijing-M dataset, but we can see

that the RA-K-MEANS methods finish the task on Beijing-L efficiently, not to mention its ability for

parallel processing which further accelerates the process. From the results in Fig. 3.4e, we can clearly

see that even with the same input trajectory size, the map size can significantly affect the performance

of all algorithms.

Overall performance

We evaluate the overall performance on 10,000 trajectories in the Beijing-S map, shown in Fig. 3.4f.

In general, the classical methods, like KDE and K-means methods, has been largely outperformed by

recent solutions. However, there is nothing wrong with the clustering methods. Although using the

same rasterisation technique, the topic model-based methods achieve much better performance than

the KDE method in terms of both accuracy and road coverage, which indicates that the current way

of road abstraction from the cluster is still under development. Despite the outstanding efficiency,

the accuracy of the K-means method is unsatisfactory. Moreover, since its accuracy does not always

improve as the input data grows, its potential for large scale map construction cannot be fully utilised

unless some pruning step is introduced. The map expansion method has decent inference accuracy;

however, its road coverage is underwhelming. Considering its ability of road feature inference (non-

planar map, more accurate road shape), it is an ideal method for map updates. Overall, despite its

relatively low recall, the topic model-based method has the best accuracy and overall performance

amongst all other methods. Since the idea and solutions of topic model come from another research

51

field, it shows that map inference problems can potentially be solved by ideas from other research

areas or through new techniques, like machine learning.

3.5.4 Experiment Findings

As one of the main contribution of our study, we simulate different types of map errors, and evalu-

ate how the current quantitative measurement systems are able to identify them, which were never

studied in previous research. In our experiments, we find that despite various quantitative measures

are proposed, no measure is capable of identifying all types of errors appeared in an inferred map.

Moreover, some measures (path-based measures) are completely dominated by others, and several

types of errors are unable to be identified by any of existing measures. Such findings show that the

study on map inference evaluation is still much needed in the future.

In terms of the map inference algorithm performance, our experiments show two interesting ob-

servations: (1) The increase of input trajectory size does not always lead to better inference accuracy,

which is mainly caused by the poor error control mechanism. (2) The size of the map can solely affect

the performance of most inference algorithms, and most of the advanced map inference algorithms

fail to handle large trajectory dataset. Both insights show that the current map inference algorithms do

not benefit from the big data era. Better methods for error control and big data processing are desired,

which can be achieved by either better data preprocessing procedures or better inference algorithms

in the future.

3.6 Summary

In this chapter, we present a comprehensive survey and experimental study of existing map inference

algorithms. Specifically, we propose a new categorisation method, compare the representative algo-

rithms experimentally and evaluate the existing quantitative measures. Besides, to test the robustness

of algorithms and quantitative measures, we introduce a synthetic trajectory generator and an artificial

map generator to simulate different trajectory errors and map quality issues, respectively. According

to our experiments, we observe that besides their respective weakness, the existing quantitative mea-

sures are unable to identify several map issues and do not consider road importance. Regarding the

candidate algorithms, the existing algorithms struggle to guarantee performance when the GPS errors

exceed their expected threshold, and they still find a hard time identifying roads that are rarely trav-

elled. Moreover, more input trajectories do not always lead to better inference results. Overall, we

identify the method that has the best scalability (RA-K-MEANS), the best accuracy (RA-TOPIC), and

52

the best suitability for map updates (IB-ME), respectively, and meanwhile point out potential future

research directions.

53

54

Chapter 4

Map-Matching Algorithms

4.1 Introduction

The recent popularity of GPS-equipped devices provides abundant user/vehicle trajectories. How-

ever, as the backbone of most location-based services, the trajectory data suffer from various data

quality issues, which lead to false representation of user/vehicle travel history. Hence, in addition to

some generic data cleaning techniques, the trajectory map-matching was proposed to correct trajec-

tory errors. By aligning it to the road network, each trajectory is converted to a sequence of roads

representing the actual route travelled, which serves as the input of many downstream applications,

such as navigation [51], traffic monitoring and map construction/update [5, 27, 134],

The map-matching problem was first studied in late 1990s [14,75], in which the data from Global

Positioning System (GPS) were map-matched to support navigation applications. Since then, plenty

of solutions have been proposed during the last two decades. On the one hand, driven by the contin-

uous evolution of positioning systems and devices (GPS [33, 117], Wi-Fi [121], inertial sensor [130],

etc.) and the emergence of new applications (autonomous driving [81], map update [134], etc.), vari-

ous new algorithms have been proposed to support map-matching in different scenarios. On the other

hand, as it is known that map-matching becomes more challenging as the input trajectory quality de-

teriorates, plenty of tuning techniques are applied to the existing models to achieve faster and more

accurate map-matching over inaccurate and less-sampled trajectories.

However, to the best of our knowledge, despite the massive number of map-matching algorithms,

only a few surveys are found [56, 74, 103, 114, 136] classifying or comparing them. Quddus [103] et

al. first summarise the early algorithms in 2007. They categorise the methods based on the matching

principles (geometrical/topological) or the computation model (probability/advanced) adopted in the

algorithms. Such categorisation was a consensus agreed but is now obsolete as it fails to classify

55

most of the new methods proposed afterwards. Nevertheless, apart from some recent topic-specific

surveys [56,74], this categorisation is still widely adopted by recent papers [73,101,118,122] and sur-

veys [114], which indicates the need of a review in this field. Furthermore, recent works bring various

new matching frameworks [112,119] and tuning techniques [57,63,81,95] to solve the map-matching

problem on new types of positioning data (DGPS, inertial sensor, laser scanner [86], camera [71]) and

new queries (lane-level map-matching [41, 71, 86]). Hence, it is worth conducting a comprehensive

survey to summarise existing works and discuss the remaining challenges and future research direc-

tions. In this chapter, we introduce the existing map-matching methods and propose a new categori-

sation that classifies them according to their map-matching models, working scenarios and input data

features. Besides, we conduct extensive experiments on multiple representative methods with both

real and synthetic datasets. In summary, the main contributions include the following:

• We decompose each map-matching solution into a map-matching model and a set of tuning

techniques. In addition, we categorise the algorithms based on their matching models, work-

ing scenarios and input data features. Our proposed categorisation can better distinguish the

existing methods from the technical perspective and is easily adaptable to new solutions.

• We conduct extensive experiments on several representative map-matching algorithms to com-

pare their performance under both online/offline working scenarios. Additionally, our experi-

ments study the problems of (1) finding the best trade-off between online matching accuracy

and latency, (2) evaluating the influence of different data features to the map-matching perfor-

mance and (3) testing the effectiveness of some typical tuning techniques.

• We identify and visualise the matching errors that remain unsolved by the current map-matching

algorithm, which is regarded as the future research direction.

Note that our survey only focusses on vehicle trajectory map-matching in the outdoor environ-

ment, which is the foundation of a wide range of applications. Other fields, like map-matching in

indoor environment [11, 145], for pedestrians [13, 108] or on different data types [88] face various

unique challenges that are irrelevant to our focus. Hence, we do not include them in our discussion.

4.2 Preliminaries

Before the detailed survey, we first define the map-matching problem and related data types. The map-

matching algorithm aims to find the object’s moving trace by aligning its trajectory to the underlying

road network. Hence, the input of a map-matching process consists of both the trajectory and the road

56

network, which are defined in Section 1.2, while the output is a sequence of road edges representing

the object’s actual travel path.

Regarding the input, the format of the input trajectory and road network may have multiple varia-

tions. For each GPS trajectory point pi, in addition to its 2D location, the speed spdi and heading θi are

also measured by inertial sensors which are integrated with most GPS positioning devices, like mobile

phones and GPS-equipped vehicles. Other data sources, like the Differential GPS (DGPS) [41, 128],

WiFi [121], cellular radio [8,89] and visual sensors [81], also serve as either primary or auxiliary data

sources for map-matching with different level of accuracy and stability. On the other hand, in addition

to the basic geographical map features, other features, like road width, number of lanes, speed limit

and road type, are utilised in some map-matching papers [50, 156] for better modelling of the user’s

driving preference or fine-grained lane-based map-matching [71, 112].

In terms of the output travel paths, we define them as routes:

Definition 3. (Route) A route R on map G represents a sequence of connected edges, i.e. R : e1 →

e2 → ...→ en, where ei ∈ G.E(1 ≤ i ≤ n) and ek.e = ek+1.s(1 ≤ k ≤ n).

Therefore, we are ready to formally define the map-matching problem:

Definition 4. (Map-matching) Given a road network G(V,E) and a trajectory Tr, the map-matching

finds a route MRG(Tr) on G representing the sequence of roads travelled by Tr and each point

pi ∈ Tr is matched to a point on R representing its actual location at ti.

Note that, as the map-matching resultMRG(Tr) represents the object’s travel route, it is usually

expected to be continuous. However, it is quite often that MRG(Tr) contains disconnected edges

due to incorrect map-matching or map errors. Besides, as mentioned in the definition, many papers

store the matching result as a set of matching pointsMPG(Tr) = {mp1,mp2, ...,mpn} where mpi

is the matching point (actual location on the route when pi is sampled) of pi ∈ Tr and n = |Tr|.

Note that, for simplicity, we omit the subscript G and use MR(Tr)/MP(Tr) instead to represent

route/point match in the following content as the map-matching of different trajectories is usually

done on the same map.

4.3 Map-Matching Models

As mentioned in Section 2.2, previous surveys classify the map-matching algorithms based on the

mathematical tools they utilise [103], working scenarios [56] or applications [74]. However, these

categorisations fail to classify the current solutions due to three main reasons: (1) categories for some

57

TABLE 4.1: Categorisation of map-matching algorithms in different scenarios

Category Model
High ∆t Low ∆t

Others
Online Offline Online Offline

Similarity
Distance-based [162] [137] [96]

Pattern-based [159]

State-transition

HMM [47, 121, 129] [36, 90, 115] [8, 50, 67, 107] [95] [88]

CRF [65] [65]

WGT [84, 156] [63, 64, 84, 105, 156]

Candidate-migration
PF [23] [123]

MHT [73, 109] [85] [119]

Scoring Naı̈ve weighting [20, 53, 58, 80, 112, 127] [101] [127]

primary methods, such as geometric [103], are no longer the focus due to their weak performance.

(2) application-based classification [56, 74] cannot fully distinguish the methods. Many of the map-

matching algorithms, like the Hidden Markov Model (HMM) and Multiple Hypothesis Technique

(MHT), apply to both online and offline scenarios for different applications; and (3) classifying algo-

rithms by embedded mathematical tools is not feasible since many recent algorithms employ multiple

mathematical tools. Furthermore, the same tool implemented in different algorithms may be used for

different purposes; for example, an extended Kalman filter can be used to either estimate GPS biases

or fuse measurements from different sources [80].

According to our observation, the existing map-matching algorithms are comprised by two main

components: the core map-matching model and a set of tuning techniques. A map-matching model

is a framework that coordinates other techniques to finally achieve map-matching, while the tun-

ing techniques can be applied in various map-matching algorithms for performance improvement or

data integration, and each map-matching algorithm can apply multiple tuning techniques for differ-

ent purposes. In this section, we introduce the existing map-matching models and establish a new

categorisation that classifies the map-matching algorithms by their core matching models.

In a map-matching algorithm, the map-matching model is the overall framework or matching

principle for the map-matching process. A model usually consists of a set of computational compo-

nents, like the calculation of distance, transition and user behaviour modelling, and a workflow con-

necting them. Those components are fixed while their definition and implementation vary amongst

different methods. According to our observations, existing map-matching models can be categorised

into four classes: similarity model, state-transition model, candidate-migration model and scoring

model. In addition, we further divide the solutions in each category to multiple subclasses according

to their working scenarios (online/offline) and input data features (high/low sampling rate or other

data sources), as listed in Table 4.1. Hence, we introduce the core idea of each category and their

representative solutions.

58

4.3.1 Similarity Model

The similarity model focusses on finding the vertices/edges that are closest to the trajectory geo-

metrically and/or topologically. Intuitively, the trajectory should have a similar shape to the actual

route when the data quality is decent. Therefore, the main focus in this category is how to define the

closeness properly and find the candidate efficiently.

In this category, Distance-based methods measure the closeness based on spatial proximity and/or

topological similarity. Apart from some old methods that only consider point-to-point distance [103],

recent algorithms evaluate the closeness by distance functions that consider both spatial proximity

and topological continuity, which have much better accuracy but also higher complexity, like Fréchet

distance [135] and Longest Common Subsequence (LCSS) [162]. Pattern-based methods define

the closeness as the most similar travel patterns in historical map-matched data. Following the as-

sumption that people tend to choose the same path given a pair of origin and destination points,

pattern-based methods store historical map-matched data as references and achieve map-matching of

new trajectories by finding similar patterns in the trajectory history.

In summary, despite some early geometric/topological methods that run fast but with poor per-

formance, most of the recent similarity-based methods require high computation cost, but they are

sensitive to GPS errors due to their reliance on trajectory shape, which is also the main reason for not

supporting online map-matching since the shape is is incomplete.

Frec2013 [135] proposes a Fréchet distance-based similarity method with attention on the alter-

native path problem. The algorithm initially finds paths whose Fréchet distance to the trajectory is

lower than a threshold. If the result is a unique path, this path will be returned as the final match;

otherwise, the algorithm ranks candidate paths using a weight function and returns the path that ranks

first. However, due to the feature of Fréchet distance, the path is sensitive to trajectory outliers since

the distance is determined by the most divergent point.

Lcss2017 [162] uses Longest Common Subsequence (LCSS) for similarity calculations. Specifi-

cally, the algorithm segments the trajectory and finds the shortest path on the map for each pair of seg-

ment endpoints. The obtained shortest paths are then concatenated to form a candidate route; mean-

while, their corresponding LCSS scores are summed to obtain the total LCSS score. Since increasing

the segmentation granularity enhances the accuracy but lowers the efficiency of map-matching, con-

sidering the trade-off between these two factors, the algorithm returns the path requiring the lowest

level of segmentation but gaining a total LCSS score higher than the predefined threshold.

Hist2012 [159] first utilises the historical data for pattern-based map-matching. The historical

59

map-matched trajectories are processed and stored as OD pairs and corresponding routes. The map-

matching of a new trajectory is achieved by finding a historical trajectory, or the concatenation of

multiple historical trajectories if each point of the trajectory falls into the safe region (with temporal

constraints) around the task trajectory. The algorithm finally uses a scoring function to decide the

path the vehicle actually travelled. However, due to the sparsity and disparity of historical data, the

query trajectory may not be fully covered by historical trajectories especially in rural regions, which

leads to a direct matching process.

4.3.2 State-Transition Model

The state-transition models build a weighted topological graph which contains all possible routes

the vehicle might travel. Different from the road network, the vertices in this graph represents the

possible states, which is the potential locations of the vehicle during its trip, while the edges represent

the transitions between states, which only connect the states with continuous timestamps. In most

cases, both the states and transitions are weighted according to their possibility, and the best matching

results is achieved by finding the optimal path in the graph from the first timestamp to the last.

Currently, the graph can be built in three different ways: (1) The Hidden Markov Model (HMM)

is the most popular model in map-matching. In the HMM model, the observations are visible while

their actual states are hidden. Such a model can be easily applied to the map-matching problem

where the observations correspond to the trajectory samples and the vehicle’s actual locations are the

hidden states. Therefore, the model can find the best possible state sequence, which is the matching

result, through dynamic programming [137]. (2) Like the HMM, the Conditional Random Field

(CRF) is another statistical model used for finding the best possible solution. The core difference

between the CRF and HMM is that the probability of a state in HMM only depends on itself, other

states at the same stage and one stage ahead, whereas CRF model interacts amongst all observations.

(3) The weighted graph technique (WGT) builds a weighted graph whose nodes are candidate road

nodes/edges of trajectory samples, while edges represent the transition between candidates of two

consecutive samples, whose weights are assigned according to the shortest distance, turn frequency

[156] and other factors that affect travel preference. The final matching result is mostly achieved by

returning the path with the highest cumulative edge weights [60, 63, 64, 84].

The core advantages of the state-transition model are its ability to model the user’s travel be-

haviours by introducing various features. Therefore, most papers in this category focus on designing

different weighting strategy, in particular, defining different emission/transition probability functions

in HMM/CRF or assigning different vertex/edge weights in WGT. The ST-matching, which is the first

60

work in WGT [84], weights an edge (ci → ci+1) simply based on a spatial cost (distance reasonabil-

ity) and a temporal cost (velocity reasonability). Yuan et al. [158] further considers mutual influences

between neighbouring nodes. The scoring function in He et al. [60] stresses on road connectivity,

travel time reasonability and the taxi status. Specifically, the scoring function here is a Fuzzy logic

model. Rahmani et al. [105] incorporate road features (traffic lights and left turns) in scoring func-

tions, as well as the reasonability of estimated travel time. The IF-matching algorithm [63] propose

a novel feature to be considered when weighing a path segment, which is the speed rationality with

respect to surrounding road segments. At the same time, it employs the spatial and temporal con-

straints in previous work [84]. Meanwhile, Huang et al. [64] weights a path segment in proportion

to the frequency that the path was visited in historical trajectories. Besides, since the state-transition

graph is much smaller than the road network, most of the algorithms under this model run much faster

compared to the similarity-based methods. Therefore, many algorithms in this category also have an

online version [50, 65, 129, 156]. However, since the construction of a state-transition graph requires

multiple stages, the matching of current point is usually achieved after receiving several new samples,

named as sliding window strategy, which leads to a matching latency. Usually, the larger the window

size, the higher the map-matching accuracy can achieve but with a longer delay. Therefore, online

state-transition algorithms face a trade-off between latency and accuracy.

Hmm2009 (OFF-HMM) [90] is the first work that provides a detailed explanation of how HMM

model can be adapted in map-matching problems. The work gives a precise definition of emission

probability, which assumes that for correct matches, the direct distance dist(ot, si) between the sam-

ple and its candidate edge follows a Gaussian distribution, i.e.:

P (ot|si) =
1√
2πσ

e−0.5(dist
ω

)2 (4.1)

This definition is widely adopted by later works [8, 47, 67, 107, 129], and a transition probabil-

ity, which considers the shortest path between candidate road edges and its difference to the direct

distance between the corresponding trajectory points. It is by far the most popular solution in the

map-matching field. Later, Vary2012 (ON-HMM-VSW) [50] further extends this work to online

scenarios. Other than simply introducing the sliding window with a fixed size (ON-HMM-FSW), the

paper mitigates the latency problem by varying the window size according to the uncertainty of match-

ing. More specifically, the algorithm expands the window forwards when a new location observation

is generated, while it contracts the window from behind when the candidate paths converge at a point

in any Markov stage in the window. The path owning the highest probability up to the convergence

point is returned and shared by all future candidate paths, which is called convergence-determined

61

pathfinding. However, this algorithm lacks a strategy to optimise the latency and accuracy trade-off,

i.e. determining at which stage to pay an accuracy cost and stop delaying. This problem is targeted

by Eddy2014 (ON-HMM-DSW) [129], which models the latency and accuracy costs separately and

tries to minimise their sum. The authors have proven that their algorithm is both error-bounded and

latency-bounded. Even though, the latency problem still exists.

Crf2014 [65] proposed a CRF-based algorithm that can be applied to both online and offline

situations with high accuracy. Its overall approach is similar to HMM-based algorithms as follows:

Firstly, it identifies candidate points on the road network for each location measurement from the

input, where the candidate points for each measurement are the most likely positions on road edges

inside the radius (700m) of this measurement. Then, paths that connect discrete candidate points

are computed using the standard shortest-path algorithm which considers the maximum speed limit.

Lastly, the most likely admissible path is identified using a CRF of which the transition model utilises

the driving patterns of drivers.

Feat2018 (OFF-WGT, ON-WGT) [156] achieves the map-matching by building an action graph

among candidates. After retrieving candidate roads for each trajectory sample, the algorithm builds

the action graph by connecting the candidates from neighbouring samples with their shortest path on

the map. However, instead of assigning weights to the edges by the length only, the algorithm com-

bines the road length, turning cost and other features (optional) as action costs. The final matching

result is achieved by finding the path with the lowest weight connecting the candidates. To further

accelerate the process, the algorithm applies a trajectory segmentation strategy, which basically com-

presses the trajectory using the Douglas-Peucker algorithm.

4.3.3 Candidate-Migration Model

In the candidate-migration model, the initial candidates come from the nearby vertices/edges of the

first trajectory sample. Then, different from the state-transition model, which finds candidates for sub-

sequent samples, the initial candidates keep migrating to their new locations near incoming samples

according to some propagation rules, and candidates that are no longer relevant are pruned. Regarding

each candidate as a vote, through the maintenance of the candidate set, the algorithms are able to find

a segment with the most votes, thereby, determining the matching path. There are two types of models

in this category: (1) Particle Filter (PF) is a state estimation technique that combines Monte Carlo

sampling methods with Bayesian Inference. It recursively estimates the Probability Density Function

(PDF) of the road network around trajectory samples as time advances. The function is approximated

by particles, each of which maintains a value indicating how close it is to the existing samples. The

62

values are updated each time a new sample is received, and the PDF is calculated accordingly; then,

a new set of particles is resampled. During the process, particles with a higher value are more likely

to propagate, while the rest are likely to be filtered out. (2) Similar to the PF, the Multiple Hypoth-

esis Technique (MHT) also maintains a list of initial candidates (hypotheses). As a new sample

arrives, the MHT updates the hypotheses by traversing the network from previous locations to reach

the region near the new sample, and it manages to reduce computation during the process. An MHT

evaluates each candidate hypothesis based on a scoring function instead of approximating the PDF

for the neighbouring map area, which significantly reduces the computation cost.

Compared to the state-transition model, the candidate-migration model is more robust to the off-

track matching issue since the current matching is influenced not only by a previously defined so-

lution but also by other candidates. Therefore, it can better handle occasional outliers where the

state-transition methods may break due to missing candidates. However, to ensure this, the initial

particle/hypothesis list should be sufficiently large to ensure correct result coverage. Moreover, the

initial idea of the candidate-migration model fits the online scenario perfectly. However, the problem

of this model is its high computation cost, especially for the PF. In the PF, the approximation of true

the PDF is extremely slow as the number of particles tends towards infinite, so it has to limit the

number of particles to the magnitude of hundreds [23] in practice, which in turn affects the accuracy.

Pred2018 [119] propose an MHT-based algorithm that achieves high accuracy with no latency by

incorporating a route prediction model. This model basically describes the probability of being at a

road segment rk+1 at timestamp k+1 providing rk, denoted as p(rk+1|rk). Specially, p(rk+1|rk) takes

into account probabilities of all paths starting from rk. Here, a path probability is defined as the sum

of its edge transition probabilities estimated from historical trajectories. This algorithm also defines

an observation model the same as HMM-based algorithms, describing the probability of observing a

location gk providing rk (p(gk|rk)). After setting up the route transition model and the observation

model, a Bayesian scoring function can be defined. It models the posterior probability of rk, providing

all observations up to timestamp k (p(rk|g1:k)) as follows.

p(rk|g1:k) ∝ p(gk|rk)
∑
rk−1

p(rk|rk−1)p(rk−1|g1:k−1) (4.2)

In terms of the matching model, the initial hypothesis set is obtained by selecting those road points

whose distances to the first observed location are less than a predefined threshold. After then, new

hypotheses that represent reachable (candidate) road edges are added to the hypothesis set. For each

candidate road edge, its prior probability is estimated from the route prediction model (p(rk+1|rk)),

63

while its posterior probability is updated after receiving the latest measurement, and derived by sum-

ming the posterior probabilities of its hypotheses estimated by the Bayesian scoring function. In

case of the explosion of hypotheses, old candidates are pruned if their probabilities are less than a

predefined threshold. At each timestamp, the highest-probability hypothesis is returned.

4.3.4 Scoring Model

The idea of the scoring model is simple. Instead of building a graph or traversing the network, the

scoring algorithms simply define a scoring function and calculate the score for each candidate ver-

tex/edge. The candidate with the highest score is chosen as the matching result. The major difference

inside the category is the definition of a scoring function. The features used in defining the matching

score can be arbitrary, including those related to road conditions, vehicle status, driving behaviours

and travel patterns. A group of algorithms [53,58,101,104,112,127] apply the Naı̈ve scoring method.

They assign a group of candidates to each trajectory segment/sample and find a road edge from each

group that maximises the predefined scoring function.

Scor2015 (ON-SCO) [101] propose a scoring algorithm that calculates the total weighted score

of each candidate road segment. The scoring function considers four features, i.e.the perpendicular

distance between the trajectory point and its projection on the candidate segment, the shortest distance

between the projection point and previous matched point, the direction difference between the vehicle

and the candidate road segment, and the heading difference between the trajectory point and the

previous trajectory point. The four features are modelled differently, and their scores are summed

with different weights. The optimal weight of each feature is obtained by employing the Genetic

Algorithm (GA).

Lane2019 [112] is the most recent work in this category, which achieves a lane-level map-

matching performance. The algorithm first identifies lanes in each road by utilising the road width

information in the map and partitioning them into grids accordingly. The algorithm then finds can-

didate lane grids around the observed location and scores these grids at each timestamp. The grid

results in the maximum score are then returned. The scoring function is a linear combination of four

features, i.e. the proximity between the grid and trajectory sample, the estimated location of the vehi-

cle at the next time stage, the reachability from the grid and the intention of a turn. These features are

modelled individually; their scores can be obtained from the corresponding models in every times-

tamp. In addition, feature scores are weighted differently in the scoring function whose coefficients

are computed by a training process before map-matching starts.

64

4.4 Tuning Techniques

To the best of our knowledge, there barely any new map-matching models have been proposed re-

cently. Instead, they mainly focus on proposing new tuning techniques to the existing solutions, such

as reducing the latency in online map-matching [50, 119, 129], tuning the matching model by using

machine learning techniques [50, 65] or utilising more data features [63, 112] and applying data pre-

processing or pre-computation for better performance. Different from the matching models, these

optimisations are usually independent and can be integrated into different models for enhancement.

4.4.1 Parameter Tuning

Many algorithms use parameters to derive the optimal matching result. The common parameters in-

clude the radius of a candidate search around each trajectory sample; the threshold divides on-track

matching and off-track matching; the weight of a feature value in the scoring function; and the un-

certainty of measurement if it is not available from datasets. These parameters were set to constant

values empirically or optimised through experiments in most previous works. However, plenty of

recent works adopt machine learning strategies to tune the parameters, including Inverse Reinforce-

ment Learning [95], Support Vector Machine [50], Multivariate Adaptive Regression Splines [112],

Genetic Algorithm [101] and Fuzzy Logic [20, 21]. Despite the need of training datasets, the core

advantage of machine-learning-based parameter tuning is its adaptability to find optimal settings un-

der different data features. However, there is still no matching model that is built based on learning

strategy, which can be a potential research direction.

4.4.2 Data Preprocessing

The trajectory preprocessing is usually performed for two purposes, i.e. enriching data features by

fusing data from different sources [12, 49, 71, 80, 123, 155] and correcting data errors [98, 128]. The

idea of data fusion is to calibrate one type of data source with the help of another data type as they both

provide estimations of the same object simultaneously, while the data correction estimates the state

of the object according to its trajectory data and adds features (speed, heading) or corrects outliers.

Existing works achieve these two goals by introducing techniques, like the Extended Kalman Filter

(EKF), the Particle Filter (PF) and trajectory compression. Besides, Hashemi et al. [57] propose an

artificial neural network to correct GPS points, and simple trajectory compression is also used [156]

to accelerate the matching process.

65

4.5 Evaluation Metrics

In general, the map-matching accuracy is evaluated by measuring the similarity between the map-

matching result and corresponding ground-truth. Currently, various evaluation metrics have been

proposed for map-matching, including the correct road identification % [92, 99, 103, 117, 139, 153],

map-matching precision/recall [8], route mismatch fraction [47, 90, 115] and matching point/route

accuracy [7, 152]. There is still no consensus on which metrics can better evaluate the performance

[72, 74], and none of the existing work evaluates their differences. Since a map-matching result is

usually represented by either a set of matching points MP(Tr) or a matching route MR(Tr) in

online and offline scenarios, respectively, we first introduce the existing metrics accordingly.

4.5.1 Point-based Metrics

Point-based metrics mainly compare the matching pointsMP(Tr) with the ground-truth point match-

ing resultsMP∗(Tr). Normally, they compare two point sets based on their pairwise point distance.

Assuming mpi is a point inMP(Tr) and mp∗i is the corresponding ground-truth, Singh et al. [114]

measure the correctness by calculating their Root Mean Square Error (RMSE):

RMSE(MP(Tr)) =

√√√√ 1

n

n∑
i=1

(dist(mpi,mp∗i))
2 (4.3)

Here, the distance function dist(a, b) refers to either the Euclidean distance in the < x, y >

coordinate system or Great Circle distance in < longitude, latitude > system. In general, a smaller

RMSE value usually means a more accurate map-matching result. Another common measure is to

compare the two matching point sets directly. Note that a point is matched correctly only when

pi = p∗i ; since a matching point is usually the projection point to a matching road, a correct point

match usually implies a correct road match. Therefore, it also works for the cases where only a

matching edge is provided as ground-truth instead of the matching point [7, 120, 137]. Overall, since

each trajectory point must have one and only one matching point, both the size of MP(Tr) and

MP∗(Tr) are equivalent to the count of trajectory points. Therefore, we define the accuracy of the

point match by the percentage of correct matches, i.e.

P − ACC(MP(Tr)) =
MP(Tr) ∩MP∗(Tr)

|Tr|
(4.4)

In general, the point matching result is regarded as the standard output of online algorithms due

to the discontinuous matching routes, so the point-based metrics are mostly used in online mode.

66

Unfortunately, the point matching evaluation is not very popular mainly caused by the lack of ground-

truth results. Normally, the ground-truth results are obtained from the drivers manually labelling their

trip. However, although the drivers clearly remember their travel route, it is very hard for them to

mark their actual location at a particular moment. Therefore, most of the point matching ground-truth

comes from identifying locations through in-car camera images or simply matching the trajectory

point to its closest point on the ground-truth route, which is either inefficient or pointless.

4.5.2 Route-based Metrics

Route-based metrics measure the correctness of the matching routes. A simple route-based met-

ric, which is adopted in various papers [112, 136], regards the matching routeMR(Tr) as a set of

road edgesME (same applies to the ground-truthMR∗(Tr)) and evaluate the set precision/recall/F-

measure (similar to the definition above). Alternatively, we can generate an overall score to indicate

the accuracy [152], which is similar to the format of the Jaccard Similarity:

R− ACC(MR(Tr)) =
|MR(Tr) ∩MR∗(Tr)|
|MR(Tr) ∪MR∗(Tr)|

(4.5)

Another metric, named as the Route Mismatch Fraction (RMF) [90], computes the total length

of the false positive and false negative matching route edges, denoted as d+ and d−, respectively.

Assuming d0 is the total length of the ground-truth matching route, RMF quantifies the map matching

error by the fraction of (d+ + d−)/d0. Therefore, the matching result is more similar to the ground-

truth if RMF is smaller.

In fact, most of the early works used the metric ”Correct Road Identification%” to evaluate the

percentage of roads in ground-truth that are correctly identified. It is also a route-based metric; how-

ever, this metric is never formally defined by any of them, which makes it inappropriate to simply

compare their performance based on the claimed accuracies, not to mention the variety of datasets on

which the experiments are conducted. Besides, it is worth noting that the current route-based metrics

ignore the edge order and edge revisit as it treats a route as a set of edges, which can potentially be

problematic as it fails to detect road revisits and frequent recurrent travels.

4.5.3 Metrics without Ground-Truth

As mentioned by most of the map-matching papers, obtaining a dataset with reliable ground-truth

results is challenging and sometimes infeasible. Hence, as a compromise, many map-matching al-

gorithms estimate their map-matching accuracy by solely comparing their matching result with the

original trajectory.

67

The first intuition is that the incorrect matching results usually leads to lots of detours, so the

length of a good matching route should be close to the length of the original trajectory [106,110], i.e:

IL(MR(Tr)) =

∑m
i=1 em.l∑n−1

i=1 pipi+1.l
(4.6)

where m = |MR(Tr)| and n = |Tr|. Therefore, a match is more likely to be correct if its IL

score is closer to 1. Another solution considers the average pairwise distance between the matched

point and the original trajectory. However, such a metric does not consider the continuity of the

matching result and only focusses on the point closeness, which can be useful in the online scenario

but is not in accordance with the trend of offline map-matching [85, 106].

Apart from the above quality measures, efficiency is mainly evaluated by running time. In addi-

tion, the SIGSPATIAL GIS cup 2012 [7] proposed a point-based metric that considers both the effi-

ciency and the correctness. It prioritises the algorithm efficiency and punishes the incorrect matching

results to avoid random guess; it also takes into account the map-matching confidence, which is a

user-defined score for each point match representing how confident the user believes the matching is

correct. Since the match confidence is not provided in our results, we will not include it in our exper-

iments. In our evaluations, we will first test the aforementioned measures to see their consistency of

evaluating map-matching results under different circumstances; then, we choose one metric for both

online and offline map-matching evaluation for the rest of the experiments.

4.6 Experiments

In this section, we conduct a series of experiments on the candidate algorithms and evaluation metrics

for the following topics:

• We enumerate the existing metrics used for matching result evaluation. Moreover, we compare

their measurement results under different circumstances to evaluate their abilities in identifying

matching errors.

• We compare various algorithms in both online and offline modes to reveal the strengths and

weaknesses of each type of matching methodology.

• We conduct experiments on multiple real and synthetic datasets to test the robustness of candi-

date solutions to various data quality issues.

68

4.6.1 Dataset Settings

A complete dataset for map-matching evaluation should contain three components: the ground-truth

map, the input trajectories and the corresponding ground-truth map-matching results. In fact, obtain-

ing the ground-truth map-matching result, which is the actual route the vehicle passes when being

sampled, is very challenging. Since there is no way to automatically track routes in practice, as a

compromise, the ground-truth results are usually obtained by human labelling, which is done by ei-

ther asking the motorists to confirm their travel histories [90] or manually improving the automatic

map-matching results [7, 72, 135, 136]. Either way, it is not possible to guarantee 100% correctness,

and the dataset are usually very small due to labour cost. Therefore, a synthetic dataset is also viable

in some evaluations. Additionally, to evaluate the performance comprehensively, the selected datasets

should be diverse on the following data features:

• Trajectory sampling rate: The trajectory datasets should be sampled in various frequencies,

including extremely high (< 10s), high (10 30s), low (> 30s) and dynamic (high deviation)

sampling rates, and the data can be used in both online and offline models. Note that the low-

sampling-rate datasets can be obtained by subsampling the high-sampling-rate datasets.

• GPS accuracy: GPS accuracy is a crucial factor affecting the map-matching quality. Although

unknown, GPS accuracy can be estimated by the average distance between the GPS locations

and their corresponding ground-truth matching points.

• Map density: The map density was not considered as a map feature by previous map-matching

experiments as most of the previous works only conduct experiments on a single dataset. How-

ever, from what we observed, the density of roads actually affects the correctness and efficiency

of the map-matching results. To this end, we propose the map density attribute, which is defined

by the average length of the roads per square kilometre of a map area (km/km2).

• Map size: The map scale significantly affects the efficiency of many map-matching algorithms.

As the complexity of most graph-based algorithms, like shortest-path and nearest neighbour

search, scales with the map size, our datasets should also cover different map scales for scala-

bility evaluation.

In summary, we use two datasets with several variations in our experiments. The Global [72]

dataset is a public dataset proposed for map-matching evaluation. It contains 100 GPS trajectories

sampled from 100 different areas all over the world, each of which is provided with a dedicated un-

derlying map. Therefore, the Global dataset is not suitable for efficiency evaluation as it is impossible

69

to be paralleled. However, it helps the map-matching algorithms to better identify weaknesses since

each trajectory is labelled with a selection of features that may pose difficulties to map-matching al-

gorithms, namely u-turns, hives, loops, gaps and severe congruence issues. In contrast, the Beijing

dataset is a commercial dataset that contains abundant trajectories generated by taxis in Beijing. The

trajectory sampling rate of Beijing dataset is relatively lower and heterogeneous than Global. Also,

the map size is huge and the density is diverse amongst the urban and rural regions, so we extract four

sub-areas with different sizes and map densities from the original map, namely Beijing-U, Beijing-R

Beijing-M and Beijing-L. The Beijing-U and Beijing-R represent two maps extracted from urban and

rural areas, respectively. They have roughly the same size but different map densities (27.3vs13.9)

and trajectory profiles for testing the influence of map density on map-matching results. Meanwhile,

the Beijing-M and Beijing-L are much larger maps than the former two, which are used for scalability

evaluation.

The specifications of the datasets are listed in Table 4.2. Here, the GPS accuracy is obtained

by calculating the distance between the trajectory point and its ground-truth point match result. It

is interesting to see that the measurement error in the Beijing dataset is not very high in general,

especially for the rural region. However, there are a lot of outliers that may deviate from its actual

location by a huge amount, which is unable to be modelled by existing map-matching algorithms.

Unfortunately, we are unable to gather enough statistics for the Global dataset since it does not provide

ground-truth point match results and their maps are too diverse.

TABLE 4.2: Summary of experiment datasets
Name Input Trajectory Road Network

Trajectory Trajectory Sampling Avg GPS Map Map Density

Count Point Count rate(sec) Accuracy Size(km2) (km/km2)

Global 100 1 N/A N/A

Beijing-U 7,905 247,544 11.0 9.1 9.9 27.3

Beijing-R 3,106 119,612 8.6 5.8 9.9 13.9

Beijing-M 73,072 3,285,934 10.3 7.8 57.0 24.2

Beijing-L 951,745 93,951,403 6.7 7.6 33404.6 2.6

In addition, we generate a synthetic trajectory dataset based on the Beijing-M map. The basic idea

of the synthetic trajectory generator is to first obtain a valid route from the map, which represents a

trip of a vehicle. The route is then interpolated by a set of points representing the accurate GPS sam-

ples. We then introduce GPS measurement errors (standard deviation σ) that follow the 2D Gaussian

distribution and sampling errors (down-sample the trajectory to a certain sampling rate of ∆t). In

this dataset, we simulate different GPS accuracies by varying the measurement error level. Besides,

we also introduce outliers (points that deviate from the actual location by an excessive amount) to

70

the synthetic trajectories. Since many of the map-matching solutions assume the sampled GPS point

is always near its actual position within a certain distance, an outlier whose distance exceeds this

threshold may lead to a result discontinuity [90] or unreasonable matching sequence. Hence, we also

set different outlier rates to test the robustness of the matching algorithms.

Our experiments are performed on a single server, which consists of two Intel(R) Xeon(R) CPU

E5-2630 with 10 cores/20 threads at 2.2GHz each, 378GB memory and Ubuntu 16.04. The multicore

feature and large memory enable the concurrent map-matching process, which is supported by all

candidate solutions.

4.6.2 Experimental Design and Results

Our experiments mainly consist of three aspects: (1) the comparison of map-matching quality metrics,

(2) the performance evaluation of candidate algorithms and (3) the influence of data quality issues on

the map-matching performance. To fully demonstrate the performance of every algorithm, we did a

lot of experiments beforehand to find the ideal value for the most influential parameters and set the

rest as default.

Measure comparison

We first compare the quality measures mentioned above to see their sensitivity to the change of match-

ing result quality. The candidate metrics include RMSE and point matching accuracy (P-ACC) in

point-based, route matching precision/recall/F-measure (R-PRE/R-REC/R-FMS), R-ACC and RMF in

route-based and IL in non-ground-truth metrics. We conduct a naı̈ve weighting method (ON-SCO)

method on online mode with various parameter settings to generate results with different matching

quality and to see how those metrics perform under different circumstances, as depicted in Fig. 4.1a.

In Fig. 4.1a, the overall map-matching quality slightly increases from the 1st to the 4th attempts.

As both route F-measure (R-FMS) and R-ACC are built on top of the route precision (R-PRE) and

recall (R-REC), they have roughly the same trend as expected, so they are usually interchangeable

when evaluating the overall accuracy. Meanwhile, precision and recall are more useful when focus-

ing on certain aspects. Likewise, point accuracy (P-ACC) shows the same trend as route accuracy

measures, however, it is more sensitive to low map-matching quality where the P-ACC drops from

41.6% to 20.6% (3rd to 1st) whereas R-ACC only reduces from 51.9% to 44.3%. On the other hand,

since the root mean square error (RMSE), route mismatch fraction (RMF) and IL are value-based

measures, we normalise their value to [0, 5] to better fit in the figure. Like the other point measure

(P-ACC), RMSE also deteriorates quickly as the matching quality decreases. The RMF shows a good

71

trend as it decreases steadily as the matching quality slowly increases. As a measure that requires no

ground-truth, the IL performs surprisingly good as it successfully captures the change of matching

quality. However, due to the lack of reference value, both RMF and IL cannot indicate how good a

matching result is unless compared with the results from other confirmed algorithms. Nonetheless, it

is still a viable measure when no ground-truth is available. Overall, the R-FMS and P-ACC are suf-

ficient for route-based and point-based evaluation, respectively, which will be used in the following

experiments.

(a) Metric comparison (b) Buffer strategy under different ∆t

(accuracy)

(c) Buffer strategy under different ∆t

(latency)

(d) Throughput of online algorithms (e) Accuracy comparison under dif-

ferent ∆t (Global)

(f) Effectiveness of compression

(g) Importance of measurement er-

ror modelling (sigma=10m)

(h) Robustness towards outliers er-

ror

(i) Influence of map density

FIGURE 4.1: Summary of experimental results

Algorithm comparison

We evaluate the performance of both online and offline algorithms. In online mode, apart from the

performance comparison between candidate algorithms, including ON-HMM [50], ON-WGT [156]

72

and ON-SCO [101], we also evaluate how different sliding window strategies affect the accuracy and

latency of the online map-matching algorithms. In offline mode, we mainly focus on the matching

quality under different trajectory sampling rate.

Sliding window strategy: To ensure a fair comparison, we choose the same HMM map-matching

model [90] and apply different sliding window strategies. In general, there are three buffer types: (1)

the Fixed Sliding Window (FSW) ensures n (here, we define n = 10) succeeding points are received

(unless the trajectory ends) before matching the current point. (2) the Varying Sliding Window [50]

(VSW) extends the window until all the map-matching possibilities within the window converge; and

(3) the Dynamic Sliding Window [129] (DSW) relies on a cost function, which is designed according

to the ski-rental problem, to find a balance between accurate results and latency cost. Fig. 4.1b and

Fig. 4.1c shows the point-match accuracy and average latency of different sliding window strategies

on the Beijing-M dataset. In these figures, we down-sample our input trajectories to demonstrate

the effectiveness of those strategies under different sampling rates. The figures show that the match-

ing accuracy of all three strategies decreases at roughly the same rate as the sampling rate reduces.

However, in terms of the latency, the adaptive sliding window strategies (VSW and DSW) have much

shorter latency compared to FSW and increase slowly as the sampling rate decreases. Overall, the

cost-based sliding window has the best performance.

Online performance: As an online algorithm, the running time should be a crucial factor when

considering the overall performance. According to Fig. 4.1d, the ON-SCO has the most throughput

amongst all other candidates. As the scoring method processes each sample independently without

considering the globally optimal sequence, the matching process is simple and instant. In contrast, the

ON-WGT performs poorly in online mode. To remedy the time-consuming action graph construction

step, the original algorithm introduces trajectory compression and limits the size of candidates for

better efficiency. However, in online mode, the compression is less effective, making the algorithm

run even slower. Therefore, the ON-WGT is not considered as a competitive algorithm. From the

data perspective, the map size does not affect the performance significantly; instead, the map density

is more influential since algorithms run much faster on Beijing-R than on Beijing-U and Beijing-M;

even with a larger map, it has the similar performance as Beijing-U due to similar map density.

Matching accuracy: We evaluate the accuracy on the Global dataset as it has the highest trajectory

sampling rate (1 sec/point). We down-sample the trajectories to various degrees and compare both

online and offline algorithms. In Fig. 4.1e, despite its high throughput, the ON-SCO has the worst

73

accuracy amongst all other solutions. On the contrary, with the help from the dynamic sliding window,

the online HMM solution (ON-HMM-DSW) achieves roughly the same performance as its offline

counterpart, which indicates the importance of latency. Another interesting finding is that all of the

methods receive a performance penalty when the sampling rate is extremely high. The main reason

is that when neighbouring samples are too close, their relative distance can be dominated by the

trajectory measurement errors, which make their actual locations unpredictable. Therefore, a down-

sampling process is recommended when dealing with extremely high sampling-rate data.

Influence of data quality

Trajectory compression: Talking about downsampling, we also compare the map-matching per-

formance on the dataset with periodical down-sampling and trajectory compression. To our surprise,

as shown in Fig. 4.1f, the map-matching on compressed trajectories (Douglas-Peucker algorithm)

has worse performance than regular down-sampling when they reach a similar sampling rate. The

reason is that, in the Douglas-Peucker algorithm, the points that are more distant are more likely to

be retained. Since the outliers usually deviate from the trajectory significantly, they are much easier

to be preserved, which causes incorrect matching results. Therefore, the compression method used in

data preprocessing should be chosen wisely.

Impact of data features: We generate two synthetic datasets to test the influence of data quality.

In Fig. 4.1g, the generated dataset has a high sampling rate (∆t = 5), and the measurement error

follows the Gaussian distribution whose sigma = 10m, which means most of the trajectory samples

(> 95%) are within 20 meters to the actual location of the object. We choose two state-transition

algorithms and set their candidate search range to [5, 80], which indicates how poor we believe the

input data quality can be. The results show that matching quality almost reaches its best when the

search range is 20m, which means most of the correct locations are selected as candidates. However,

we can clearly see a downtrend when the candidate range is too large in offline HMM. It is because

due to the low expectation of data quality, the emission probability of the states plays a lesser role

compared to the transition probability. Moreover, some of the wrong candidates may have much

better transition probability due to their closeness, which makes the correct match much easier to be

dominated. In Fig. 4.1h, we generate outliers by shifting a certain percentage of samples to remote

locations. It is clear that all of the candidate solutions suffers significantly from the outliers since

they fail to match the outliers correctly and the existing matching sequence breaks due to a missing

transition. Finally, we evaluate how the map density affects the matching quality. As shown in Fig.

4.1i, even with the same map size, the map with fewer roads is much easier for map-matching, as such

74

a factor affects online solution more significantly since it is easier to match to a nearby wrong road if

its neighbouring samples are unknown (ON−HMM < ON−HMM−FSW < OFF −HMM).

On the other hand, the online scoring method (ON-SCO) suffers the most from the map density. Since

it solely relies on scoring function, a denser map usually leads to more candidates with similar scores

due to their spatial closeness. Therefore, matching on a dense map usually requires the algorithm to

be much safer.

4.6.3 Experiment Findings

Overall, our experiments demonstrate several interesting findings, which are not mentioned by previ-

ous works:

• The comparison on existing evaluation metrics shows minor differences between them. Current

measures can correctly reflect the map-matching quality regardless of which one you choose.

More importantly, you can evaluate the matching quality using IL in decent accuracy even if

you don’t have ground-truth dataset, which is quite helpful considering the lack of ground-truth

datasets in this research field.

• The map-matching quality does not affected by the map size in general. However, the map

density is a crucial factor to both the matching accuracy and efficiency. The current public

datasets for map-matching tasks mainly run on sparse maps, which makes previous experiment

results all achieve extremely high accuracy. More research is needed for map-matching on

dense map.

• The increase of a trajectory’s sampling rate does not always lead to better map-matching result.

An extremely high sampling rate (< 10sec per point, depending on other factors, like GPS error,

map density, etc.) will cause a decrease on the map-matching quality due to the amplification

of GPS error. A solution to it is to down-sampling the trajectory. However, down-sampling

it using trajectory compression is risky as the outliers may not be smoothed. Therefore, more

work is expected on trajectory preprocessing.

4.7 Remaining Challenges

According to our observations through experiments and literature review, we still find a few challenges

remaining in the current map-matching algorithms. We demonstrate some of them through examples

in this subsection.

75

4.7.1 Trajectory Systematic Error

It is well known that the trajectory measurement error affects the matching result significantly; how-

ever, another type of GPS error, namely systematic error, is rarely addressed by the existing method.

In general, the systematic errors occur when the object travels through regions that weaken the GPS

signal significantly and continuously, like tunnels and mountains. As shown in Fig. 4.2, the main

feature of such a GPS trajectory (red) is that it deviates from its actual locations (mint) by a constant

amount consecutively. Such a case is not considered by any of the existing algorithms, so the match-

ing results (blue) show obvious breaks in multiple locations. These errors can potentially be mitigated

if the sampling rate is set to be lower to skip those regions; however, the detection of such problems

remains a challenging task.

(a) (b)

FIGURE 4.2: Map-matching error caused by systematic errors

4.7.2 Parallel Road

As shown in the experiments, the map-matching accuracy affected by the road network complexity

significantly, which is the main reason why many algorithms whose authors claimed were near perfect

in performance are near perfect have proven to be less effective in other experiments. Due to the

ubiquity of interchanges, motorways and underpasses in modern cities, many roads are parallel to

each other and situated closely, which makes it hard to decide on which road a trajectory is actually

located. Therefore, matching on those roads is still very challenging. As an example in Fig. 4.3,

although the trajectory is simple and clean, the matching results (ON-HMM at left and ON-SCO

at right) in both figures contains errors, mainly because of the uncertainty between parallel roads.

Furthermore, such cases affect the scoring-based methods more seriously as the parallel roads usually

76

share similar map features (length, direction, speed limit, road width, etc.), so there is usually no clear

winner. In fact, parallel roads also affect the acquisition of ground-truth data. As many of the existing

ground-truth data are obtained by map-matching manually [72], it is also challenging for humans to

identify the correct route, making the problem even more challenging.

(a) (b)

FIGURE 4.3: Different matching results on parallel road (HMM and SCO)

4.8 Summary

In this chapter, we enumerate and categorise the existing map-matching algorithms according to their

map-matching model, working scenarios and input data features. We discuss the main strength/weakness

of each category and introduce their representative algorithms. Moreover, we analyse the current re-

search trends in this field, including new techniques (machine learning), new data types (Bluetooth,

DGPS, etc.) and new problems (lane-level map-matching), followed by the remaining challenges.

Additionally, we conduct comprehensive experiments on multiple algorithms, metrics and datasets to

compare the existing map-matching solutions. The experiment results show that: (1) the accuracy of

online map-matching benefits a lot from delayed matching, and the latency can be wisely controlled

without hurting performance; (2) it is not always true that a higher sampling rate leads to better match-

ing performance. A downsampling trajectory is beneficial when the sampling rate is too high, but a

simple trajectory compression strategy cannot serve this purpose; (3) HMM-based methods can still

77

achieve better overall performance, while a simple scoring method can be very efficient in online

scenarios without losing too much accuracy if the data quality is decent; (4) map density is a crucial

factor affecting both the efficiency and matching accuracy of the algorithms, which is the main chal-

lenge in the future. Overall, this chapter summarise and compare the existing map-matching solutions

and provide insightful observations and guidance for future research.

78

Chapter 5

A Co-optimisation Approach

5.1 Introduction

The digital map has been widely used in various kinds of location-based services, such as navigation,

vehicle tracking and advertising. However, the current map quality is usually unsatisfactory. The

reasons are two-fold: the frequent road changes and the low map update frequency. According to a

report mentioned in [134], up to 15% of the road changes each year in some way around the world. On

the contrary, the traditional way of updating maps relies on labour-intensive ground surveys, which

leads to a long update period and expensive update cost. Since the inaccurate map may cause many

severe consequences, like traffic accidents or even injuries [62], it has been one of the major factors

affecting the quality of location-based services.

To avoid the map errors caused by the belated map update, people have started to update maps by

using other resources. In recent years, the pervasive use of GPS-enabled devices produces massive

users’ vehicular trajectories. Since every vehicle must run on actual roads, these trajectories can be

aligned to road networks via map-matching techniques [103] in order to support map-based appli-

cations. Meanwhile, they can also potentially be used to automatically construct or update digital

maps [5, 134].

In fact, despite the different objectives, map-matching and map inference/update are correlated

technically. In most map update methods, a map-matching process is conducted in the first place to

obtain trajectories that cannot be matched to the current map, which have the potential to generate

new roads [111, 133, 134, 143]. Some map inference methods also leverage the map-matching as a

post-processing step to evaluate the quality of the newly-constructed roads [18]. On the other hand,

the quality of map-matching results heavily relies on the quality of maps, which also benefits from

good map inference/update outcomes.

79

However, the intrinsic inaccuracy of both maps and trajectories poses great challenges to all the

above research problems: (1) digital maps contain missing roads and inaccurate layout, making tra-

jectories matched to incorrect roads; (2) trajectories sampled by inaccurate GPS devices contain a

significant amount of uncertainty, which affects the accuracy of map inference and map update; (3)

existing map update methods do not examine their update results carefully, causing a large number

of erroneous roads to be introduced to the map. Therefore, better approaches are required to address

these challenges; (4) the time-consuming map-matching process in the existing map inference/update

algorithms [18, 111, 133, 134, 143] is not wisely utilised as the generated matched trajectories are

ignored which actually are valuable for estimating the quality of the newly-inferred roads.

In this chapter, we propose an iteration-based map-trajectory co-optimisation algorithm to im-

prove the quality of both maps and trajectories. Overall, the main features and contributions of this

work can be summarised as follows:

• We design a co-optimisation process, which aims to improve the quality of map update and

map-matching simultaneously. To fulfil this purpose, we propose quality measures to quantify

the map-matching quality and the map quality, respectively, and our goal is to maximise the

quality score. To the best of our knowledge, this is the first work to propose quality measures

for both map-matching and map update, and aim to improve both qualities through the update

of the map.

• We propose two scores, namely confidence score and influence score, to measure the correct-

ness of each newly road generated by map updates. For each new road, the confidence score

evaluates our confidence in inferring it, while the influence score measures its contribution to

the improvement of map-matching results. To this end, we propose a top-k HMM-based map-

matching algorithm and the concept of matching certainty to better evaluate the road influence.

Experimental results show that these scores can help better identify correct road updates over

other outliers and meanwhile detect one-way roads.

• We design an iterative framework to combine map-matching, map update and our proposed co-

optimisation model. Through the road filtering process and the control of quality measurements,

the framework can guarantee a gradual improvement on both the map and trajectory-matching

quality and overall superior performance after the iteration. Moreover, our framework is gen-

eralised to support existing map-matching/map inference/update methods and achieve better

quality on top of them.

• We utilise a spatial index on trajectories to boost the process so that only trajectories that are

80

relevant to the map update process participate in the rematch process. Our proposed method

can significantly reduce the running time without losing too much of its effectiveness.

• Extensive evaluations on multiple-scale real datasets are conducted to verify the effectiveness

of our proposals. Experiments also show the straight quality improvement upon the state-of-

the-art map update methods with affordable overheads after being plugged into our framework.

In addition to the quality improvement, our method can also run in a reasonable time compared

with the existing map inference/update methods.

5.2 Framework Overview

In this section, we formally define the co-optimisation problem and briefly introduce our proposed

framework.

5.2.1 Problem Definition

Since the map co-optimisation problem is related to both the trajectory map-matching and map infer-

ence/update problems, our problem also involves the trajectory data and road network data, which are

defined in Section 1.2. In addition to the basic definition of trajectory, in our problem, we define the

sampling interval ∆t of a trajectory as the maximum time interval between any consecutive points in

the trajectory. In this work, since we mainly focus on high-sampling-rate trajectories, we filter the

input trajectories to satisfy the ∆t < 120s requirement.

As the two main components of our solution, we also introduce the definition of map-matching

and map update:

Definition 5. (Probability-Based Map-Matching) Given a road network G and a trajectory tr, the

probability-based map-matching finds the most possible sequence of continuous road edges repre-

senting the actual route of tr. Eventually, the matching result of each trajectory point M(p,G) is a

road node v or an intermediate node on a road edge e, and the matching result of a trajectory segment

M(pipi+1, G) is represented as a sequence of road edges. Overall, the probability of the matching

result is calculated as

Pr(M(tr,G)) =

|tr|∏
i=1

Pr(M(pi, G))

|tr|−1∏
i=1

Pr(M(pipi+1, G))

Definition 6. (Map Update) Given a set of trajectoriesR = {tr1, tr2, ..., trn} and an initial mapG0 =

(V 0, E0), we update the map by merging a new partial road network ∆G = (∆V,∆E) generated

from R, i.e. G = G0 ∪∆G.

81

Note that, different from the map-matching definition introduced in Section 4.2, here we only

define the probability-based map-matching, which directly refers to the state-transition map-matching

model mentioned in Section 4.3. However, since the candidate-migration model also maintains the

score of map-matching sequence and the result with the highest score is chosen, it can also be easily

adopted in this definition. These two categories cover the majority of solutions in map-matching

problem, including the most popular solutions [65,84,90,137]. Meanwhile, we omit the definition of

map inference since it is similar to map update without G0.

Since the goal of our map-trajectory co-optimisation model is to improve the ”quality” of both

the trajectory matching result and the road network, we first give formal definitions of the quality

measures for both datasets. In terms of the map-matching, for each trajectory tr, we measure its

matching result on G by comparing it with the ground-truth matching result on the ground-truth map

Ggt, i.e.: Ψ(tr,G) = Pr(M(tr,G))
Pr(M(tr,Ggt))

. If we ignore the quality issue caused by the inaccurate map-

matching algorithm, which is not the focus of our work, it is easy to deduce that Ψ(tr,G) = 1 when

G = Ggt. However, since the road network is usually incomplete and contains erroneous roads non-

existent in the real world, like the map inference/update results in our case, Ψ(tr,G) sometimes can

be larger than 1. For example, having an erroneous road that has the exact same shape as tr, the

trajectory will be matched onto this road and its probability is definitely no less than the ground-truth.

Hence, we introduce the concept of road correctness and define the map-matching quality formally.

Definition 7. (Trajectory Map-Matching Quality) Given a trajectory tr, the ground-truth map Ggt

and the road network G which is comprised of a correct sub-map G+ and an erroneous sub-map G−,

the map-matching quality QT (tr,G) is defined as follows:

QT (tr,G) =
Pr+(M(tr,G))− Pr−(M(tr,G))

Pr(M(tr,Ggt))

where Pr+(M(tr,G)) represents the summation of probabilities generated by matching to roads on

G+, same with Pr−(M(tr,G)).

Here, G+ represent all vertices and edges included in the ground-truth, i.e.: G+ = Ggt ∩ G.

Likewise, G− = G − G+ and Pr+(M(tr,G) + Pr−(M(tr,G) = Pr(M(tr,G). In addition, since

both Ggt and M(tr,Ggt) are not obtainable in practice, we usually replace the denominator term with

other factors, depending on which map-matching method applied, for normalisation purposes. The

reason for such normalisation is to make sure each quality score is comparable to the scores of other

trajectories so that the overall score is meaningful. More importantly, with no Ggt given, both G+ and

G− become unknown. Hence, in this work, we will introduce an effective way to identify G+ and G−

accurately.

In terms of the map quality, we also define the quality measure based on G+ and G−:

82

Definition 8. (Map Quality) Given a weighted map G which consists of G+ and G−, the map quality

QM(G) is defined as:

QM(G) =
∑
e∈G+

ωe −
∑
e∈G−

ωe

In general, the weight ωe usually represent the importance of the road e. It can be defined in

various ways according to the applications, like the number of trajectories passing through it, the

betweenness centrality or the road width. Besides, we omit the importance of road nodes when

measuring the map quality as the weight of a node is strongly correlated with the weights of its

adjacent roads.

Overall, the map-trajectory quality is defined as:

Q(R,G) =
∑
tr∈R

QT (tr,G) +QM(G) (5.1)

Overall, we define our map-trajectory co-optimisation process as follows:

Definition 9. (Map-Trajectory Co-Optimisation) Given a trajectory set R and a road network G,

which contains both correct and erroneous map components, the map-trajectory co-optimisation finds

a sub-map Gopt ⊂ G, so that ∀G ⊂ G, Q(R,G) ≤ Q(R,Gopt).

Optimally,Q(R,Gopt) reaches the maximum whenGopt = G+. However, it is almost unreachable

since the exact G+ and G− are unknown without given the ground-truth map Ggt. Therefore, we

propose an iterative co-optimisation framework to gradually approach Gopt so that the final Q(R,G)

is the maximum obtainable. We will introduce the detail implementation of QT , QM and the way to

identify G+ and G− in Section 5.3.

5.2.2 Co-Optimisation Framework

For better understanding, we summarise the main symbols used in this chapter in Table 5.1.

In general, our iterative co-optimisation framework consists of three components: map update,

map-matching and the co-optimisation model. In addition, we conduct a data preprocessing step be-

fore the iteration to filter our irregular input and generate initial map-matching results and unmatched

trajectories. Fig. 5.1 and Algorithm 1 illustrates the workflow of our iterative co-optimisation frame-

work, which consists of the following procedures:

Data Preprocessing: In data preprocessing, the data filter removes abnormally short or sparsely

sampled trajectories(∆t > 120s) from raw trajectories and generates the input trajectory set R. Sub-

sequently, an initial map-matching process is performed to generate the input of the first iteration,

83

TABLE 5.1: Main symbols and associated meanings
Symbol Meaning

Overall input & output

R,G Trajectory set and road network

M(R,G) Map-matching results of R on G

IL(G,R) Inverted list index for map refinement

I(R) Spatial index for running time optimisation

During the i-th iteration

Ri
∗ Unmatched trajectory set

∆Gi Newly inferred road network

MK(R,Gi) Top k matching results of R on map Gi

M ′K(R,Gi′), Ri′
∗ , G

i′ Temporary result before refinement

Co-optimisation model

Cnfe, Infe Confidence score and influence score of e

Cert(MK(tr,G)) Certainty score of the top-k matching result

QT , QM (G) Quality of trajectory-matching and map

Q(R,G),∆Qi Map-trajectory quality and benefit of iteration i

Map Inference

Initial Map-Matching

Data Filter

Trajectory Index

p1

p2

p3

p4

p5

Map Merge Map-Matching

Result Refinement

Score Evaluation

Index-based Filtering

G

R

Output

FIGURE 5.1: Framework overview

including the unmatched trajectory set R0
∗ and the matching result MK(R,G0). Note that the sym-

bol K in MK(R,G0) represent the top-K map-matching results for each trajectory, which will be

explained in Section 5.3.

The iterative process starts directly after the preprocessing. In each iteration i, we perform three

main steps:

Map Update: The map update takes Ri−1
∗ as input and infers new road network elements ∆Gi =

84

Algorithm 1 Map-trajectory co-optimisation algorithm
Input: (1) raw trajectory set R′, (2) initial map G0

Output: (1) final graph G, (2) trajectory matching result on final graph M(R,G)

1: procedure COOPTIMISATIONPROCESS(R′, G0)

2: R← DataF ilter(R′) . Input data cleaning

3: ∆Q← 0 . Benefit value

4: MK(R,G0), R0
∗ ←MapMatching(R,G0)

5: i← 1 . Iteration count

6: while ∆Q ≥ 0 do

7: ∆Gi ←MapInference(Ri−1
∗) . Assign Confidence scores

8: G′i ←MapMerge(Gi−1,∆Gi)

9: MK(R,G′i), R′i∗ ←MapMatching(R,G′i) . Assign Influence scores

10: IL(∆Gi, R)← InvertedListIndexGen(MK(R,G′i))

11: Gi, Gi
−,∆Q← ScoreEvaluation(G′i)

12: MK(R,Gi), Ri
∗ ← ResultRefinement(R,Gi, Gi

−, IL(∆Gi, R),MK(R,G′i), R′i∗)

13: i← i+ 1

14: G← Gi−1

15: M(R,G)← selectthebestmatchingresultforeachtrajectoryfromMK(R,Gi−1)

16: return G,M(R,G)

(∆V i,∆Ei) through the map inference algorithm. ∆Gi is further merged with Gi−1 and forms a new

temporary map Gi′ . The confidence score Cnfe for each new edge in ∆Gi is generated during the

map inference.

Map-Matching: For each trajectory in R, we match it to the temporary road network Gi′ . The

map-matching process generates a temporary map-matching result MK(tr,Gi′) for each trajectory

and a collection of temporary unmatched trajectory set Ri′
∗ . In addition, we compare each map-

matching result MK(tr,Gi′) with its result from last iteration MK(tr,Gi−1). Since the changes on

map-matching results are only caused by the map update of the current iteration, we generate the

influence score, denoted by Infe, for each new road e according to its contribution to changing the

current map-matching results. After the map-matching process, we build an inverted list index for

the new graph elements and new matching results. We create an index entry for each newly updated

road edge and collect all trajectories whose current map-matching result contains this road edge.

Such index will be used in the result refinement step (line 12 in Algorithm 1) in the following co-

optimisation model.

85

Co-optimisation Model: As depicted in line 11,12, firstly, we identify the correctness of each

new edge e ∈ ∆Gi by evaluating the scores(Infe and Cnfe) generated in aforementioned steps.

Then, edges falling into G− are to be removed and an overall benefit ∆Q is calculated to evaluate

the quality improvement during the current iteration. The final Gi is then determined after removing

G− from Gi′ . In addition, since the Gi
− has participated in the latest map-matching process, we

search through the index IL(R,∆Gi) to find all trajectories whose matching result contains removed

edges and perform another MapMatching() process to update their matching results. Eventually,

Gi, MK(R,Gi) and Ri
∗ will be sent to the next iteration or output, if the iteration ends (∆Q ≤ 0), as

the final result G and M(R,G).

Note that the blue blocks in Fig. 5.1 are designed for running time optimisation, which will be

introduced in Section 5.4.

We implement our framework using HMM-based map-matching [90, 137] and two different map

inference methods, namely KDE-based [18] and trajectory clustering (TC) [82, 134], respectively, to

show the flexibility of our system. It is worth noting that our framework is not tailored to those meth-

ods. Theoretically, all of the existing probability-based map-matching and map inference algorithms

can fit into our framework since they can easily generate influence score and confidence score with

moderate modification. We will introduce the details of our co-optimisation model in the next section

with a brief explanation of such a claim.

5.3 Co-Optimisation Model Design

As mentioned above, the main objective of the co-optimisation model is to gradually improve the

quality of both trajectory matching results and the map through the iteration process. Therefore, for

each iteration, the model mainly focuses on three tasks: 1) evaluate the correctness of each newly

updated road according to its influence and confidence scores; 2) calculate the quality improvement

during the current iteration; and 3) remove the incorrect roads and refine the corresponding map-

matching results. In this section, we mainly introduce these three steps.

5.3.1 Co-optimisation Quality Evaluation

Considering the logical relevance, we introduce the second step first. As formally defined in Sec-

tion 5.2, the co-optimisation objective is to consistently improve the map-trajectory quality score,

i.e. Q(R,G), over the iterative process. Therefore, to better understand the model design, we first

examine the function Q(R,G).

86

For any iteration i(i > 0), the input consists of the trajectory set R, the map from the last iteration

Gi−1, the previous map-matching result M(R,Gi−1) and the unmatched trajectory set Ri−1
∗ . Hence,

in the i-th iteration, the map update process first generates a temporary road network ∆Gi from

unmatched trajectories Ri−1
∗ . Since ∆Gi contains both correct and erroneous road updates, after we

merge ∆Gi and Gi−1 into Gi′ , the benefit of current iteration is defined as ∆Qi = Q(R,Gi′) −

Q(R,Gi−1), which is equivalent to:

∆Qi′ = QT (R,Gi′)−QT (R,Gi−1) +QM(Gi′)−QM(Gi−1) (5.2)

As we assume no erroneous road is included in Gi−1, both of the quality scores from the last

iteration, namely QT (R,Gi−1) and QM(Gi−1), are fixed. Therefore, the goal of the current iteration

is to increase the scores QT (R,Gi′) and QM(Gi′) so that ∆Qi > 0. According to Definition 8,

QM(Gi′) − QM(Gi−1) = QM(∆Gi). Also, the difference between QT (R,Gi′) and QT (R,Gi−1) is

caused by merging ∆Gi. Hence, to further improve ∆Qi, we need to remove more erroneous roads

in ∆Gi. However, there are two issues that remain unsolved: 1) how to identify correct and wrong

roads with no ground-truth given, and 2) how to quantify the change of QT and QM caused by each

road removal/insertion.

The influence score Infe and confidence score Cnfe are proposed to address these two issues.

For each newly updated road e ∈ ∆Gi, the influence score is generated during the map-matching step

by summarising the probability changes of all trajectory matching results after e is added to the map.

Hence, it measures how influential the new road e is. In contrast, the confidence score is generated

during the map inference process. It is defined by the number of unmatched trajectories involved in

generating e, which represents our confidence in inferring it. Intuitively, a road with a high influence

and confidence score is more likely to be a correct road. However, either one of the scores alone is

not sufficient to measure its correctness, for example, a short-cut road inferred from a noisy trajectory

(high Infe but low Cnfe) or a popular road with the wrong direction (low Infe and high Cnfe). Such

a feature can be utilised to distinguish the correct roads from the outliers.

On the other hand, both Infe and Cnfe are strongly related to quality measurements QT and

QM , respectively. Regarding the influence score, in the probability-based map-matching process,

the probability difference between Pr(M(tr,Gi′)) and Pr(M(tr,Gi−1)) is completely caused by the

insertion of ∆Gi. Hence, if e is the only new road appeared in M(tr,Gi′), the influence score of

e on trajectory tr is defined as
∣∣Pr(M(tr,Gi′))− Pr(M(tr,Gi−1))

∣∣. In fact, as we only add new

roads to the map without removing any existing roads, it is easy to deduce that the Pr(M(tr,Gi′) ≥

Pr(M(tr,Gi−1)) always holds. If multiple new roads appear in M(tr,Gi′), the total probability

87

change will be split and distributed to each new edge involved according to a weight factor µe,tr

proportionate to the length of the new matching sequence introduced to M(tr,Gi′) by this road.

Therefore, the overall influence score of e is defined as follows:

Infe =
∑
tr∈R

µe,tr(Pr(M(tr,Gi′)− Pr(M(tr,Gi−1)))) (5.3)

Hence, it is easy to deduce that:

Pr(M(R,Gi′))− Pr(M(R,Gi−1)) =
∑
e∈∆Gi

Infe (5.4)

Assuming that the correctness of e is determined, the trajectory matching quality difference in

∆Qi can then be represented by Infe, i.e.:

QT (R,Gi′)−QT (R,Gi−1) =
∑

e∈∆Gi
+

Infe −
∑

e∈∆Gi
−

Infe (5.5)

Likewise, the confidence score of a new road e is defined as the number of unmatched trajectories

involved in inferring e. Since each newly inferred road e ∈ ∆Gi derives from a set of unmatched

trajectories in Ri−1
∗ . Those trajectories imply our confidence of inferring road e. It is equivalent to the

ωe defined in Definition 8.

Overall, the benefit of the current iteration is represented as:

∆Qi =
∑

e∈∆Gi
+

(Infe + Cnfe)−
∑

e∈∆Gi
−

(Infe + Cnfe) (5.6)

5.3.2 Road Correctness Identification

To determine the value of ∆Qi, an algorithm is required to better distinguish the correct and erroneous

roads. According to our design principle, a road is more likely to be correct if its Infe and Cnfe are

high. Therefore, we first propose a more optimised influence score for better identification. In terms

of the implementation of Infe and Cnfe, we take the HMM map-matching algorithm as an example,

in which the influence score of every new road is generated during the HMM process. Since the

probability in the HMM model is calculated by multiplying the emission probabilities and transition

probabilities along the matching sequence, the overall probability decreases exponentially when the

trajectory gets longer. Hence, we normalise the influence score by finding the |tr|-th root of the value,

i.e.:

88

Infe =
∑
tr∈R

µe,tr(Pr(M(tr,Gi′)− Pr(M(tr,Gi−1))))
1
|tr| (5.7)

In addition, regardless of the normalisation problem amongst trajectories, comparing Pr(M(tr,Gi′)

with Pr(M(tr,G(i−1))) of the same trajectory is also not enough to quantify the improvement. Note

that a matching result is believed to be correct only when its probability is outstanding from other

possible routes. Hence, we need to identify the relative change in probability value amongst all can-

didates rather than an absolute value difference between its previous optimal.

Accordingly, we propose a top-k HMM model which generates top-k(k ≥ 2) possible routes for

each trajectory, denoted by MK(tr,G) = {Mi(tr,G)|1 ≤ i ≤ K}. The modification of the HMM

model [90] can be easily achieved by storing top k highest probability preceding states for each

candidate along the path, and the top-k possible paths can be generated during the backward loop.

Through the introduction of multiple sub-optimal matching candidates, the following can occur: (1)

if Pr(M1(tr,G)) exceeds the rest candidates by a huge amount, it is more likely that M1(tr,G) is the

correct matching result and the others are noise. On the contrary, (2) if multiple results have a similar

probability to the highest one, it means that there is still a huge uncertainty in the matching result,

which is more likely caused by some erroneous GPS samples or missing roads. Hence, we define

the concept ”certainty” for the trajectory top-k matching results, denoted by Cert(MK(tr,G)). The

certainty is calculated as follows:

Cert(MK(tr,G)) = Pr(M1(tr,G)) ∗ (
K∑
i=1

−Pr(Mi(tr,G)) ∗ lnPr(Mi(tr,G))) (5.8)

The definition of certainty utilises the idea of entropy, which means the trajectory certainty is lower

if its top-k results are more similar, implying that the matching results are very random. Overall, the

optimised influence score is defined as:

Infe =
∑
tr∈R

µe,tr(Cert(MK(tr,Gi′))− Cert(MK(tr,Gi−1)))
1
|tr| (5.9)

Note that Cert(MK(tr,Gi′)) ≥ Cert(MK(tr,Gi−1)), so Infe ≥ 0 always holds. Therefore, the

influence score for an edge e is the collective results of all trajectory certainty changes caused by it,

which is obtained by comparing the current matching result of each trajectory with the previous one.

On the contrary, the confidence score is easily obtainable in most of the map inference/update

methods. For example, the post-processing map-matching step in KDE-based map inference [18]

aligns every unmatched trajectory to an inferred road, and in the trajectory clustering method [134],

one road is inferred from a cluster of unmatched trajectories with a certain number. Therefore, the

89

way of generating a confidence score is applicable to other map inference/update methods with minor

modification.

For road identification, we combine the two scores by multiplication and set a threshold θs to

distinguish the correct and erroneous roads. The reasons for not using linear-based scoring function

are that (1) the scaling of the influence score and confidence score is different, and (2) it is worse at

of filtering roads with one score extremely high and one score fairly low, which is a popular pattern

of erroneous roads. Eventually, the updated map ∆Gi is divided into Gi
+ to be kept and Gi

− to be

removed according to the threshold θs. Optimally, the iterative process should continue until Gi
+ = ∅

as we remove Gi
− each time so ∆Qi is always non-negative after the refinement step. However, for

efficiency concerns, we terminate the iteration when
∑

e∈∆Gi
+

(Infe +Cnfe) ≥
∑

e∈∆Gi
−

(Infe +Cnfe) as

the benefit gained from the iteration is less significant than the erroneousness introduced.

5.3.3 Result Refinement

At the end of each iteration, since we remove edges Gi
− from the map Gi′ during the co-optimisation

process, some of the current matching results are also affected due to its matching to the removed

edges. Therefore, the main objective for result refinement is to eliminate the influence caused by re-

moved edges to the matching results and unmatched trajectories, which can be achieved by a rematch

process on the affected trajectories.

Considering the excessive cost of the map-matching process, in the result refinement step, we only

apply map-matching on to the trajectories whose matching results actually contain removed roads. To

achieve this goal, we maintain an inverted list index IL(∆Gi, R) during the map-matching process,

which is shown in line 10 of Algorithm 1. For the top k matching results of each trajectory, if it

contains any newly inferred edge e, we store the trajectory ID under the entry of e in the index.

Eventually, each entry e holds a list of trajectory IDs. This index is used in result refinement. As

shown in Algorithm 2, for each edge e removed after the score evaluation, we search through the

index and find all affected trajectories. The trajectories from various entries are collected into a final

set, which is taken as the input of the rematch process. Finally, the rematch results are merged with

temporary matching results to form the final iteration output.

5.4 Running Time Optimisation

Although aiming for optimal quality, our iterative co-optimisation algorithm may also lead to exces-

sive running time. Note that each iteration contains a full rotation of map inference, map merge and

90

Algorithm 2 Result refinement algorithm
Input: (1) trajectory set R, (2) refined map Gi and removed map elements Gi

−, (4) index

IL(∆Gi, R), (5) temporary matching results MK(R,G′i) and unmatched trajectories R′i∗

Output: (1) refined matching result MK(R,Gi) and unmatched trajectories R′i∗

1: procedure RESULTREFINEMENT(R,Gi, Gi
−, IL(∆Gi, R),MK(R,G′i), R′i∗)

2: RID ← ∅ . Trajectory ID set

3: for all e ∈ Gi
− do . Find all trajectories with wrong matching results

4: if e ∈ ∆Gi then . Statement should always be true

5: RID ← RID ∪ IL(∆Gi, R).GetV alue(e)

6: R← find trajectories in R according to RID . Selected trajectory set

7: MK(R,Gi), R
i

∗ ←MapMatching(R,Gi)

8: MK(R,Gi), Ri
∗ ← ∅

9: for all tr ∈ R do

10: if tr ∈ R then . Check if the result of tr is updated

11: MK(R,Gi)←MK(R,Gi) ∪MK(tr,Gi)

12: Ri
∗ ← Ri

∗ ∪ tri∗
13: else

14: MK(R,Gi)←MK(R,Gi) ∪MK(tr,G′i)

15: Ri
∗ ← Ri

∗ ∪ tr′i∗

16: return MK(R,Gi), Ri
∗

map-matching algorithms, which is equivalent to a complete run of a classic map update algorithm;

thus, the overall running time can easily exceed the existing map update methods by even one order of

magnitude, let alone the time spent on the co-optimisation model. More importantly, the running time

does not shrink by much as the iteration goes. In fact, the time spent on map inference, map merge and

the co-optimisation model gradually reduces as the number of new roads decreases over iterations.

However, since the map-matching process reads all trajectories in R each time and matches them to

an enlarging map, its running time may even increase slightly. Moreover, since the map-matching

process usually takes up most of the running time of an iteration, which is confirmed by our experi-

ments (averaging 67% of running time under parallel processing), it will be very beneficial if we can

reduce the cost of the map-matching process. As we are not aiming for improving the map-matching

algorithm itself, in this section, our main goal is to minimise the number of map-matching calls in our

iterative process.

According to our framework, the map-matching algorithm is called in three different phases, as

91

shown in Algorithm 1:

• During the data preprocessing, an initial map-matching is called (line 4) to generate the initial

matching resultsMK(R,G0) and unmatched trajectoriesR0
∗. The former is used as the previous

matching result when generating influence scores in the first iteration, while the latter is used

as the input of the first-round map update. Since the initial matching result is required for every

trajectory, it is clear that the map-matching in data preprocessing phase is compulsory for all

trajectories.

• A map-matching phase is included in each iteration (line 9), which generates a new map-

matching result and unmatched trajectory(s) for each trajectory in R. Since the change of

map-matching result is caused by the latest map update, it is highly possible that some of the

trajectory matching results are not affected by the newly updated map components. Therefore,

the map-matching on those trajectories is redundant.

• During the result refinement phase (line 12), an additional map-matching process is called for

all trajectories whose temporary matching result contains roads to be removed. It is guaranteed

that every matching result changes after the rematch, so the input size of the rematch phase has

been optimised.

According to the above analysis, the map-matching phase has not been optimised and contains

great potential. Hence, in this section, we propose an index-based trajectory filtering strategy to

reduce the cost of the map-matching phase in each iteration via the elimination of redundant map-

matchings.

Intuitively, a new road can only affect the map-matching results of trajectories that are closed to the

update location. Therefore, the idea of the trajectory filtering is to build a spatial index for trajectory

points so that all passing trajectories can be found given a certain area. In our algorithm, once a

new road is updated, we perform a range query covering the updated area and find all trajectories

overlapping the query region. Optimally, the query range should cover all possible candidates for the

road so that trajectories that do not overlap with any query region can be safely removed from the

current iteration. Therefore, the main challenge is to define the query region.

According to the Definition 5, in a probability-based map-matching algorithm, a road participates

the map-matching process of a trajectory only when it becomes a candidate of a trajectory point pi

or a segment pipi+1. More specifically, in the HMM map-matching algorithm, it appears when it (1)

falls into the candidate range of a trajectory point pi or (2) is in the shortest path between a candidate

of pi and a candidate of pi+1.

92

We illustrate the two cases in Fig. 5.2. The red line eab = (va, vb) represents a new road update,

while the green and blue polyline represent two trajectories. In terms of the blue trajectory, it is clear

to sea that va is close to p3 and eab is also a candidate of p4. On the contrary, none of the green points

are shown to be close enough to eab. However, we still need to map-match the green trajectory since

eab is in the shortest path between r2 and r3, which are the candidate of green p2 and p3, respectively.

Hence, we explain these two cases in detail as follows:

5.4.1 Direct Matching Area (DMA)

In terms of the first case, since the candidate range of pi is a circle whose centre is pi and radius is set

by a parameter called candidate range θc(explained in Section 5.5.3), a new road e can be a candidate

of pi only when dist(pi, eab) ≤ θc, where dist(pi, eab) represents the Euclidean distance between pi

and its closest point on eab. We denote such area as Direct Matching Area (DMA), which is shown as

a red shaded area in Fig. 5.2. Any point within the area has a distance less than θc to eab.

FIGURE 5.2: Example of two map-matching cases

5.4.2 Shortest Transition Area (STA)

Assume that G is the map before inserting eab and ri represents a candidate point of pi on G. The

trajectory that falls in this category must satisfy two requirements:

• @pi ∈ tr s.t. pi ∈ DMA.

• ∃ri, ri+1 s.t. distr(ri, va) + eab.length + distr(vb, ri+1) < distr(ri, ri+1) where distr() repre-

sents the route-based distance.

93

In other words, the second requirement means the trajectory must have at least one pair of consec-

utive points pi, pi+1 whose shortest distance reduces after inserting eab to the map. In Fig. 5.2, none

of the green points fall into the DMA of eab; however, the previous route distance between r2 and r3,

denoted as the black dash polyline, reduces after inserting eab. In fact, to achieve both requirements,

the sampling rate of the trajectory should be very low to avoid being sampled when the vehicle is

passing the road eab. We denote the query region of the second case as the Shortest Transition Area

(STA).

To define the STA region more precisely, we need to consider the maximum possible distance

between pi and pi+1. Note that, since it is reachable from their candidate ri to ri+1 within the time

interval ∆ti = pi+1.t− pi.t given the vehicle maximum speed vmax, we can deduce that

distr(ri, ri+1) ≤ vmax ∗∆ti (5.10)

should always hold. Moreover, as the transition must passes eab, it is clear that the distance between

ri/ri+1 and the closer endpoint of eab, i.e. va/vb is no more than vmax ∗∆ti− eab.length. Further con-

sidering the maximum distance θc between pi and its candidate ri, we propose two ways of defining

STA.

• STA-Circle: Since the route-based distance between ri/ri+1 and va/vb is always no less than

their Euclidean distance, we can safely define two circles, centred at the endpoint va/vb, whose

radius is set to radSTA−C = θc + vmax ∗ ∆t − eab.length. Note that we replace ∆ti with the

maximum sampling interval ∆t of the trajectory set as we are not searching for a particular

trajectory. The index is queried with these two circles to extract all STA trajectories of road eab.

• STA-Route: We start from both endpoints of eab and traverse the road network (eab excluded)

until we reach the maximum distance vmax ∗ ∆t − e∗.length. Then, we create a DMA for all

roads traversed and form two STAs for va and vb, respectively. Note that the traverse of the start

endpoint va should be done on the reverse road network of G while considering direction.

Eventually, a trajectory is selected only when a pair of its consecutive points pi and pi+1 falls into

the STA of va and vb, respectively. In terms of the query effectiveness, we compare the query ranges

of these two definitions in Fig. 5.3. Although STA-Circle (shown in red) only needs to perform two

circle range queries, its query area is much larger than STA-Route (shown in grey), which leads to

more unnecessary trajectory matching.

In general, for a particular edge eab, it is obvious that the size of the STA is usually much larger than

the DMA. Since multiple new roads are updated within one iteration, larger query ranges can result

94

FIGURE 5.3: Example of STA-Circle and STA-Route

in less effective trajectory filtering or even overlapping queries, which leads to more processing time.

However, the STA guarantees all affected trajectories can be found so that their matching results are

corrected eventually. In fact, it is worth noting that although the DMA can raise correctness issues for

map-matching results, it can always be remedied by an extra post-processing map-matching before

the final output. The main issue is the approximate algorithms can also affect the precision of the

influence and confidence scores, which further determine the correctness of new edges. However, in

most cases, it is good enough to simply use DMA for trajectory filtering, especially when the trajectory

sampling rate is high or removed roads are long, which is proved by our experiments.

Finally, the implementation of the filtering index I(R) is straightforward. During the data prepro-

cessing step, since the trajectory dataset R is fixed, we build a Sort-Tile-Recursive(STR) partitioning

R-Tree [77] for all trajectory points in R; the points are indexed by their coordinates and each in-

dex entry only contains its corresponding trajectory ID and its number in the sequence. Before the

map-matching phase (line 4 in Algorithm 1) in each iteration, we perform the DMA and STA queries

for every new road e in ∆G and merge the resulting trajectory ID lists to form the final input of the

map-matching phase.

5.5 Evaluations

Since the main goal of our co-optimisation model is to improve the quality of both map-matching and

map update results, the evaluation of both results is required in our experiments. However, it is worth

noting that the existing evaluation methods for map-matching and map update are not applicable

in our case. Regarding the map-matching, since the generation of a ground-truth dataset requires

95

labour-intensive work [72], only several ground-truth datasets are publicly available and all of them

are extremely small. Such datasets are inappropriate in our experiments as we require large trajectory

datasets for map update. Hence, we introduce a two-step evaluation process: we first use a publicly

available ground-truth map-matching dataset to validate the accuracy of our map-matching algorithm

and tune the parameters. In the second step, we bring out a large-scale trajectory dataset and use

our map-matching method, which has been proved to be accurate, to generate map-matching results

as ground-truth. This dataset will be used to evaluate the performance of our entire co-optimisation

algorithm.

5.5.1 Experimental Settings

Dataset Description

We prepare two datasets for different evaluation purposes. As depicted in Table 5.2, the first dataset,

termed as Global [72], is introduced to evaluate the accuracy of our map-matching algorithm. Then,

we evaluate our co-optimisation algorithm on a large-scale trajectory dataset, denoted by Beijing-

L, which is obtained from 5,000 taxis running in Beijing for 5 days. It is worth noting that the

trajectories in Beijing-L only covers less than 50% of the roads(46.51%), which means more than

half of the roads on the map are not travelled by any trajectory. Those roads are unable to be found

through the map update if they are missing from the map. Therefore, we select two sub-areas from

Beijing-L with heavier traffic and generate new datasets with smaller data scale but higher trajectory

coverage, named as Beijing-S and Beijing-M. Most of the experiments are performed on Beijing-S

and Beijing-M due to their higher coverage. Meanwhile, we test the scalability of our model on the

full dataset Beijing-L.

TABLE 5.2: Dataset specification

Name
No. of Average Map Size % of Road % of Road

Trajectories Trajectory Points (v/e) Visited Visited ≥ 5

Global 100 2473 N/A N/A N/A

Beijing-S 12,974 37 2,315/4,485 72.83 45.11

Beijing-M 77,676 47 12,312/22,581 74.94 54.26

Beijing-L 394,203 46 281,862/602,456 46.51 26.06

System Configuration

We ran our experiments on a server containing two Intel(R) Xeon(R) CPU E5-2630 with 10 cores/20

threads at 2.2GHz each, 378GB memory and Ubuntu 18.04. Our code mainly runs in Java-1.8 with the

96

KDE-based map inference running in Python-2.7, which is a modified version based on the original

implementation in [18].

Baseline Methods

We compare our co-optimisation algorithm with the most outstanding solution for the map update

problem, named CrowdAtlas [134]. The CrowdAtlas solution consists of an HMM map-matching

algorithm, a Trajectory Clustering (TC) map inference and a map merge algorithm which utilises

road closeness and road extension. By implementing the same set of algorithms as in CrowdAtlas

and adding our iterative co-optimisation model on top of it, we evaluate the quality improvement of

both the map update and map-matching results achieved by our model. In addition, we implement

a KDE-based map inference [18] solution as an alternative inference method to show the flexibility

of our framework and its ability to improve the map quality over any existing map inference/update

methods.

5.5.2 Evaluation Metrics

We prepare four types of data for evaluation on Beijing dataset: (1) the ground-truth roadmap Ggt

provided by the dataset, (2) an outdated roadmap G0 as the map input, which is obtained by randomly

remove a subgraph from Ggt (this method is widely adopted in other map update works [133, 143]),

(3) raw trajectory dataset R as the trajectory input and (4) ground-truth matching result M(R,Ggt)

generated by performing our map-matching algorithm on the ground-truth map Ggt. The goal of our

algorithm is to infer as many edges as in Ggt − G0 with less erroneous roads introduced so that the

final updated map is close to Ggt, and the map-matching result is close to M(R,Ggt).

Like many of the existing map inference [4, 6, 82] and map-matching [89, 136] works, our al-

gorithm is evaluated by precision/recall/F-measure, which is defined slightly differently in map-

matching and map update evaluations. In the map-matching phase, we evaluate the difference be-

tween the matching results M(R,G) and the ground-truth results M(R,Ggt). Since each matching

result consists of a sequence of road edges in road network G, for each trajectory tr, the precision is

defined as follows:

precision(tr) =

∑
e∈M(tr,G)∩M(tr,Ggt)

len(e)∑
e∈M(tr,G) len(e)

(5.11)

Regarding the map evaluation, we define that an inferred road ei is equivalent to a removed road

ej if and only if both the start and end points of ej ∈ Ggt are the closest points to the respective

endpoints of ei and the distances do not exceed a given threshold(set as θc used in map-matching).

97

Hence, given the updated mapG, the input mapG0 and the removed subgraphGgt−G0, the precision

is defined below:

precision(G) =

∑
e∈(G−G0)∩(Ggt−G0) len(e)∑

e∈(G−G0) len(e)
(5.12)

Note that both definitions consider the length of the road as they can better reflect the importance

of each road. Meanwhile, we omit the definition of recalls and F-measures as they are standard and

easy to deduce from the definition of precision.

5.5.3 Map-Matching Evaluation

We first perform map-matching on the Global dataset to tune the parameters of our algorithm. Same

as the standard HMM-based map-matching model, there are three fields configurable in our map-

matching algorithm: 1) θc specifies the maximum radius used for searching the candidates; In terms of

the probability model; 2) the σ defined in the emission probability represents the average measurement

error of the GPS device; while 3) β is used to specify the weight of transition probability. Fig. 5.4

shows the different experimental results when changing θc. Here, we fix the factors σ = 4 and

β = 0.08 according to the empirical result presented in [90] and alter the candidate radius from 5 to

100 meters. Fig. 5.4 shows that our map-matching method reaches around 98% f-score so that we

can safely use it to generate the ground-truth results of the Beijing dataset. Also, we set θc = 50m in

the following experiments as it can achieve near-optimal matching quality with decent running time.

 88

 90

 92

 94

 96

 98

 100

 0 20 40 60 80 100
 0

 100

 200

 300

 400

 500

 600

 700

 800

Pe
rc

en
ta

ge
 (

%
)

Ti
m

e
(s

)

θc (m)

Precision
Recall

F-measure
Running time

FIGURE 5.4: Map-matching performance by varying θc

98

5.5.4 Co-optimisation Algorithm Evaluation

To ensure the legit use of the baseline methods, we use the same settings as in the original papers

of TC(CrowdAtlas) and KDE map inference methods. In the rest of this section, we purely focus on

the discussion of the effectiveness and efficiency of our co-optimisation model and the influence of

parameters, including the following:

• Breakpoint extension range(λb): When an HMM break occurs during the map-matching pro-

cess, we extend the breakpoint both ways along the trajectory to generate an unmatched sub-

trajectory. The extension terminates once the next adjacent point has a road match within its λb

range. This parameter is also used in other map update algorithms, like CrowdAtlas [134] and

HyMU [133] to control the length of the unmatched trajectories. The default value is λb = 15m.

• Correct road ratio(θs%): After all new roads receive their influence score and confidence score,

we take the θs% of roads with the highest combined scores as G+ and the rest as G−. The

default value is θs = 20%.

• Map-matching result length(k): The length of the top-k map-matching sequences for each tra-

jectory. Default value k = 3.

In addition, we change the road removal percentage(rm%, default value 6%) when deriving the

input map from the ground-truth to test the performance of our algorithm when facing different map

quality.

In the following experiments, the parameters are set to default values if not mentioned.

Performance Evaluation

We first demonstrate the overall performance of our method. Fig. 5.5a-5.5c shows the quality of

map-matching and map update when varying θs. Comparing with the baseline method CrowdAtlas,

our method guarantees an overall better map-matching and map update accuracy after the iterative

co-optimisation process. In contrast, with the help of our influence and confidence score, we can

significantly improve the update accuracy by strictly filtering out low-quality candidates. Therefore,

when θs is set to a low percentage, the precision of our map update result is significantly higher

than the baseline as shown in Fig. 5.5a. However, due to its low penetration rate, lots of correct

roads with relatively low scores are also removed in the first few iterations, so the overall f-measure

and the corresponding map-matching result receive penalties. Even though, after enough rounds of

iterations, the final result still achieves a higher F-measure while maintaining its superior precision.

99

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

Pr
ec

is
io

n
(%

)

θs (%)

TC
First Co-op
Last Co-op

(a) Map quality by varying θs (Precision)

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

F-
m

ea
su

re
 (

%
)

θs (%)

TC
First Co-op
Last Co-op

(b) Map quality by varying θs (F-measure)

 86

 88

 90

 92

 94

 96

 10 20 30 40 50 60 70 80 90

F-
m

ea
su

re
 (

%
)

θs (%)

TC
First Co-op
Last Co-op

(c) Matching quality by varying θs (F-measure)

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

F-
m

ea
su

re

Pr
ec

is
io

n
(%

)

dists (m)

TC(Precision)
TC(F-measure)

Last Co-op(Precision)
Last Co-op(F-measure)

(d) Map quality by varying λb (P/F)

 30

 40

 50

 60

 70

 80

 2 3 4 5 6 7 8

F-
m

ea
su

re

Pr
ec

is
io

n
(%

)

k

TC(Precision)
TC(F-measure)

Last Co-op(Precision)
Last Co-op(F-measure)

(e) Map quality by varying k (P/F)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7
 0

 100

 200

 300

 400

 500

 600

 700

 800

F-
m

ea
su

re
 (

%
)

Ti
m

e
(s

)

Iteration

Map-matching
Update

Running time

(f) Map improvement with iteration (F-measure)

FIGURE 5.5: Effectiveness test for co-optimisation model

On the other hand, when θs ≥ 50%, although most of the new roads are preserved, our algorithm still

receives better performance than the baseline method, meaning that most of the erroneous roads are

measured as low score items and get removed by our model.

Meanwhile, as shown in Fig. 5.5c, the map-matching results usually do not receive the same

amount of improvement as the map update since the erroneous roads generated by the baseline method

only affect in a small portion of the trajectory map-matching results. Hence, the removal of erroneous

roads barely affects the recall and only improve the precision slightly. Moreover, we also conduct our

comparison on KDE map inference, since the KDE baseline method focuses more on precision rather

100

than recall, it delivers very high precision (91.50%) but extremely low recall (15.97%) in our frame-

work, and our method improves its F-measure by nearly 20 percent (27.18% to 46.84%), which shows

the effectiveness and flexibility of our framework when applied to different map update algorithms.

We also measure the performance by varying breakpoint extension distance λb. As shown in Fig.

5.5d, when λb ≤ 20m, the map quality is much higher than the baseline, especially the precision.

However, the improvement is negligible when λb becomes too large as the number of unmatched

trajectories decreases drastically and only the distinctive trajectories are selected, which certainly

generates correct roads (TC reaches > 80 precision when λb = 40). Even in such a case, our method

can still achieve higher precision than the baseline method.

Moreover, we vary the rank length k from 2 to 8 to test the effectiveness of our top-k map-

matching and certainty calculation. However, as depicted in Fig. 5.5e, the performance does not see

a significant change especially when k > 5 since in most cases, only a few matching sequences are

considered to be the matching candidate of a trajectory. Hence, introducing more irrelevant candidates

does not affect the result.

Iteration Evaluation

Since the effectiveness of our co-optimisation model has been proved above, we also measure the

effectiveness of the iterative process. Fig. 5.5f demonstrates the change of map-matching and map

quality during the iterations. It can be observed that both the map-matching and the map quality

improves monotonically, which means the iterative process works as our expectation and guarantee a

quality improvement. Besides, the running time of each iteration decreases as the number of newly

inferred roads drops drastically. However, due to the constant cost of the map-matching process, the

time cost for each iteration is still notable, which is the main reason for our running time optimisation.

Trajectory index Evaluation

As introduced in Section 5.4, we propose three types of query ranges, namely the DMA, STA-Circle

and STA-Route to accelerate the map-matching phase during each iteration. Fig. 5.6a shows the

improvement of running time of our DMA index as the iteration goes. The CompleteMatching repre-

sents the running time of iteration with no index, and we also compare the performance by different

road removal percentages (2% and 6%). Compared to the original solution whose running time does

not change by much as the iteration goes, the running time of the DMA reduces significantly, which

meets our expectation. As the number of newly inferred roads decreases as the iteration goes up,

fewer trajectories should be affected by new road insertion. Also, the performance benefit shrinks

101

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12

R
un

ni
ng

 T
im

e(
s)

Iteration

CompleteMatching-6
DMA-6

CompleteMatching-2
DMA-2

(a) Time saved by DMA over iterations

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8

R
un

ni
ng

 T
im

e(
s)

Iteration

CompleteMatching
STA-Circle
STA-Route

(b) Time saved by STA-Circle and STA-Route over it-

erations (rm% = 4)

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

F-
m

ea
su

re
 (

%
)

Ti
m

e
(s

)

Remove pct (%)

CrowdAtlas
First Co-op
Last Co-op

Running time

(c) Matching quality and time by varying rm% (F-

measure)

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

Pr
ec

is
io

n
(%

)

Remove pct (%)

CrowdAtlas
First Co-op
Last Co-op

(d) Map quality by varying rm% (F-measure)

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

Pr
ec

is
io

n
(%

)

Remove pct (%)

CrowdAtlas
First Co-op
Last Co-op

(e) Map improvement on Beijing-M (F-measure)

FIGURE 5.6: Efficiency and scalability test for co-optimisation model

when the percentage of road removal increases due to more trajectories being affected by road infer-

ences. Meanwhile, our experiment shows that the loss of accuracy in the DMA is not a big concern as

averaging 94% of the trajectories that can be matched to the road are found by the DMA query, and the

missing trajectories have negligible influence on the quality of the final co-optimisation results (< 1%

of the F-measure change). On the contrary, although the STA-Circle and STA-Route have no accuracy

102

issues, their running time is much slower than the DMA due to the larger search range. As shown

in Fig. 5.6b. Comparing with the original solution, both the STA-Circle and STA-Route receives al-

most no boost at the first few iterations and later gains some benefit from the reduced inference road

size. However, their poor performance is caused by different reasons. Due to the extremely large

search range of the STA-Circle, the circles for different inferred roads may overlap with each other,

which causes redundant searches especially when the number of roads is large. On the other hand,

the STA-Route has few problems with the overlapping, but the time spent on finding nearby roads of

each inferred road is significant and does not reduces by much as the iteration goes, which cause the

poor performance even after a few iterations.

Overall, our index-based trajectory filtering helps reduce the running time as the iteration goes,

which accumulates a significant amount of time saved over the iterative process. Amongst all three

candidates, the DMA has the best time reduction with negligible damage on the accuracy aspect,

which is an overall better choice in most of the cases where the accuracy is not a serious concern.

Scalability Evaluation

We test the scalability of our algorithm by varying the percentage of road removed from the map. Fig.

5.6c and 5.6d shows that the quality of map-matching and map update when varying rm%. It is clear

to see that our co-optimisation algorithm outperforms the CrowdAtlas baseline constantly(since we

choose the θs = 20%, the F-measure of the first iteration is expected to be lower than the baseline).

Regarding the running time shown in Fig. 5.6c, we can find there are two peaks appearings at 4% and

6%; this is because the baseline method performs badly during these runs and our co-optimisation

algorithm spends more iterations to make the final results much better than the initial one, which

shows good robustness of our solution.

In addition, we run our algorithm on the Beijing-M and Beijing-L dataset to test the scalability.

Fig. 5.6e shows the map quality improvement on Beijing-M dataset. We can clearly see a similar

improvement as in Beijing-S. In fact, the same improvement can be found in theBeijing-L dataset

(35% to 44% when rm% = 4). However, since one round of map-matching on Beijing-L dataset

takes around 3 hours, even with the DMA index, the whole iterative process still takes half a day to

complete. Therefore, we only run a few times on Beijing-L to ensure the improvement is consistently

visible under different settings.

103

5.6 Summary

In this chapter, we propose an iterative-based map-trajectory co-optimisation algorithm which im-

proves both the trajectory map-matching result and map quality. Following such an idea, we pro-

pose a co-optimisation framework which is comprised of the map-matching, map update and our

co-optimisation model. We implement the most representative methods for map-matching (HMM)

and map update (KDE, TC) for best performance, and we propose and layer a co-optimisation algo-

rithm into the framework to further refine the map-matching and map update results. Through the

introduction of map-matching certainty, road influence and confidence, we build an evaluation pro-

cess for each newly updated road so that incorrectly updated road can be removed and the wrong

map-matching results can be remedied. In addition to the original solution, we further improve its

efficiency by proposing an index-based trajectory filtering strategy. We conduct our experiments on

both public map-matching benchmark dataset and trajectory datasets with different scales. The results

show superior performance compared with the state-of-the-art map inference/update solutions and im-

proved efficiency gained from the index-based filtering. Overall, our proposed framework works well

in improving the map and map-matching quality. It also shows its flexibility to work with most of

the existing map-matching and inference algorithms. However, the experiments also depict that the

performance is affected by the number of iterations significantly, and it is quite unstable due to the

unstable quality value and the benefit result in each iteration. Therefore, there is still room for im-

provement in terms of defining the confidence score, influence score, as well as the way of identifying

a correct road. With the help of recent machine learning methods which are known for outstanding

data classification performance, it is possible that correct road identification can be improved through

the learning process.

104

Chapter 6

Map Service Platform

6.1 Introduction

The ubiquity of GPS trajectory data and digital maps enables various types of location-based appli-

cations, including navigation, vehicle tracking, traffic analysis and location-based recommendation.

However, since both GPS trajectories and maps are intrinsically inaccurate, various techniques have

been proposed to deal with the data quality issues. In particular, the map-matching method aims

to find the actual travel path of an object given its inaccurate GPS trajectory, while the map infer-

ence/update tries to construct/update a map automatically using the trajectories sampled in the map

region. Nowadays, due to the importance of the maps and trajectories, those techniques are widely

adopted as the crucial data cleaning/preprocessing step for most of the location-based applications in

both academia and industry.

However, to the best of our knowledge, limited sources are available online for those processes.

For example, as the essential preprocessing step of most trajectory-based applications, the map-

matching tools are rarely seen in most of the open-source graph/spatial/geometric toolboxes. Mean-

while, the existing projects with map-matching embedded, like the Graphhopper [52] and Bare-

foot [66], only provide a single map-matching algorithm, mostly the classical HMM-based solu-

tion proposed in 2009 [90], as the candidate solution. Abundant solutions proposed afterwards are

not included in any toolbox, not to mention the lack of support on different working scenarios (on-

line/offline map-matching on low/high-sampling rate data). In contrast, while many map-matching,

map inference and map update algorithms have been proposed in recent years, some of them share

their implementation publicly for peer review and validation. However, these projects are usually

implemented in different languages, provide limited comments and have designated input/output for-

mats. Therefore, they are hard to use for reproduction and comparison.

105

On the other hand, the recent upsurge of research on map-matching [112, 119], map inference

[116, 161] and map update [111, 133] shows a strong need of comparing their own proposals to the

previous baseline algorithms. Meanwhile, the frequent use of those data preprocessing procedures

in practice requires a toolbox that supports those functionalities on different input formats, scales

and working scenarios. Considering the close relationship between map-matching and map infer-

ence/update and their broad applications in both academia and industry, we develop a map service

platform that supports aforementioned processes, including map-matching, map inference and our

proposed map-trajectory co-optimisation, on various working scenarios and different datasets with

various algorithms available1. Overall, the main features and contributions of our platform are as

follows:

• To the best of our knowledge, our proposed platform is the first open-source system that sup-

ports both map-matching and map inference/update processes with multiple candidate solu-

tions. The platform enables the data quality improvement solely on GPS trajectories (map-

matching), maps (map inference/update) or on both datasets simultaneously (map-trajectory

co-optimisation). Besides, the variety of options of different map-matching/map inference so-

lutions ensures the best performance under different data inputs and provides a general platform

for easy comparison for future research.

• In addition to the basic functionality, our proposed platform provides abundant toolkits for data

conversion, data preprocessing, data visualisation and data quality evaluation for both GPS

trajectories and maps. Moreover, we implement various spatial tools, like different spatial

indices (R-tree, grid, kd-tree, etc.), different coordinate systems (WGS84 [142], GCJ-02 [141]

and Mercator projection [140]) and different shortest-path algorithms (Dijkstra, A*, etc.), for

ease-of-use and future research convenience.

• The platform is designed and implemented under clear modularisation, which supports easy

plug-ins for multiple programming languages (Java, Python, Go, etc.) and easy extensions.

Therefore, future research on map-matching and map inference/update can be introduced and

compared with existing solutions easily.

Note that the main objective of our platform is to provide a practical platform for public use

rather than achieving research breakthroughs. Therefore, in this chapter, we mainly introduce the

core components and the main functionalities of the whole system.

1The platform is open-source, link: https://github.com/Hellisk/map-service

106

6.2 Framework Overview

In general, the core functionality of our map service platform is the support of map-matching, map

inference and map-trajectory co-optimisation processes on various types of data input and different

working scenarios with a wide range of algorithm options. In addition, to ensure that users can eas-

ily implement their own algorithms and compare with other in-built candidates on different datasets,

the platform also provides functionalities for data cleaning, result evaluation, visualisation and con-

figuration. Overall, as shown in Fig. 6.1, the framework of the platform consists of the following

components:

FIGURE 6.1: Framework overview

• Data Preprocessing: In data preprocessing, various types of input GPS trajectory/map formats

can be parsed into our unified formats. Besides, we provide various data cleaning options, like

deduplication and trajectory compression, to the users, which (1) improves the quality of input

107

data or (2) manipulates the data to satisfy certain requirements. Meanwhile, we also provide

synthetic dataset generators, including trajectory generator and map manipulator, which can be

used for scalability and accuracy tests of the algorithms.

• Map Service: The map service is the main component of the platform. There are three main

functionalities provided: map-matching, map inference and map-trajectory co-optimisation.

Both map-matching and map inference have multiple available algorithms. Moreover, with the

formally defined interfaces, they both support future algorithm extensions. While for the map-

trajectory co-optimisation, in addition to the default solution proposed in [27], other alternative

map-matching and map inference algorithms can also be adopted in the framework.

• Result Evaluation: In result evaluation, both the map-matching, map inference and co-optimisation

results can be evaluated by various metrics. Besides, we provide a visualisation tool that can

display spatial objects, including trajectories, travel paths and road network skeleton, on public

map layouts, like OpenStreetMap [94] and Google Maps [51], for visual evaluation.

• Utilities: Other than basic definitions of the data formats, most of the supporting functions are

defined in this package. In particular, as the crucial components in map-matching and map

inference, several spatial indices and shortest path algorithms are provided for different query

performance requirements. We also provide the conversion between different coordinate sys-

tems and the corresponding distance functions to ensure data from different coordinate systems

can all be processed in our system. Lastly, we provide customisable configuration files for map-

matching, map inference and co-optimisation, respectively, so that users can easily test various

algorithms using different settings without the need for changing the code.

From the user’s perspective, input datasets and a configuration file are required for running a

preprocessing procedure (data preprocessing, map-matching, map inference or map-trajectory co-

optimisation). The running of the procedure includes the following steps:

• First, the system parses the configuration file for arguments, including: (1) which procedure is

invoked; (2) the format of the input data and the name of input folder(s) and log file folder; (3)

which algorithm is chosen (when map-matching, map inference or map-trajectory co-optimisation

procedure is chosen) and (4) the values of the parameters in the chosen algorithm.

• Second, the system reads the input data from a specified folder(s) and starts the corresponding

processing procedure.

108

• Third, the output results are evaluated through the result evaluation process. Data visualisation

is provided as an alternative evaluation method.

• Forth, the output results can be found in specified folders with unified formats. Meanwhile, the

evaluation results are written as logs in log file.

The platform is mainly implemented in Java-11, with some of the algorithms written in Python-

2.7 and Go-1.12.6 (future algorithms written on these languages are compatible). The entire project

is built and maintained by Apache Maven [10] for easy deployment.

6.3 Implementation Details

As aforementioned, four main components are included in our framework. In this section, we mainly

introduce the implementation details of each component, respectively, which provides a brief under-

standing and instruction for future users.

6.3.1 Data Preprocessing

The main goal of the data preprocessing is to prepare the input data for the following data processing

algorithms. In general, three types of data are required in data processing and evaluation: the input,

output and ground-truth data required for evaluation. Considering the map-matching, map inference

and map-trajectory co-optimisation mentioned in Chapter 3, 4 and 5, respectively, the required data

types include the following:

• Map-matching: trajectory (input), road network (input), map-matching result (output/ground-

truth).

• Map inference: trajectory (input), road network (output/ground-truth).

• Map-trajectory co-optimisation: trajectory (input), road network (output/ground-truth), map-

matching result (output/ground-truth).

Note that in the co-optimisation process, the unmatched trajectory and top-k map-matching results

are generated as intermediate results. However, they can also be represented as a trajectory and a

variation of a map-matching result, respectively. Hence, only three types of data are utilised in our

system, defined as follows:

• Trajectory: A Trajectory Tr is stored as an array of TrajectoryPoint, each of which contains

2-D coordinates, a timestamp, a speed (optional) and a heading (optional).

109

• Road network: A RoadNetworkGraph G consists of a list of RoadNodes (vertices) and a list

of RoadWays (edges). Each RoadNode contains 2-D coordinates while each RoadWay stores

the pointers to starting and ending RoadNodes and a list of intermediate vertices. Note that

both RoadNode and RoadWay maintain a hash map that stores additional attributes, like road

width (edge), speed limit (edge), intersection type (vertex), etc. Such definition ensures its

compatibility to maps from various sources with/without semantic features.

• Matching result: A TrajectoryMatchResultMG(Tr) contains both a list of point match result

MPG(Tr)(PointMatch defined in Section 4.3) and a route match result MRG(Tr), which

can be used for storing both online and/or offline map-matching results and supporting both

point-based and route-based evaluation.

The principle of defining data formats is to support more types of input sources and algorithms

that require different semantic features. On top of that, the data preprocessing module provides the

following functionalities:

• Data loader: The input data from various sources can be converted to our defined formats

using our data loader. The data loader supports the parse of customisable data formats for both

trajectory and road network, as well as some typical formats like OpenStreetMap and shapefile

(.shp).

• Data cleaning and validation: Since the data quality issues are common in spatial-temporal

datasets, we implement some typical data cleaning and validation processes for better input

data quality. In particular, the cleaning process mainly focusses on (1) removing duplicated,

unreachable or noisy trajectory points, (2) unreachable vertices and duplicated edges in a road

network. Besides, we provide functions for validating the correctness of map components in

terms of their connectivities.

• Data generator and modifier: To support experiments on synthetic datasets, we propose the

generator of both trajectories and maps based on real datasets. In addition, we support the ma-

nipulation of existing maps and trajectories to simulate different levels of noise in real datasets.

• Data statistics: For analytic purposes, we implement a tool that generates the statistics of

trajectory and map datasets in terms of the features that may affect their performance in map-

matching, map inference and co-optimisation.

110

6.3.2 Map Services

As the main service in our platform, the map service contains three components: map-matching, map

inference and map-trajectory co-optimisation. Since these processes are formally defined in previous

chapters, here, we mainly focus on their implementation details. In general, when designing this

module, the core principle is to ensure the extendibility of the services so that new solutions can be

easily plugged in and compare with existing candidates. Hence, one of the main objective in this

module is to define the interfaces of those services in a clear and concise way.

Map inference: According to Section 3.2, despite the map inference algorithms constructing a map

in complete different ways, they all take the same type of input (R = a list of Trajectory) as well as

generate the same output format (G = a RoadNetworkGraph). Therefore, the map inference interface

is defined as follows:

G←MapInferenceProcess(R,Pram) (6.1)

where the Pram represents a list of parameters that are used in the map inference algorithm.

Although the parameters needed in various algorithms are different, they can all be generalised as a

list of key-value pairs.

Map-matching: Different from the map inference problem, the solutions for the map-matching

problem are categorised according to their working scenarios. In offline map-matching, the input

includes a trajectory Tr and the underlying map G, while the output is the map-matching result

MG(Tr), i.e.:

MG(Tr)← OfflineMapMatchingProcess(Tr,G, Pram) (6.2)

However, in online map-matching, the trajectory points arrive in a streaming fashion. Therefore,

at each moment, the online map-matching is performed with only the current trajectory point p and

the output only contains the point match result, i.e.:

MPG(Tr)← OnlineMapMatchingProcess(p,G, Pram) (6.3)

Map-trajectory co-optimisation As mentioned in Section 5.2, the input of the co-optimisation

process consists of a trajectory set R and a road network G while the output is a refined map G∗ and

the map-matching results of the trajectory set, i.e.MG(R). Therefore, the interface is defined as:

111

(G∗,MPG∗(R))← CooptimisationProcess(R,G, Pram) (6.4)

Meanwhile, since the co-optimisation framework support the plug-in of various map-matching

and map inference algorithms, we further define their interfaces used in the framework:

(MG(R), UnR)← CooptimisationMatchingProcess(R,G, Pram) (6.5)

G′ ← CooptimisationInferenceProcess(UnR,Pram) (6.6)

Here, the UnR is the set of unmatched trajectories generated by map-matching algorithm, and G′

is the road network that constructed from UnR. Comparing Eq. 6.6 with Eq. 6.1, we can clearly see

the definitions are identical (R and UnR are both defined as a set of trajectories), which means the

existing map inference algorithms can easily be adapted in the co-optimisation framework. However,

despite that R is a collection of Tr, the Eq. 6.5 is still slightly different from Eq. 6.2 due to the

generation of UnR. In fact, it can be achieved by a post-processing step after the map-matching, i.e.:

UnR← UnmatchedTrajGenProcess(R,MG(R), G, Pram) (6.7)

Therefore, with the help of the process in Eq. 6.7, the existing offline map-matching algorithms

can be applied to the framework as well. Overall, our map service module provides a set of interfaces

that support the users to easily adapt their solutions to the current module. Besides, we implemented

more than five candidate algorithms for both map-matching and map inference problems for future

performance comparison.

6.3.3 Result Evaluation

In the result evaluation, we provide both quantitative evaluation and visual evaluation options. In

terms of the quantitative evaluation, we offer four metrics for map quality evaluation and six map-

matching quality metrics, which are introduced in Section 3.3 and 4.6, respectively. Regarding the

visual comparison, we utilise a java-based visualisation package, termed as UnfoldingMaps [125],

and implement our supports to multiple spatial data types. Currently, our visualisation tool offers the

following features:

• The underlying map in our visualisation can be configured to Google Maps, OpenStreetMap,

satellite images or single colour background;

112

• The supported data types include trajectories, road networks, map-matching results and the

overlay of multiple data types.

• The colour of different data source is customisable. It can also be adaptive to the line weight

(e.g.: the roads with more traffic have warmer colour)

6.3.4 Utilities

Since one of the main purposes of our platform is to shorten the time spent on implementation and

experiments for future research in these fields, we provide auxiliary tools for easy development, in-

cluding a spatial toolbox and other general utilities, as shown in Fig. 6.1. The purpose for the spatial

toolbox is to help accelerate the implementation of new algorithm on our platform, while the main

functionalities of general utilities are to better support more data formats and more languages, and to

use the platform more conveniently. In general, our utilities can benefit the implementation from the

following aspects:

• In geometric toolbox, we define different geometric objects (point, rectangle, circle, etc.) and

implement a bunch of spatial operations (intersect, contain, disjoint, etc.). Since all the spatial

data formats used in our platform (trajectory, road network, etc.) are built based on these

objects, it is quite convenient for designing new algorithms and indices and they can be easily

adapted to the existing data formats.

• In coordinate system, We implement the distance calculation methods on different coordinate

systems, including Euclidean distance and Great Circle distance, and the conversion between

different geodetic systems, namely GCJ-02, WGS84 and Universal Transverse Mercator sys-

tem(UTM). Different from the previous algorithms that only support one type of coordinate

system, the algorithm implemented on our platform does not need to bother on calculating

distances manually; instead, it can automatically support both coordinate systems and run on

different geodetic systems with a simple coordination conversion.

• As the main components in most of the existing map-matching and map inference algorithms,

the shortest-path algorithms and spatial indices can significantly affect the performance of the

algorithms. Therefore, we implement multiple shortest path algorithms (e.g.: Dijkstra, A*) and

spatial indexing structures (e.g.: Grid, R-tree, KD-tree) that ensure the comparison between dif-

ferent algorithms is not affected by the inconsistent implementation of shortest path algorithms

and indices. Besides, it can significantly reduce the cost for algorithm implementation and help

the users to find a better index or shortest path algorithm more quickly.

113

• We develop an ease-of-use configuration module that helps users to easily parse the parameters

they define without worrying about its conflict to the settings of other algorithms. In addition,

the configuration module helps reproduce experiments and achieve batch experiments easily.

6.4 Case Study

To help users better understand our platform, we provide an example to demonstrate how to use

our map services. We take our Beijing dataset as an example and perform a map-matching process

(map inference and co-optimisation are similar) on Windows (Linux also supported). To complete

a map-matching process from scratch, we are required to perform four steps: data preprocessing,

map-matching, result evaluation and visualisation.

6.4.1 Data Preprocessing

The input of a map-matching process includes a trajectory dataset and a map. Assuming the input

data come from different sources, our first step is to convert them into a uniform trajectory/map for-

mat in order to be processed in the subsequent steps. First, we specify a root folder for all map

service tasks, for example ”F:/data/”. Therefore, for the Beijing raw dataset, we save them in the

folder of ”F:/data/Beijing/raw/”. The trajectory is stored in ”.../raw/trajectory/” and map is stored

in ”.../raw/map/”, respectively. The reason for doing so is that our platform maintains a tree-based

directory structure automatically, which means all data generated by the platform will go to the cor-

responding folder according to their data types, making the data navigation much easier.

After raw data are placed in the right folders, we open the preprocessing configuration file at

”src/resource/preprocessing.properties” and modify the settings as follows:

• OS=Win

• data.RootPath=F:/data/

• data.Dataset=Beijing

Meanwhile, we also set other parameters that will be used in data preprocessing, like the map

boundary, trajectory sampling rate, trajectory size, trajectory minimum length, etc. Note that the

parser of Beijing dataset has been implemented as ”BeijingMapLoader” and ”BeijingTrajectory-

Loader” in ”src/main/java/util/io/”, and we also provide the parser of OpenStreetMap maps in ”OS-

MMapLoader”. However, for new data types, the data loader should be implemented separately.

114

Eventually, run the ”ProcessingMain” class in ”src/main/java/preprocessing/” to start the preprocess-

ing, the trajectories and maps after preprocessing will be stored in folder ”F:/data/Beijing/input/”.

Both of them follow the uniform formats defined in Section 6.3 regardless of the raw data format.

6.4.2 Map-matching and Evaluation

After the data preparation, we are ready to start the map-matching process by first configuring the

”mapmatching.properties”. Same as in data preprocessing, the first section of the property file (pa-

rameters starting with ”data.*”) consists of all data related settings. In the second part, it specifies

all parameters related to map-matching algorithms. As shown in Figure 6.2, we can choose the

map-matching algorithm by changing the value of ”algorithm.mapmatching.MatchingMethod”. Be-

sides, all parameters are categorised based on which algorithm they belong to, which allows us to

better adjust the parameters during multiple runs. Finally, run the ”MapMatchingMain” class in

”src/main/java/algorithm/mapmatching/” to start the matching.

FIGURE 6.2: Example of map-matching parameters

After the map-matching is complete, we are able to find the matching results in ”F:/Data/Beijing/

output/matchResult/”. In addition, run ”MapMatchingEvaluationMain” in ”src/main/java/evaluation/

matchingevaluation/” to obtain the quantitative evaluation results, shown as Figure 6.3. We can also

find the logs of map-matching and evaluation from ”F:/Data/Beijing/matching/log/”.

6.4.3 Visual Comparison

We provide the display of major data types in our application. In map-matching application, the

most common scenario is to compare the map-matching result with original trajectory or with the

ground-truth map-matching result. In our platform, we provide the functions for displaying var-

ious data types, but the user has to specify which data to display in ”UnfoldingMapDisplay” in

115

FIGURE 6.3: Quantitative evaluation of map-matching

”src/main/java/util/visualization/”. To display the map-matching components, we specify the file

paths, the line colours and stroke weights in the code, we can also choose the underlying map tiles

from various providers(Google, OpenStreetMap, Microsoft, etc.). After running the ”Visualization-

Main”, we can see the display of a map-matching result, shown in Figure 6.4. Here, the map tiles are

obtained from Google. but the grey lines covering the map comes from our map data. The red line

with dots represents the original trajectory, while the line with light green represent the map-matching

output (ground-truth can be displayed in the same way). The map can be zoomed at different scales,

or using different map tiles, like Figure 6.5 which shows the same trajectory on satellite image with

another scale.

FIGURE 6.4: Map-matching result visualisation on Google Maps

116

FIGURE 6.5: Map-matching result on Microsoft satellite image

6.5 Conclusion

In this chapter, we introduce the main features of our map service platform. In general, our platform

is designed for two main purposes: (1) help the future research in map-matching, map inference

and map update in terms of faster implementation and easier comparison, (2) provide an easy-to-use

platform for data cleaning/data preprocessing processes on trajectories and maps. By introducing the

framework and main components of our platform, we demonstrate our contributions in helping the

users to implement their algorithms more efficiently, providing a wide range of candidate algorithms

and evaluation methods for easy comparison and designing ease-of-use configuration strategies for

faster deployment and batch experiments.

117

118

Chapter 7

Final Remarks

7.1 Conclusions

In this thesis, we present our research on data quality issues in GPS trajectories and road maps. In

particular, we conduct extensive studies on the map-matching and map inference problem and propose

our map-trajectory framework that utilises the map-matching and map inference solutions and solves

the data quality on both datasets simultaneously. In addition, we develop and release a map service

platform which provides abundant tools for data quality improvement on GPS trajectories and maps

and includes all aforementioned functionalities.

In Chapter 3, we present a comprehensive survey and experimental study of existing map inference

algorithms. Specifically, we propose a new categorisation method, compare the representative algo-

rithms experimentally and evaluate the existing quantitative measures. Besides, to test the robustness

of algorithms and quantitative measures, we introduce a synthetic trajectory generator and an artificial

map generator to simulate different trajectory errors and map quality issues, respectively. According

to our experiments, we observe that besides their respective weakness, the existing quantitative mea-

sures are unable to identify several map issues and do not consider road importance. Regarding the

candidate algorithms, the existing algorithms struggle to guarantee performance when the GPS errors

exceed their expected threshold, and they still find a hard time identifying roads that are rarely trav-

elled. Moreover, more input trajectories do not always lead to better inference results. Overall, we

identify the method that has the best scalability (RA-K-MEANS), the best accuracy (RA-TOPIC), and

the best suitability for map update (IB-ME), respectively, and also point out potential future research

directions.

In Chapter 4, we enumerate and categorise the existing map-matching algorithms according to

their map-matching model, working scenarios and input data features. We discuss the main strengths

119

and weaknesses of each category and introduce their representative algorithms. Moreover, we in-

troduce several typical tuning techniques used in recent map-matching solutions, which involve new

research fields (machine learning) and new data types (Bluetooth, DGPS, etc.). On the other hand,

we conduct comprehensive experiments on multiple algorithms, metrics and datasets to compare the

existing map-matching solutions. The experiment results show the following: (1) the accuracy of

online map-matching benefits a lot from delayed matching, and the latency can be wisely controlled

without hurting performance; (2) it is not always true that higher sampling rates lead to better match-

ing performance. Down-sampling trajectories is beneficial when the sampling rate is too high, but a

simple trajectory compression strategy cannot serve this purpose. (3) the HMM-based methods can

still achieve overall better performance, while a simple scoring method can be very efficient in online

scenarios without losing too much accuracy if the data quality is decent; (4) map density is a cru-

cial factor affecting both the efficiency and matching accuracy of the algorithms, which is the main

challenge in the future. Overall, this chapter summarises and compares the existing map-matching

solutions and provides insightful observations and guidance for future research.

In Chapter 5, we propose an iterative-based map-trajectory co-optimisation algorithm which im-

proves both the trajectory map-matching result and map quality. Following such an idea, we pro-

pose a co-optimisation framework, which is comprised of the map-matching, map update and our

co-optimisation model. We implement the most representative methods for map-matching (HMM)

and map update (KDE, TC) for best performance, and we propose a co-optimisation algorithm upon

them to further refine the map-matching and map update results. Through the introduction of map-

matching certainty, road influence and confidence, we build an evaluation process for each newly

updated roads so that incorrectly updated road can be removed and the wrong map-matching results

can be remedied. In addition to the original solution, we further improve its efficiency by proposing an

index-based trajectory filtering strategy. We conduct our experiments on both public map-matching

benchmark datasets and trajectory datasets with different scales. The results show the superior perfor-

mance compared with the state-of-the-art map inference/update solutions and the improved efficiency

gained from the index-based filtering. Overall, our proposed framework works well in improving

the map and map-matching quality. It also shows its flexibility to work with most of the existing

map-matching and inference algorithms.

In Chapter 6, we introduce the core functionality and main features of our map-service plat-

form. As an open-source project, our platform supports various data preprocessing, including map-

matching, map inference and map-trajectory co-optimisation, for GPS trajectory data and map data.

In addition, we provide abundant data cleaning and evaluation tools that can simplify future research

implementation and comparison using our platform. Overall, our platform is beneficial to two types of

120

users: (1) it helps future researchers working in map-matching, map inference and map update to im-

plement and compare their solutions more easily and conveniently; and (2) it provide an easy-to-use

platform for developers to preprocess and evaluate their trajectory and map data.

7.2 Directions for Future Work

In the future, we plan to continue our work on data quality issues in maps and trajectories. Specifically,

there are two potential directions in which we are planning to work.

7.2.1 Trajectory Reconstruction on Low-Quality AVI Data

An Automated Vehicle Identification (AVI) system is comprised of a set of sensors installed at cer-

tain locations in the road network that reports the occurrence of a vehicle/pedestrian once observed.

Currently, various types of sensors are used for vehicle detection, like Bluetooth scanners [15], Wi-Fi

and cameras. Different from the GPS positioning, the observations of a vehicle only occur around

the detectors’ location. Since most sensors are installed sparsely around a map region, the observa-

tion frequency of the same vehicle is extremely low, making it challenging to speculate the actual

travel trajectory given its observations, which is called trajectory reconstruction problem [88]. In fact,

this problem is closely related to the map-matching problem we studied in our thesis. The major

differences and the main challenges are as follows:

• The sampling rate of AVI data is much lower than a GPS trajectory, and the sampling is done

aperiodically due to the geographical feature of the sensors.

• There are some unique features in the AVI system that do not appear in GPS trajectory, like

the missing detection and overlapping detection zones [16]. Those features should be modelled

properly when adapting the map-matching solutions on trajectory reconstruction problem.

According to our study, several map-matching algorithms are deemed to fit the trajectory recon-

struction problem, which consists of simple shortest path solutions, HMM map-matching solution

and weighted graph-based matching solutions. Recently, we are working on adapting those solutions

with the consideration of the aforementioned features in trajectory reconstruction.

7.2.2 Pattern Learning for Map Intersection Inference

As shown in our study of map inference problem, the current map inference quality is still far from

being satisfactory even with the state-of-the-art inference method. One of the main reason is the

121

failure of inferring intersections correctly. Due to the low sampling rate and inaccurate positioning,

the trajectory usually cannot represent the vehicle’s actual path precisely especially when the vehicle

makes abrupt turns around intersections. Therefore, the existing map inference algorithms strictly

eliminate noisy data around intersections and simplify the problem by representing the intersection

as simple structures, like crossroads or T-junctions. However, the current road network is much more

complicated in terms of the design of intersections. Not only does the number of entrances for an

intersection vary from three to five, six, but also the connectivity between entrances are completely

different. Considering that the real-world intersections have some fixed design patterns, given the

existing intersection patterns and the trajectory data passing through each pattern, we are able to

train a classifier using machine learning techniques to identify an intersection pattern given a set of

trajectories. The main challenges of this work are as follows:

• To better differentiate the intersection patterns, the trajectory used for both training and testing

should be of high quality. Therefore, the data cleaning process is crucial for the performance of

the classifier. However, given that the input data quality is fixed, finding the noisy trajectories

that may affect the performance is a challenging problem.

• The choice of the classifier model is another challenging task as there is no existing experience

in classifying trajectory data for such purpose. Besides, the data structure of the input trajec-

tories should be chosen wisely. Since the major differences between the intersection patterns

are their connectivities and the number/location of the entrances, simply regarding the input

trajectories as a set of points will result in lost connectivity features, which is not good for

classification.

122

References

[1] G. Agamennoni, J. I. Nieto, and E. M. Nebot. Robust inference of principal road paths for

intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems,

12(1):298–308, 2011.

[2] M. Ahmed, B. T. Fasy, M. Gibson, and C. Wenk. Choosing thresholds for density-based map

construction algorithms. In Proceedings of the 23rd SIGSPATIAL International Conference on

Advances in Geographic Information Systems, page 24. ACM, 2015.

[3] M. Ahmed, B. T. Fasy, K. S. Hickmann, and C. Wenk. A path-based distance for street map

comparison. ACM Transactions on Spatial Algorithms and Systems, 1(1):3, 2015.

[4] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. A comparison and evaluation of map

construction algorithms using vehicle tracking data. GeoInformatica, 19(3):601–632, 2015.

[5] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. Map construction algorithms. In Map

Construction Algorithms, pages 1–14. Springer, 2015.

[6] M. Ahmed and C. Wenk. Constructing street networks from gps trajectories. In European

Symposium on Algorithms, pages 60–71. Springer, 2012.

[7] M. Ali, J. Krumm, T. Rautman, and A. Teredesai. Acm sigspatial gis cup 2012. In Proceedings

of the 20th International Conference on Advances in Geographic Information Systems, pages

597–600. ACM, 2012.

[8] H. Aly and M. Youssef. semmatch: Road semantics-based accurate map matching for chal-

lenging positioning data. In Proceedings of the 23rd SIGSPATIAL International Conference on

Advances in Geographic Information Systems, page 5. ACM, 2015.

[9] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S. Mirrokni, and S.-H. Teng. Local compu-

tation of pagerank contributions. In International Workshop on Algorithms and Models for the

Web-Graph, pages 150–165. Springer, 2007.

123

[10] Apache. Apache maven project. https://maven.apache.org/. Accessed: 2019-11-01.

[11] C. Ascher, C. Kessler, M. Wankerl, and G. Trommer. Dual imu indoor navigation with parti-

cle filter based map-matching on a smartphone. In 2010 International Conference on Indoor

Positioning and Indoor Navigation, pages 1–5. IEEE, 2010.

[12] M. M. Atia, A. R. Hilal, C. Stellings, E. Hartwell, J. Toonstra, W. B. Miners, and O. A. Basir.

A low-cost lane-determination system using gnss/imu fusion and hmm-based multistage map

matching. IEEE Transactions on Intelligent Transportation Systems, 18(11):3027–3037, 2017.

[13] Y. Bang, J. Kim, and K. Yu. An improved map-matching technique based on the fréchet

distance approach for pedestrian navigation services. Sensors, 16(10):1768, 2016.

[14] D. Bernstein, A. Kornhauser, et al. An introduction to map matching for personal navigation

assistants. 1996.

[15] A. Bhaskar and E. Chung. Fundamental understanding on the use of bluetooth scanner as

a complementary transport data. Transportation Research Part C: Emerging Technologies,

37:42–72, 2013.

[16] A. Bhaskar, M. Qu, and E. Chung. Bluetooth vehicle trajectory by fusing bluetooth and loops:

Motorway travel time statistics. IEEE Transactions on Intelligent Transportation Systems,

16(1):113–122, 2014.

[17] J. Biagioni and J. Eriksson. Inferring road maps from global positioning system traces: Survey

and comparative evaluation. Transportation Research Record: Journal of the Transportation

Research Board, (2291):61–71, 2012.

[18] J. Biagioni and J. Eriksson. Map inference in the face of noise and disparity. In Proceedings

of the 20th International Conference on Advances in Geographic Information Systems, pages

79–88. ACM, 2012.

[19] U. Blanke, R. Guldener, S. Feese, and G. Tröster. Crowdsourced pedestrian map construction

for short-term city-scale events. In Proceedings of the First International Conference on IoT in

Urban Space, pages 25–31. ICST (Institute for Computer Sciences, Social-Informatics and . . . ,

2014.

[20] C. A. Blazquez, J. Ries, and P. A. Miranda. Towards a parameter tuning approach for a map-

matching algorithm. In 2017 IEEE International Conference on Vehicular Electronics and

Safety (ICVES), pages 85–90. IEEE, 2017.

124

[21] C. A. Blazquez and A. P. Vonderohe. Simple map-matching algorithm applied to intelligent

winter maintenance vehicle data. Transportation Research Record, 1935(1):68–76, 2005.

[22] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine Learning

research, 3(Jan):993–1022, 2003.

[23] P. Bonnifait, J. Laneurit, C. Fouque, and G. Dherbomez. Multi-hypothesis map-matching using

particle filtering. In 16th World Congress for ITS Systems and Services, pages 1–8, 2009.

[24] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristan, R. I. Silveira, F. Staals,

and C. Wenk. Clustering trajectories for map construction. In Proceedings of the 25th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,

page 14. ACM, 2017.

[25] L. Cao and J. Krumm. From gps traces to a routable road map. In Proceedings of the 17th

ACM SIGSPATIAL international conference on advances in geographic information systems,

pages 3–12. ACM, 2009.

[26] P. Chao, W. Hua, and X. Zhou. An iterative map-trajectory co-optimisation framework based

on map-matching and map update. In International Conference on Database Systems for Ad-

vanced Applications. Springer, 2019.

[27] P. Chao, W. Hua, and X. Zhou. Trajectories know where map is wrong: an iterative framework

for map-trajectory co-optimisation. World Wide Web, pages 1–27, 2019.

[28] P. Chao, Y. Xu, W. Hua, and X. Zhou. A survey on map-matching algorithms, 2019.

[29] C. Chen and Y. Cheng. Roads digital map generation with multi-track gps data. In 2008 Inter-

national Workshop on Education Technology and Training & 2008 International Workshop on

Geoscience and Remote Sensing, volume 1, pages 508–511. IEEE, 2008.

[30] C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. Guibas. City-scale map creation

and updating using gps collections. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1465–1474. ACM, 2016.

[31] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan. Automatic road detection and

centerline extraction via cascaded end-to-end convolutional neural network. IEEE Transactions

on Geoscience and Remote Sensing, 55(6):3322–3337, 2017.

125

[32] O. Cheong, J. Gudmundsson, H.-S. Kim, D. Schymura, and F. Stehn. Measuring the similarity

of geometric graphs. In International Symposium on Experimental Algorithms, pages 101–112.

Springer, 2009.

[33] D. Cui, J. Xue, and N. Zheng. Real-time global localization of robotic cars in lane level via

lane marking detection and shape registration. IEEE Transactions on Intelligent Transportation

Systems, 17(4):1039–1050, 2015.

[34] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu. Path cost distribution estimation using

trajectory data. Proceedings of the VLDB Endowment, 10(3):85–96, 2016.

[35] P. Dankelmann. The diameter of directed graphs. Journal of Combinatorial Theory, Series B,

94(1):183–186, 2005.

[36] T.-S. Dao, K. K. Leung, C. M. Clark, and J. P. Huissoon. Co-operative lane-level positioning

using markov localization. In 2006 IEEE Intelligent Transportation Systems Conference, pages

1006–1011. IEEE, 2006.

[37] J. J. Davies, A. R. Beresford, and A. Hopper. Scalable, distributed, real-time map generation.

IEEE Pervasive Computing, 5(4):47–54, 2006.

[38] T. K. Dey, J. Wang, and Y. Wang. Graph reconstruction by discrete morse theory. arXiv

preprint arXiv:1803.05093, 2018.

[39] O. H. Dørum. Deriving double-digitized road network geometry from probe data. In Pro-

ceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, page 15. ACM, 2017.

[40] N. M. Drawil, H. M. Amar, and O. A. Basir. Gps localization accuracy classification: A

context-based approach. IEEE Transactions on Intelligent Transportation Systems, 14(1):262–

273, 2012.

[41] J. Du and M. J. Barth. Next-generation automated vehicle location systems: Positioning at the

lane level. IEEE Transactions on Intelligent Transportation Systems, 9(1):48–57, 2008.

[42] D. Duran, V. Sacristán, and R. I. Silveira. Map construction algorithms: an evaluation through

hiking data. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile

Geographic Information Systems, pages 74–83. ACM, 2016.

126

[43] S. Edelkamp and S. Schrödl. Route planning and map inference with global positioning traces.

In Computer science in perspective, pages 128–151. Springer, 2003.

[44] W. Elleuch, A. Wali, and A. M. Alimi. An investigation of parallel road map inference from

big gps traces data. Procedia Computer Science, 53:131–140, 2015.

[45] F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years of graph matching, network alignment

and network comparison. Information Sciences, 346:180–197, 2016.

[46] D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks through an algorithmic

lens. In Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in

geographic information systems, page 16. ACM, 2008.

[47] S. Fang and R. Zimmermann. Enacq: energy-efficient gps trajectory data acquisition based on

improved map matching. In Proceedings of the 19th ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems, pages 221–230. ACM, 2011.

[48] A. Fathi and J. Krumm. Detecting road intersections from gps traces. In International Confer-

ence on Geographic Information Science, pages 56–69. Springer, 2010.

[49] T. FENG and H. J. TIMMERMANS. Map matching of gps data with bayesian belief networks.

Journal of the Eastern Asia Society for Transportation Studies, 10:100–112, 2013.

[50] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet. Online map-matching

based on hidden markov model for real-time traffic sensing applications. In 2012 15th Inter-

national IEEE Conference on Intelligent Transportation Systems, pages 776–781. IEEE, 2012.

[51] Google. Google maps. https://www.google.com.au/maps. Accessed: 2019-11-01.

[52] GraphHopper. Graphhopper. https://www.graphhopper.com/. Accessed: 2019-11-

01.

[53] J. S. Greenfeld. Matching gps observations to locations on a digital map. In 81th annual

meeting of the transportation research board, volume 1, pages 164–173. Washington, DC,

2002.

[54] T. Guo, K. Iwamura, and M. Koga. Towards high accuracy road maps generation from massive

gps traces data. In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE

International, pages 667–670. IEEE, 2007.

127

[55] M. Hashemi. A testbed for evaluating network construction algorithms from gps traces. Com-

puters, Environment and Urban Systems, 66:96–109, 2017.

[56] M. Hashemi and H. A. Karimi. A critical review of real-time map-matching algorithms: Cur-

rent issues and future directions. Computers, Environment and Urban Systems, 48:153–165,

2014.

[57] M. Hashemi and H. A. Karimi. A machine learning approach to improve the accuracy of gps-

based map-matching algorithms. In 2016 IEEE 17th International Conference on Information

Reuse and Integration (IRI), pages 77–86. IEEE, 2016.

[58] M. Hashemi and H. A. Karimi. A weight-based map-matching algorithm for vehicle navigation

in complex urban networks. Journal of Intelligent Transportation Systems, 20(6):573–590,

2016.

[59] S. He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S. Madden. Road-

runner: improving the precision of road network inference from gps trajectories. In Proceed-

ings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic In-

formation Systems, pages 3–12. ACM, 2018.

[60] Z.-c. He, S. Xi-Wei, L.-j. Zhuang, and P.-l. Nie. On-line map-matching framework for floating

car data with low sampling rate in urban road networks. IET Intelligent Transport Systems,

7(4):404–414, 2013.

[61] T. Hofmann. Probabilistic latent semantic indexing. In ACM SIGIR Forum, volume 51, pages

211–218. ACM, 2017.

[62] D. Hopper. 7 times google maps straight up ruined people’s lives.

http://www.cracked.com/article 25510 7-times-google-maps-straight-up-ruined-peoples-

lives.html, 2018.

[63] G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen. If-matching: Towards accurate map-matching

with information fusion. IEEE Transactions on Knowledge and Data Engineering, 29(1):114–

127, 2017.

[64] Y. Huang, W. Rao, Z. Zhang, P. Zhao, M. Yuan, and J. Zeng. Frequent pattern-based map-

matching on low sampling rate trajectories. In 2018 19th IEEE International Conference on

Mobile Data Management (MDM), pages 266–273. IEEE, 2018.

128

[65] T. Hunter, P. Abbeel, and A. Bayen. The path inference filter: model-based low-latency map

matching of probe vehicle data. IEEE Transactions on Intelligent Transportation Systems,

15(2):507–529, 2014.

[66] B. C. IT. Barefoot. https://github.com/bmwcarit/barefoot. Accessed: 2019-

11-01.

[67] G. R. Jagadeesh and T. Srikanthan. Robust real-time route inference from sparse vehicle posi-

tion data. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC),

pages 296–301. IEEE, 2014.

[68] E. Kaplan and C. Hegarty. Understanding GPS: principles and applications. Artech house,

2005.

[69] S. Karagiorgou and D. Pfoser. On vehicle tracking data-based road network generation. In

Proceedings of the 20th International Conference on Advances in Geographic Information

Systems, pages 89–98. ACM, 2012.

[70] S. Karagiorgou, D. Pfoser, and D. Skoutas. A layered approach for more robust generation of

road network maps from vehicle tracking data. ACM Transactions on Spatial Algorithms and

Systems (TSAS), 3(1):3, 2017.

[71] D. Kim, B. Kim, T. Chung, and K. Yi. Lane-level localization using an avm camera for an

automated driving vehicle in urban environments. IEEE/ASME Transactions on Mechatronics,

22(1):280–290, 2016.

[72] M. Kubička, A. Cela, P. Moulin, H. Mounier, and S.-I. Niculescu. Dataset for testing and

training of map-matching algorithms. In Intelligent Vehicles Symposium (IV), 2015 IEEE,

pages 1088–1093. IEEE, 2015.

[73] M. Kubička, A. Cela, H. Mounier, and S.-I. Niculescu. On designing robust real-time map-

matching algorithms. In 17th International IEEE Conference on Intelligent Transportation

Systems (ITSC), pages 464–470. IEEE, 2014.

[74] M. Kubicka, A. Cela, H. Mounier, and S.-I. Niculescu. Comparative study and application-

oriented classification of vehicular map-matching methods. IEEE Intelligent Transportation

Systems Magazine, 10(2):150–166, 2018.

[75] P. Lamb and S. Thiébaux. Avoiding explicit map-matching in vehicle location. In 6th World

Conference on Intelligent Transportation Systems (ITS-99), 1999.

129

[76] A. Leick, L. Rapoport, and D. Tatarnikov. GPS satellite surveying. John Wiley & Sons, 2015.

[77] S. T. Leutenegger, M. A. Lopez, and J. Edgington. Str: A simple and efficient algorithm for

r-tree packing. In Data Engineering, 1997. Proceedings. 13th international conference on,

pages 497–506. IEEE, 1997.

[78] H. Li, L. Kulik, and K. Ramamohanarao. Automatic generation and validation of road maps

from gps trajectory data sets. In Proceedings of the 25th ACM International on Conference on

Information and Knowledge Management, pages 1523–1532. ACM, 2016.

[79] J. Li, Q. Qin, C. Xie, and Y. Zhao. Integrated use of spatial and semantic relationships for

extracting road networks from floating car data. International Journal of Applied Earth Obser-

vation and Geoinformation, 19:238–247, 2012.

[80] L. Li, M. Quddus, and L. Zhao. High accuracy tightly-coupled integrity monitoring algorithm

for map-matching. Transportation Research Part C: Emerging Technologies, 36:13–26, 2013.

[81] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nüchter. A sensor-fusion drivable-region and

lane-detection system for autonomous vehicle navigation in challenging road scenarios. IEEE

Transactions on Vehicular Technology, 63(2):540–555, 2013.

[82] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu. Mining large-scale, sparse

gps traces for map inference: comparison of approaches. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 669–677.

ACM, 2012.

[83] X. Liu, Y. Zhu, Y. Wang, G. Forman, L. M. Ni, Y. Fang, and M. Li. Road recognition using

coarse-grained vehicular traces. Hp Labs, 2012.

[84] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for low-sampling-

rate gps trajectories. In Proceedings of the 17th ACM SIGSPATIAL international conference

on advances in geographic information systems, pages 352–361. ACM, 2009.

[85] F. Marchal, J. Hackney, and K. W. Axhausen. Efficient map matching of large global position-

ing system data sets: Tests on speed-monitoring experiment in zürich. Transportation Research

Record, 1935(1):93–100, 2005.

[86] R. Matthaei, G. Bagschik, and M. Maurer. Map-relative localization in lane-level maps for

adas and autonomous driving. In 2014 IEEE Intelligent Vehicles Symposium Proceedings,

pages 49–55. IEEE, 2014.

130

[87] J. G. McNeff. The global positioning system. IEEE Transactions on Microwave theory and

techniques, 50(3):645–652, 2002.

[88] G. Michau, A. Nantes, A. Bhaskar, E. Chung, P. Abry, and P. Borgnat. Bluetooth data in an

urban context: Retrieving vehicle trajectories. IEEE Transactions on Intelligent Transportation

Systems, 18(9):2377–2386, 2017.

[89] R. Mohamed, H. Aly, and M. Youssef. Accurate and efficient map matching for challenging

environments. In Proceedings of the 22nd ACM SIGSPATIAL international conference on

advances in geographic information systems, pages 401–404. ACM, 2014.

[90] P. Newson and J. Krumm. Hidden markov map matching through noise and sparseness. In Pro-

ceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic

information systems, pages 336–343. ACM, 2009.

[91] B. Niehoefer, R. Burda, C. Wietfeld, F. Bauer, and O. Lueert. Gps community map generation

for enhanced routing methods based on trace-collection by mobile phones. In 2009 First In-

ternational Conference on Advances in Satellite and Space Communications, pages 156–161.

IEEE, 2009.

[92] W. Y. Ochieng, M. A. Quddus, and R. B. Noland. Map-matching in complex urban road

networks. 2003.

[93] OpenCycleMap. Opencyclemap. https://wiki.openstreetmap.org/wiki/

OpenCycleMap. Accessed: 2019-11-01.

[94] OpenStreetMap. Openstreetmap. https://www.openstreetmap.org/. Accessed:

2019-11-01.

[95] T. Osogami and R. Raymond. Map matching with inverse reinforcement learning. In Twenty-

Third International Joint Conference on Artificial Intelligence, 2013.

[96] F. Peyret, D. Bétaille, J. Laneurit, and R. Toledo-Moreo. Lane-level positioning for cooperative

systems using egnos and enhanced digital maps. In Proc. ENC GNSS, pages 1–9, 2008.

[97] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object representations. In

International Symposium on Spatial Databases, pages 111–131. Springer, 1999.

[98] O. Pink and B. Hummel. A statistical approach to map matching using road network geometry,

topology and vehicular motion constraints. In 2008 11th International IEEE Conference on

Intelligent Transportation Systems, pages 862–867. IEEE, 2008.

131

[99] J.-S. Pyo, D.-H. Shin, and T.-K. Sung. Development of a map matching method using the

multiple hypothesis technique. In ITSC 2001. 2001 IEEE Intelligent Transportation Systems.

Proceedings (Cat. No. 01TH8585), pages 23–27. IEEE, 2001.

[100] J. Qiu and R. Wang. Inferring road maps from sparsely sampled gps traces. Journal of Location

Based Services, 10(2):111–124, 2016.

[101] M. Quddus and S. Washington. Shortest path and vehicle trajectory aided map-matching for

low frequency gps data. Transportation Research Part C: Emerging Technologies, 55:328–339,

2015.

[102] M. A. Quddus, R. B. Noland, and W. Y. Ochieng. A high accuracy fuzzy logic based

map matching algorithm for road transport. Journal of Intelligent Transportation Systems,

10(3):103–115, 2006.

[103] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. Current map-matching algorithms for trans-

port applications: State-of-the art and future research directions. Transportation research part

c: Emerging technologies, 15(5):312–328, 2007.

[104] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B. Noland. A general map matching algorithm

for transport telematics applications. GPS solutions, 7(3):157–167, 2003.

[105] M. Rahmani and H. N. Koutsopoulos. Path inference from sparse floating car data for urban

networks. Transportation Research Part C: Emerging Technologies, 30:41–54, 2013.

[106] E. Rappos, S. Robert, and P. Cudré-Mauroux. A force-directed approach for offline gps trajec-

tory map matching. In Proceedings of the 26th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, pages 319–328. ACM, 2018.

[107] R. Raymond, T. Morimura, T. Osogami, and N. Hirosue. Map matching with hidden markov

model on sampled road network. In Proceedings of the 21st International Conference on

Pattern Recognition (ICPR2012), pages 2242–2245. IEEE, 2012.

[108] M. Ren. Advanced map matching technologies and techniques for pedestrian/wheelchair nav-

igation. PhD thesis, University of Pittsburgh, 2012.

[109] N. Schuessler and K. W. Axhausen. Map-matching of gps traces on high-resolution navigation

networks using the multiple hypothesis technique (mht). Arbeitsberichte Verkehrsund Raum-

planung, 568:1–22, 2009.

132

[110] J. Schweizer, S. Bernardi, and F. Rupi. Map-matching algorithm applied to bicycle global

positioning system traces in bologna. IET Intelligent Transport Systems, 10(4):244–250, 2016.

[111] Z. Shan, H. Wu, W. Sun, and B. Zheng. Cobweb: a robust map update system using gps

trajectories. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, pages 927–937. ACM, 2015.

[112] M. Sharath, N. R. Velaga, and M. A. Quddus. A dynamic two-dimensional (d2d) weight-based

map-matching algorithm. Transportation Research Part C: Emerging Technologies, 98:409–

432, 2019.

[113] W. Shi, S. Shen, and Y. Liu. Automatic generation of road network map from massive gps,

vehicle trajectories. In 2009 12th International IEEE Conference on Intelligent Transportation

Systems, pages 1–6. IEEE, 2009.

[114] J. Singh, S. Singh, S. Singh, and H. Singh. Evaluating the performance of map matching

algorithms for navigation systems: an empirical study. Spatial Information Research, pages

1–12, 2018.

[115] R. Song, W. Lu, W. Sun, Y. Huang, and C. Chen. Quick map matching using multi-core cpus.

In Proceedings of the 20th International Conference on Advances in Geographic Information

Systems, pages 605–608. ACM, 2012.

[116] R. Stanojevic, S. Abbar, S. Thirumuruganathan, S. Chawla, F. Filali, and A. Aleimat. Robust

road map inference through network alignment of trajectories. In Proceedings of the 2018

SIAM International Conference on Data Mining, pages 135–143. SIAM, 2018.

[117] S. Syed and M. E. Cannon. Fuzzy logic-based map matching algorithm for vehicle navigation

system in urban canyons. In ION National Technical Meeting, number 1, pages 26–28, 2004.

[118] P. Szwed and K. Pekala. An incremental map-matching algorithm based on hidden markov

model. In International Conference on Artificial Intelligence and Soft Computing, pages 579–

590. Springer, 2014.

[119] S. Taguchi, S. Koide, and T. Yoshimura. Online map matching with route prediction. IEEE

Transactions on Intelligent Transportation Systems, 20(1):338–347, 2018.

[120] Y. Tang, A. D. Zhu, and X. Xiao. An efficient algorithm for mapping vehicle trajectories

onto road networks. In Proceedings of the 20th International Conference on Advances in

Geographic Information Systems, pages 601–604. ACM, 2012.

133

[121] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, and

J. Eriksson. Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones.

In Proceedings of the 7th ACM conference on embedded networked sensor systems, pages 85–

98. ACM, 2009.

[122] R. Toledo-Moreo, J. M. Armingol, M. Clavijo, A. de la Escalera, J. del Ser, F. Jiménez,

B. Musleh, J. E. Naranjo, I. I. Olabarrieta, and J. Sánchez-Cubillo. Positioning and digital

maps. In Intelligent Vehicles, pages 141–174. Elsevier, 2018.

[123] R. Toledo-Moreo, D. Bétaille, F. Peyret, and J. Laneurit. Fusing gnss, dead-reckoning, and

enhanced maps for road vehicle lane-level navigation. IEEE Journal of Selected Topics in

Signal Processing, 3(5):798–809, 2009.

[124] TomTom. Tomtom. https://www.tomtom.com/. Accessed: 2019-11-01.

[125] Unfolding. Unfolding map. http://unfoldingmaps.org/. Accessed: 2019-11-01.

[126] F. Van Diggelen. Innovation: Gps accuracy-lies, damn lies, and statistics. GPS WORLD,

9:41–45, 1998.

[127] N. R. Velaga, M. A. Quddus, and A. L. Bristow. Developing an enhanced weight-based topo-

logical map-matching algorithm for intelligent transport systems. Transportation Research

Part C: Emerging Technologies, 17(6):672–683, 2009.

[128] A. Vu, A. Ramanandan, A. Chen, J. A. Farrell, and M. Barth. Real-time computer vision/dgps-

aided inertial navigation system for lane-level vehicle navigation. IEEE Transactions on Intel-

ligent Transportation Systems, 13(2):899–913, 2012.

[129] G. Wang and R. Zimmermann. Eddy: an error-bounded delay-bounded real-time map matching

algorithm using hmm and online viterbi decoder. In Proceedings of the 22nd ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems, pages 33–42.

ACM, 2014.

[130] H. Wang, Z. Wang, G. Shen, F. Li, S. Han, and F. Zhao. Wheelloc: Enabling continuous

location service on mobile phone for outdoor scenarios. In 2013 Proceedings IEEE INFOCOM,

pages 2733–2741. IEEE, 2013.

[131] J. Wang, X. Rui, X. Song, X. Tan, C. Wang, and V. Raghavan. A novel approach for generating

routable road maps from vehicle gps traces. International Journal of Geographical Information

Science, 29(1):69–91, 2015.

134

[132] S. Wang, Y. Wang, and Y. Li. Efficient map reconstruction and augmentation via topological

methods. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in

Geographic Information Systems, page 25. ACM, 2015.

[133] T. Wang, J. Mao, and C. Jin. Hymu: A hybrid map updating framework. In International

Conference on Database Systems for Advanced Applications, pages 19–33. Springer, 2017.

[134] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and Y. Zhu. Crowdatlas: Self-updating maps for

cloud and personal use. In Proceeding of the 11th annual international conference on Mobile

systems, applications, and services, pages 27–40. ACM, 2013.

[135] H. Wei, Y. Wang, G. Forman, and Y. Zhu. Map matching by fréchet distance and global weight

optimization. Technical Paper, Departement of Computer Science and Engineering, page 19,

2013.

[136] H. Wei, Y. Wang, G. Forman, and Y. Zhu. Map matching: comparison of approaches using

sparse and noisy data. In Proceedings of the 21st ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, pages 444–447. ACM, 2013.

[137] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan. Fast viterbi map matching with tun-

able weight functions. In Proceedings of the 20th International Conference on Advances in

Geographic Information Systems, pages 613–616. ACM, 2012.

[138] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount. Distance oracle on terrain surface.

In Proceedings of the 2017 ACM International Conference on Management of Data, pages

1211–1226. ACM, 2017.

[139] C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms for personal

navigation assistants. Transportation research part c: emerging technologies, 8(1-6):91–108,

2000.

[140] Wikipedia. Mercator projection. https://en.wikipedia.org/wiki/Mercator_

projection. Accessed: 2019-11-01.

[141] Wikipedia. Restrictions on geographic data in china. https://en.wikipedia.org/

wiki/Restrictions_on_geographic_data_in_China. Accessed: 2019-11-01.

[142] Wikipedia. World geodetic system. https://en.wikipedia.org/wiki/World_

Geodetic_System. Accessed: 2019-11-01.

135

[143] H. Wu, C. Tu, W. Sun, B. Zheng, H. Su, and W. Wang. Glue: a parameter-tuning-free map

updating system. In Proceedings of the 24th ACM International on Conference on Information

and Knowledge Management, pages 683–692. ACM, 2015.

[144] J. Wu, Y. Zhu, T. Ku, and L. Wang. Detecting road intersections from coarse-gained gps traces

based on clustering. JCP, 8(11):2959–2965, 2013.

[145] Z. Xiao, H. Wen, A. Markham, and N. Trigoni. Lightweight map matching for indoor locali-

sation using conditional random fields. In Proceedings of the 13th international symposium on

Information processing in sensor networks, pages 131–142. IEEE Press, 2014.

[146] X. Xie, W. Philips, P. Veelaert, and H. Aghajan. Road network inference from gps traces using

dtw algorithm. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International

Conference on, pages 906–911. IEEE, 2014.

[147] X. Xie, K. B.-Y. Wong, H. Aghajan, P. Veelaert, and W. Philips. Road network inference

through multiple track alignment. Transportation Research Part C: Emerging Technologies,

72:93–108, 2016.

[148] A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang, and Y. Li. Solving the data sparsity problem in

destination prediction. The VLDB Journal, 24(2):219–243, 2015.

[149] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu. Destination prediction by

sub-trajectory synthesis and privacy protection against such prediction. In 2013 IEEE 29th

international conference on data engineering (ICDE), pages 254–265. IEEE, 2013.

[150] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Yu, and Y. Tang. Desteller: A system for destination

prediction based on trajectories with privacy protection. Proceedings of the VLDB Endowment,

6(12):1198–1201, 2013.

[151] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu. Pace: a path-centric paradigm for stochastic

path finding. The VLDB Journal, 27(2):153–178, 2018.

[152] C. Yang and G. Gidofalvi. Fast map matching, an algorithm integrating hidden markov model

with precomputation. International Journal of Geographical Information Science, 32(3):547–

570, 2018.

[153] D. Yang, B. Cai, and Y. Yuan. An improved map-matching algorithm used in vehicle navigation

system. In Proceedings of the 2003 IEEE International Conference on Intelligent Transporta-

tion Systems, volume 2, pages 1246–1250. IEEE, 2003.

136

[154] L. Yang, A. Y. Xue, Y. Li, and R. Zhang. Destination prediction by identifying and clustering

prominent features from public trajectory datasets. EAI Endorsed Transactions on Scalable

Information Systems, 2(5), 2015.

[155] A. G.-O. Yeh, T. Zhong, and Y. Yue. Angle difference method for vehicle navigation in mul-

tilevel road networks with a three-dimensional transport gis database. IEEE Transactions on

Intelligent Transportation Systems, 18(1):140–152, 2016.

[156] Y. Yin, R. R. Shah, G. Wang, and R. Zimmermann. Feature-based map matching for low-

sampling-rate gps trajectories. ACM Transactions on Spatial Algorithms and Systems (TSAS),

4(2):4, 2018.

[157] S. Yokoi, J.-I. Toriwaki, and T. Fukumura. An analysis of topological properties of digitized

binary pictures using local features. Computer Graphics and Image Processing, 4(1):63–73,

1975.

[158] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun. An interactive-voting based map matching

algorithm. In Proceedings of the 2010 Eleventh International Conference on Mobile Data

Management, pages 43–52. IEEE Computer Society, 2010.

[159] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing uncertainty of low-sampling-rate trajec-

tories. In 2012 IEEE 28th International Conference on Data Engineering, pages 1144–1155.

IEEE, 2012.

[160] K. Zheng and D. Zhu. A novel clustering algorithm of extracting road network from low-

frequency floating car data. Cluster Computing, pages 1–10, 2018.

[161] R. Zheng, Q. Liu, W. Rao, M. Yuan, J. Zeng, and Z. Jin. Topic model-based road network

inference from massive trajectories. In Mobile Data Management (MDM), 2017 18th IEEE

International Conference on, pages 246–255. IEEE, 2017.

[162] L. Zhu, J. R. Holden, and J. D. Gonder. Trajectory segmentation map-matching approach for

large-scale, high-resolution gps data. Transportation Research Record, 2645(1):67–75, 2017.

137

