46,484 research outputs found

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201

    Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Online Hybrid Model Predictive Control

    Full text link
    Today's fast linear algebra and numerical optimization tools have pushed the frontier of model predictive control (MPC) forward, to the efficient control of highly nonlinear and hybrid systems. The field of hybrid MPC has demonstrated that exact optimal control law can be computed, e.g., by mixed-integer programming (MIP) under piecewise-affine (PWA) system models. Despite the elegant theory, online solving hybrid MPC is still out of reach for many applications. We aim to speed up MIP by combining geometric insights from hybrid MPC, a simple-yet-effective learning algorithm, and MIP warm start techniques. Following a line of work in approximate explicit MPC, the proposed learning-control algorithm, LNMS, gains computational advantage over MIP at little cost and is straightforward for practitioners to implement

    Enhancing Domain Word Embedding via Latent Semantic Imputation

    Full text link
    We present a novel method named Latent Semantic Imputation (LSI) to transfer external knowledge into semantic space for enhancing word embedding. The method integrates graph theory to extract the latent manifold structure of the entities in the affinity space and leverages non-negative least squares with standard simplex constraints and power iteration method to derive spectral embeddings. It provides an effective and efficient approach to combining entity representations defined in different Euclidean spaces. Specifically, our approach generates and imputes reliable embedding vectors for low-frequency words in the semantic space and benefits downstream language tasks that depend on word embedding. We conduct comprehensive experiments on a carefully designed classification problem and language modeling and demonstrate the superiority of the enhanced embedding via LSI over several well-known benchmark embeddings. We also confirm the consistency of the results under different parameter settings of our method.Comment: ACM SIGKDD 201
    • …
    corecore