13 research outputs found

    A road towards the photonic hardware implementation of artificial cognitive circuits

    Get PDF
    Many technologies we use are inspired by nature. This happens in different domains, ranging from mechanics to optics to computer sciences. Nature has incredible potentialities that man still does not know or that he striving to learn through experience. These potentialities concern the ability to solve complex problems through approaches of various types of distributed intelligence. In fact, there are forms of intelligence in nature that differ from that of man, but are nevertheless exceedingly efficient. Man has often used as a model those forms of distributed intelligence that allow colonies of animals to develop places of housing or collective behaviors of extreme complexity. Recently, M. Alonzo et alii (Sci.Rep. 8, 5716 (2018)) published a hardware implementation to solve complex routing problems in modern information networks by exploiting the immense possibilities offered by light. This article presents an addressable photonic circuit based on the decision-making processes of ant colonies looking for food. When ants search for food, they modify their surroundings by leaving traces of pheromone, which may be reinforced and function as a type of path marker for when food has been found. This process is based on stigmergy, or the modification of the environment to implement distributed decision-making processes. The photonic hardware implementation that this work proposes is a photonic X-junction that simulates this stigmergic procedure. The experimental implementation is based on the use of non-linear substrates, i.e. materials that can be modified by light, simulating the modification induced by the ants on the surrounding environment when they leave the pheromone traces. Here, two laser beams generate two crossing channels in which the index of refraction is increased with respect to the whole substrate. These channels act as integrated waveguides (almost self-written optical fibers) within which optical information can be propagated (as happens for the ants that follow traces of pheromone already “written”). The proposed device is a X-junction with two crossing waveguides, whose refractive index contrast is defined by the intensities of the writing light beams. The higher the writing intensity, the greater the induced index variation, as if it were an increasingly intense pheromone trace. The information will follow the most contrasted harm of the junction, which is driven and eventually switched by the writing light intensity. Any optical information that will be sent to the device will follow the most intense trace, i.e. the most contrasted waveguide. The paper demonstrates a device that can be wholly operated using the light and that can be the basis of complex hardware configurations that might reproduce the stigmergic distributed intelligence. This is a highly significant innovation in the field of electronic and photonic technologies, within which artificial cognition and decision processes are implemented into a hardware circuit and not in a software code

    All-Optical Reinforcement Learning in Solitonic X-Junctions

    Get PDF
    L'etologia ha dimostrato che gruppi di animali o colonie possono eseguire calcoli complessi distribuendo semplici processi decisionali ai membri del gruppo. Ad esempio, le colonie di formiche possono ottimizzare le traiettorie verso il cibo eseguendo sia un rinforzo (o una cancellazione) delle tracce di feromone sia spostarsi da una traiettoria ad un'altra con feromone piĂą forte. Questa procedura delle formiche possono essere implementati in un hardware fotonico per riprodurre l'elaborazione del segnale stigmergico. Presentiamo qui innovative giunzioni a X completamente integrate realizzate utilizzando guide d'onda solitoniche in grado di fornire entrambi i processi decisionali delle formiche. Le giunzioni a X proposte possono passare da comportamenti simmetrici (50/50) ad asimmetrici (80/20) utilizzando feedback ottici, cancellando i canali di uscita inutilizzati o rinforzando quelli usati.Ethology has shown that animal groups or colonies can perform complex calculation distributing simple decision-making processes to the group members. For example ant colonies can optimize the trajectories towards the food by performing both a reinforcement (or a cancellation) of the pheromone traces and a switch from one path to another with stronger pheromone. Such ant's processes can be implemented in a photonic hardware to reproduce stigmergic signal processing. We present innovative, completely integrated X-junctions realized using solitonic waveguides which can provide both ant's decision-making processes. The proposed X-junctions can switch from symmetric (50/50) to asymmetric behaviors (80/20) using optical feedbacks, vanishing unused output channels or reinforcing the used ones

    An optical fiber network oracle for NP-complete problems

    Get PDF
    The modern information society is enabled by photonic fiber networks characterized by huge coverage and great complexity and ranging in size from transcontinental submarine telecommunication cables to fiber to the home and local segments. This world-wide network has yet to match the complexity of the human brain, which contains a hundred billion neurons, each with thousands of synaptic connections on average. However, it already exceeds the complexity of brains from primitive organisms, i.e., the honey bee, which has a brain containing approximately one million neurons. In this study, we present a discussion of the computing potential of optical networks as information carriers. Using a simple fiber network, we provide a proof-of-principle demonstration that this network can be treated as an optical oracle for the Hamiltonian path problem, the famous mathematical complexity problem of finding whether a set of towns can be travelled via a path in which each town is visited only once. Pronouncement of a Hamiltonian path is achieved by monitoring the delay of an optical pulse that interrogates the network, and this delay will be equal to the sum of the travel times needed to visit all of the nodes (towns). We argue that the optical oracle could solve this NP-complete problem hundreds of times faster than brute-force computing. Additionally, we discuss secure communication applications for the optical oracle and propose possible implementation in silicon photonics and plasmonic networks.Peer Reviewe

    Unconventional Computing: A Short Introduction

    Get PDF

    Optical NP problem solver on laser-written waveguide platform

    Get PDF
    Cognitive photonic networks are researched to efficiently solve computationally hard problems. Flexible fabrication techniques for the implementation of such networks into compact and scalable chips are desirable for the study of new optical computing schemes and algorithm optimization. Here we demonstrate a femtosecond laser-written optical oracle based on cascaded directional couplers in glass, for the solution of the Hamiltonian path problem. By interrogating the integrated photonic chip with ultrashort laser pulses, we were able to distinguish the different paths traveled by light pulses, and thus infer the existence or the absence of the Hamiltonian path in the network by using an optical correlator. This work proves that graph theory problems may be easily implemented in integrated photonic networks, down scaling the net size and speeding up execution times

    Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states

    Get PDF
    Memcomputing is a novel non-Turing paradigm of computation that uses interacting memory cells (memprocessors for short) to store and process information on the same physical platform. It was recently proven mathematically that memcomputing machines have the same computational power of nondeterministic Turing machines. Therefore, they can solve NP-complete problems in polynomial time and, using the appropriate architecture, with resources that only grow polynomially with the input size. The reason for this computational power stems from properties inspired by the brain and shared by any universal memcomputing machine, in particular intrinsic parallelism and information overhead, namely, the capability of compressing information in the collective state of the memprocessor network. We show an experimental demonstration of an actual memcomputing architecture that solves the NP-complete version of the subset sum problem in only one step and is composed of a number of memprocessors that scales linearly with the size of the problem. We have fabricated this architecture using standard microelectronic technology so that it can be easily realized in any laboratory setting. Although the particular machine presented here is eventually limited by noise—and will thus require error-correcting codes to scale to an arbitrary number of memprocessors—it represents the first proof of concept of a machine capable of working with the collective state of interacting memory cells, unlike the present-day single-state machines built using the von Neumann architecture

    www.springerreference.com/docs/html/chapterdbid/60497.html Mechanical Computing: The Computational Complexity of Physical Devices

    Get PDF
    - Mechanism: A machine or part of a machine that performs a particular task computation: the use of a computer for calculation.- Computable: Capable of being worked out by calculation, especially using a computer.- Simulation: Used to denote both the modeling of a physical system by a computer as well as the modeling of the operation of a computer by a mechanical system; the difference will be clear from the context. Definition of the Subject Mechanical devices for computation appear to be largely displaced by the widespread use of microprocessor-based computers that are pervading almost all aspects of our lives. Nevertheless, mechanical devices for computation are of interest for at least three reasons: (a) Historical: The use of mechanical devices for computation is of central importance in the historical study of technologies, with a history dating back thousands of years and with surprising applications even in relatively recent times. (b) Technical & Practical: The use of mechanical devices for computation persists and has not yet been completely displaced by widespread use of microprocessor-based computers. Mechanical computers have found applications in various emerging technologies at the micro-scale that combine mechanical functions with computational and control functions not feasible by purely electronic processing. Mechanical computers also have been demonstrated at the molecular scale, and may also provide unique capabilities at that scale. The physical designs for these modern micro and molecular-scale mechanical computers may be based on the prior designs of the large-scale mechanical computers constructed in the past. (c) Impact of Physical Assumptions on Complexity of Motion Planning, Design, and Simulation: The study of computation done by mechanical devices is also of central importance in providing lower bounds on the computational resources such as time and/or space required to simulate a mechanical syste
    corecore